— INF4820 —

Algorithms for AI and NLP

Hierarchical Clustering

Erik Velldal \& Stephan Oepen

Language Technology Group (LTG)
October 7, 2015

Agenda

Last week

- Evaluation of classifiers
- Machine learning for class discovery: Clustering
- Unsupervised learning from unlabeled data.
- Automatically group similar objects together.
- No pre-defined classes: we only specify the similarity measure.
- Flat clustering, with k-means.

Today

- Hierarchical clustering
- Top-down / divisive
- Bottom-up / agglomerative
- Crash course on probability theory
- Language modeling

Agglomerative clustering

- Initially: regards each object as its own singleton cluster.
- Iteratively 'agglomerates' (merges) the groups in a bottom-up fashion.
- Each merge defines a binary branch in the tree.
- Terminates: when only one cluster

$$
\begin{aligned}
& \text { parameters: }\left\{o_{1}, o_{2}, \ldots, o_{n}\right\}, \text { sim } \\
& \hline C=\left\{\left\{o_{1}\right\},\left\{o_{2}\right\}, \ldots,\left\{o_{n}\right\}\right\} \\
& T=[] \\
& \text { do for } i=1 \text { to } n-1 \\
& \quad\left\{c_{j}, c_{k}\right\} \leftarrow \underset{\left\{c_{j}, c_{k}\right\} \subseteq C \wedge}{\arg \max } \operatorname{sim}\left(c_{j}, c_{k}\right) \\
& C \leftarrow C \backslash\left\{c_{j}, c_{k}\right\} \\
& C \leftarrow C \cup\left\{c_{j} \cup c_{k}\right\} \\
& T[i] \leftarrow\left\{c_{j}, c_{k}\right\} \\
& \hline
\end{aligned}
$$ remains (the root).

- At each stage, we merge the pair of clusters that are most similar, as defined by some measure of inter-cluster similarity: sim.
- Plugging in a different sim gives us a different sequence of merges T .
- A hierarchical clustering is often visualized as a binary tree structure known as a dendrogram.
- A merge is shown as a horizontal line connecting two clusters.
- The y-axis coordinate of the line corresponds to the similarity of the
 merged clusters.
- We here assume dot-products of normalized vectors (self-similarity $=1$).

Definitions of inter-cluster similarity

- So far we've looked at ways to the define the similarity between
- pairs of objects.
- objects and a class.
- Now we'll look at ways to define the similarity between collections.
- In agglomerative clustering, a measure of cluster similarity $\operatorname{sim}\left(c_{i}, c_{j}\right)$ is usually referred to as a linkage criterion:
- Single-linkage
- Complete-linkage
- Average-linkage
- Centroid-linkage
- Determines the pair of clusters to merge in each step.

Single-linkage

- Merge the two clusters with the minimum distance between any two members.
- 'Nearest neighbors'.

- Can be computed efficiently by taking advantage of the fact that it's best-merge persistent:
- Let the nearest neighbor of cluster c_{k} be in either c_{i} or c_{j}. If we merge $c_{i} \cup c_{j}=c_{l}$, the nearest neighbor of c_{k} will be in c_{l}.
- The distance of the two closest members is a local property that is not affected by merging.
- Undesirable chaining effect: Tendency to produce 'stretched’ and 'straggly' clusters.

Complete-linkage

- Merge the two clusters where the maximum distance between any two members is smallest.
- 'Farthest neighbors'.

- Amounts to merging the two clusters whose merger has the smallest diameter.
- Preference for compact clusters with small diameters.
- Sensitive to outliers.
- Not best-merge persistent: Distance defined as the diameter of a merge is a non-local property that can change during merging.

Average-linkage (1:2)

- AKA group-average agglomerative clustering.
- Merge the clusters with the highest average pairwise similarities in their union.

