— INF4820 — Algorithms for AI and NLP

Hierarchical Clustering

Erik Velldal & Stephan Oepen

Language Technology Group (LTG)

October 7, 2015

Agenda

Last week

- Evaluation of classifiers
- ► Machine learning for class discovery: Clustering
 - Unsupervised learning from unlabeled data.
 - Automatically group similar objects together.
 - ► No pre-defined classes: we only specify the similarity measure.
- ► Flat clustering, with *k*-means.

Today

- Hierarchical clustering
 - ► Top-down / divisive
 - ► Bottom-up / agglomerative
- Crash course on probability theory
- Language modeling

Agglomerative clustering

- Initially: regards each object as its own singleton cluster.
- ► Iteratively 'agglomerates' (merges) the groups in a bottom-up fashion.
- ► Each merge defines a binary branch in the tree.
- ► Terminates: when only one cluster remains (the root).

```
 \begin{array}{l} \textbf{parameters:} \ \{o_1,o_2,\ldots,o_n\}, \ \textbf{sim} \\ \hline C = \{\{o_1\},\{o_2\},\ldots,\{o_n\}\} \\ T = [] \\ \textbf{do for} \ i = 1 \ \textbf{to} \ n-1 \\ \{c_j,c_k\} \leftarrow \underset{\{c_j,c_k\}\subseteq C \ \land j\neq k}{\operatorname{arg\,max}} \underset{\{c_j,c_k\}}{\operatorname{sim}}(c_j,c_k) \\ C \leftarrow C \backslash \{c_j,c_k\} \\ C \leftarrow C \cup \{c_j\cup c_k\} \\ T[i] \leftarrow \{c_j,c_k\} \end{array}
```

- ► At each stage, we merge the pair of clusters that are most similar, as defined by some measure of inter-cluster similarity: sim.
- \blacktriangleright Plugging in a different sim gives us a different sequence of merges T.

Dendrograms

- A hierarchical clustering is often visualized as a binary tree structure known as a <u>dendrogram</u>.
- A merge is shown as a horizontal line connecting two clusters.
- ► The *y*-axis coordinate of the line corresponds to the <u>similarity</u> of the merged clusters.

► We here assume dot-products of normalized vectors (self-similarity = 1).

Definitions of inter-cluster similarity

- ► So far we've looked at ways to the define the similarity between
 - ► pairs of objects.
 - objects and a class.
- ▶ Now we'll look at ways to define the similarity between <u>collections</u>.
- ▶ In agglomerative clustering, a measure of cluster similarity $sim(c_i, c_j)$ is usually referred to as a linkage criterion:
 - ► Single-linkage
 - Complete-linkage
 - Average-linkage
 - ► Centroid-linkage
- ▶ Determines the pair of clusters to merge in each step.

Single-linkage

- Merge the two clusters with the minimum distance between any two members.
- A C E B

- 'Nearest neighbors'.
- ► Can be computed efficiently by taking advantage of the fact that it's best-merge persistent:
 - Let the nearest neighbor of cluster c_k be in either c_i or c_j . If we merge $c_i \cup c_j = c_l$, the nearest neighbor of c_k will be in c_l .
 - The distance of the two closest members is a local property that is not affected by merging.
- Undesirable chaining effect: Tendency to produce 'stretched' and 'straggly' clusters.

Complete-linkage

Merge the two clusters where the maximum distance between any two members is smallest.

- 'Farthest neighbors'.
- ► Amounts to merging the two clusters whose merger has the smallest diameter.
- ▶ Preference for compact clusters with small diameters.
- Sensitive to outliers.
- ► Not best-merge persistent: Distance defined as the diameter of a merge is a non-local property that can change during merging.

Average-linkage (1:2)

- AKA group-average agglomerative clustering.
- Merge the clusters with the highest average pairwise similarities in their union.

- Aims to maximize coherency by considering all pairwise similarities between objects within the cluster to merge (excluding self-similarities).
- ► Compromise of complete- and single-linkage.
- ► Not best-merge persistent.
- ► Commonly considered the best default clustering criterion.

Average-linkage (2:2)

Can be computed very efficiently if we assume (i) the dot-product as the similarity measure for (ii) normalized feature vectors.

▶ Let $c_i \cup c_j = c_k$, and $sim(c_i, c_j) = W(c_i \cup c_j) = W(c_k)$, then $W(c_k) =$

$$\frac{1}{|c_k|(|c_k|-1)} \sum_{\vec{x} \in c_k} \sum_{\vec{y} \neq \vec{x} \in c_k} \vec{x} \cdot \vec{y} = \frac{1}{|c_k|(|c_k|-1)} \left(\left(\sum_{\vec{x} \in c_k} \vec{x} \right)^2 - |c_k| \right)$$

► The sum of vector similarities is equal to the similarity of their sums.

ç

Centroid-linkage

- ► Similarity of clusters c_i and c_j defined as the similarity of their cluster centroids $\vec{\mu}_i$ and $\vec{\mu}_j$.
- $\begin{array}{c|c}
 A & & & \\
 m_1 & & & \\
 C & & & E
 \end{array}$

Equivalent to the average pairwise similarity between objects from different clusters:

$$sim(c_i, c_j) = \vec{\mu_i} \cdot \vec{\mu_j} = \frac{1}{|c_i||c_j|} \sum_{ec{x} \in c_i} \sum_{ec{y} \in c_i} ec{x} \cdot ec{y}$$

- ► Not best-merge persistent.
- ► Not monotonic, subject to <u>inversions</u>: The combination similarity can increase during the clustering.

Monotinicity

- A fundamental assumption in clustering: small clusters are more coherent than large.
- ► We usually assume that a clustering is monotonic:
- Similarity is decreasing from iteration to iteration.

This assumption holds true for all our clustering criterions except for centroid-linkage.

Inversions – a problem with centroid-linkage

- Centroid-linkage is non-monotonic.
- We risk seeing so-called inversions:
- Similarity can increase during the sequence of clustering steps.
- Would show as crossing lines in the dendrogram.

▶ The horizontal merge bar is lower than the bar of a previous merge.

Linkage criterions

Single-link

Complete-link

Average-link

Centroid-link

► All the linkage criterions can be computed on the basis of the object similarities; the input is typically a proximity matrix.

Cutting the tree

- ► The tree actually represents several partitions:
- ▶ one for each level.
- ► If we want to turn the nested partitions into a single flat partitioning...
- ▶ we must cut the tree.

► A cutting criterion can be defined as a threshold on e.g. combination similarity, relative drop in the similarity, number of root nodes, etc.

Divisive hierarchical clustering

Generates the nested partitions top-down:

- ► Start: all objects considered part of the same cluster (the root).
- Split the cluster using a flat clustering algorithm (e.g. by applying k-means for k = 2).
- Recursively split the clusters until only singleton clusters remain (or some specified number of levels is reached).
- ► Flat methods are generally very effective (e.g. *k*-means is <u>linear</u> in the number of objects).
- ► Divisive methods are thereby also generally more efficient than agglomerative, which are at least quadratic (single-link).
- Also able to initially consider the global distribution of the data, while the agglomerative methods must commit to early decisions based on local patterns.

University of Oslo: Department of Informatics

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing

Basic Probability Theory & Language Models

Stephan Oepen & Erik Velldal

Language Technology Group (LTG)

October 7, 2015

1

Changing of the Guard

So far: Point-wise classification; geometric models.

Next: Structured classification; probabilistic models.

- ► sequences
- ► labelled sequences
- ► trees

Kristian (December 10, 2014)

Guro (March 16, 2015)

By the End of the Semester . . .

- ... you should be able to determine
- ► which string is most likely:
 - ► How to recognise speech vs. How to wreck a nice beach
- ▶ which category sequence is most likely for *flies like an arrow*:
 - NVDNvs. VPDN
- which syntactic analysis is most likely:

Probability Basics (1/4)

- Experiment (or trial)
 - ► the process we are observing
- ▶ Sample space (Ω)
 - the set of all possible outcomes
- Event(s)
 - ${\color{red} \blacktriangleright}$ the subset of Ω we are interested in

Probability Basics (2/4)

- Experiment (or trial)
 - ► rolling a die
- ▶ Sample space (Ω)
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Event(s)
 - $A = \text{rolling a six: } \{6\}$
 - B =getting an even number: $\{2,4,6\}$

Probability Basics (3/4)

- Experiment (or trial)
 - flipping two coins
- ▶ Sample space (Ω)
 - $\qquad \qquad \bullet \ \Omega = \{HH, HT, TH, TT\}$
- Event(s)
 - A =the same both times: $\{HH, TT\}$
 - ▶ $B = \text{at least one head: } \{HH, HT, TH\}$

Probability Basics (4/4)

- Experiment (or trial)
 - ► rolling two dice
- ▶ Sample space (Ω)
- Event(s)
 - $A = \text{results sum to 6: } \{15, 24, 33, 42, 51\}$
 - ► $B = \text{both results are even: } \{22, 24, 26, 42, 44, 46, 62, 64, 66\}$

- ▶ P(A, B): probability that both A and B happen
- ▶ also written: $P(A \cap B)$

- ► A: the results sum to 6 and
- ► *B*: at least one result is a 1?

- ▶ P(A, B): probability that both A and B happen
- ▶ also written: $P(A \cap B)$

- ► A: the results sum to 6 and
- ► *B*: at least one result is a 1?

- ▶ P(A, B): probability that both A and B happen
- ▶ also written: $P(A \cap B)$

- A: the results sum to 6 and $\frac{\xi}{3}$
- ► B: at least one result is a 1?

- ▶ P(A, B): probability that both A and B happen
- ▶ also written: $P(A \cap B)$

- ► A: the results sum to 6 and $\frac{5}{30}$
- ▶ B: at least one result is a 1? $\frac{11}{36}$

Conditional Probability

Often, we know something about a situation.

- ightharpoonup A: the results sum to 6 given
- ► B: at least one result is a 1?

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 (where $P(B) > 0$)

The Chain Rule

Joint probability is symmetric:

$$P(A \cap B) = P(A) P(B|A)$$

= $P(B) P(A|B)$ (multiplication rule)

More generally, using the chain rule:

$$P(A_1 \cap \dots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\dots P(A_n|\cap_{i=1}^{n-1} A_i)$$

The chain rule will be very useful to us through the semester:

- ▶ it allows us to break a complicated situation into parts;
- ▶ we can choose the breakdown that suits our problem.

(Conditional) Independence

If knowing event B is true has no effect on event A, we say A and B are independent of each other.

If A and B are independent:

- P(A) = P(A|B)
- ightharpoonup P(B) = P(B|A)
- $P(A \cap B) = P(A) P(B)$

Intuition? (1/3)

Let's say we have a rare disease, and a pretty accurate test for detecting it. Yoda has taken the test, and the result is positive.

The numbers:

▶ disease prevalence: 1 in 1000 people

► test false negative rate: 1%

► test false positive rate: 2%

What is the probability that he has the disease?

Intuition? (2/3)

Given:

- ► event A: have disease
- ► event B: positive test

We know:

- P(A) = 0.001
- ► P(B|A) = 0.99
- ► $P(B|\neg A) = 0.02$

We want

► P(A|B) = ?

Intuition? (3/3)

$$P(A) = 0.001; P(B|A) = 0.99; P(B|\neg A) = 0.02$$

 $P(A \cap B) = P(B|A)P(A)$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.00099}{0.02097} = 0.0472$$

Bayes' Theorem

► From the two 'symmetric' sides of the joint probability equation:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- reverses the order of dependence (which can be useful)
- in conjunction with the chain rule, allows us to determine the probabilities we want from the probabilities we know

Other useful axioms

- $ightharpoonup P(\Omega) = 1$
- $P(A) = 1 P(\neg A)$

Bonus: The Monty Hall Problem

- ► On a gameshow, there are three doors.
- ▶ Behind 2 doors, there is a goat.
- ► Behind the 3rd door, there is a car.
- ▶ The contestant selects a door that she hopes has the car behind it.
- Before she opens that door, the gameshow host opens one of the other doors to reveal a goat.
- ► The contestant now has the choice of opening the door she originally chose, or switching to the other unopened door.

What should she do?

Coming up Next

- ► Do you want to come to the movies and __?__
- ► Det var en ?
- ► Je ne parle pas _ ?

Natural language contains redundancy, hence can be predictable.

Previous context can constrain the next word

- semantically;
- syntactically;
- ightarrow by frequency.

Recall: By the End of the Semester ...

- ... you should be able to determine
- which string is most likely:
 - ► How to recognise speech vs. How to wreck a nice beach
- ▶ which category sequence is most likely for *flies like an arrow*:
 - NVDNvs. VPDN
- which syntactic analysis is most likely:

Language Models

- A probabilistic (also known as stochastic) language model M assigns probabilities $P_M(x)$ to all strings x in language L.
 - ► L is the sample space
 - $0 \le P_M(x) \le 1$
 - $\blacktriangleright \sum_{x \in L} P_M(x) = 1$
- ► Language models are used in machine translation, speech recognition systems, spell checkers, input prediction, . . .
- ► We can calculate the probability of a string using the chain rule:

$$P(w_1 \dots w_n) = P(w_1)P(w_2|w_1)P(w_3|w_1 \cap w_2)\dots P(w_n|\cap_{i=1}^{n-1} w_i)$$

 $P(\textit{I want to go to the beach}) = P(\textit{I}) \ P(\textit{want}|\textit{I}) \ P(\textit{to}|\textit{I want}) \ P(\textit{go}|\textit{I want to}) \ P(\textit{to}|\textit{I want to go}) \dots$

N-Grams

We simplify using the Markov assumption (limited history):

the last n-1 elements can approximate the effect of the full sequence.

That is, instead of

► P(beach| I want to go to the)

selecting an n of 3, we use

► P(beach| to the)

We call these short sequences of words n-grams:

- ▶ bigrams: I want, want to, to go, go to, to the, the beach
- ▶ trigrams: I want to, want to go, to go to, go to the
- ▶ 4-grams: I want to go, want to go to, to go to the