- Aims to maximize coherency by considering all pairwise similarities between objects within the cluster to merge (excluding self-similarities).
- Compromise of complete- and single-linkage.
- Not best-merge persistent.
- Commonly considered the best default clustering criterion.

Average-linkage (2:2)

- Can be computed very efficiently if we assume (i) the dot-product as the similarity measure for (ii) normalized feature vectors.

- Let $c_{i} \cup c_{j}=c_{k}$, and $\operatorname{sim}\left(c_{i}, c_{j}\right)=W\left(c_{i} \cup c_{j}\right)=W\left(c_{k}\right)$, then $W\left(c_{k}\right)=$

$$
\frac{1}{\left|c_{k}\right|\left(\left|c_{k}\right|-1\right)} \sum_{\vec{x} \in c_{k}} \sum_{\vec{y} \neq \vec{x} \in c_{k}} \vec{x} \cdot \vec{y}=\frac{1}{\left|c_{k}\right|\left(\left|c_{k}\right|-1\right)}\left(\left(\sum_{\vec{x} \in c_{k}} \vec{x}\right)^{2}-\left|c_{k}\right|\right)
$$

- The sum of vector similarities is equal to the similarity of their sums.

Centroid-linkage

- Similarity of clusters c_{i} and c_{j} defined as the similarity of their cluster centroids $\vec{\mu}_{i}$ and $\vec{\mu}_{j}$.

- Equivalent to the average pairwise similarity between objects from different clusters:

$$
\operatorname{sim}\left(c_{i}, c_{j}\right)=\overrightarrow{\mu_{i}} \cdot \overrightarrow{\mu_{j}}=\frac{1}{\left|c_{i}\right|\left|c_{j}\right|} \sum_{\vec{x} \in c_{i}} \sum_{\vec{y} \in c_{j}} \vec{x} \cdot \vec{y}
$$

- Not best-merge persistent.
- Not monotonic, subject to inversions: The combination similarity can increase during the clustering.

Monotinicity

- A fundamental assumption in clustering: small clusters are more coherent than large.
- We usually assume that a clustering is monotonic:
- Similarity is decreasing from iteration to iteration.

- This assumpion holds true for all our clustering criterions except for centroid-linkage.

Inversions - a problem with centroid-linkage

- Centroid-linkage is non-monotonic.
- We risk seeing so-called inversions:
- Similarity can increase during the sequence of clustering steps.
- Would show as crossing
 lines in the dendrogram.
- The horizontal merge bar is lower than the bar of a previous merge.

Linkage criterions

Single-link

Complete-link

Average-link

Centroid-link

- All the linkage criterions can be computed on the basis of the object similarities; the input is typically a proximity matrix.
- The tree actually represents several partitions:
- one for each level.
- If we want to turn the nested partitions into a single flat partitioning...
- we must cut the tree.

- A cutting criterion can be defined as a threshold on e.g. combination similarity, relative drop in the similarity, number of root nodes, etc.

Divisive hierarchical clustering

Generates the nested partitions top-down:

- Start: all objects considered part of the same cluster (the root).
- Split the cluster using a flat clustering algorithm (e.g. by applying k-means for $k=2$).
- Recursively split the clusters until only singleton clusters remain (or some specified number of levels is reached).
- Flat methods are generally very effective (e.g. k-means is linear in the number of objects).
- Divisive methods are thereby also generally more efficient than agglomerative, which are at least quadratic (single-link).
- Also able to initially consider the global distribution of the data, while the agglomerative methods must commit to early decisions based on local patterns.

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing

Basic Probability Theory \& Language Models

Stephan Oepen \& Erik Velldal
Language Technology Group (LTG)

October 7, 2015

Changing of the Guard

So far: Point-wise classification; geometric models.
Next: Structured classification; probabilistic models.

- sequences
- labelled sequences
- trees

Kristian (December 10, 2014)

Guro (March 16, 2015)

By the End of the Semester

... you should be able to determine

- which string is most likely:
- How to recognise speech vs. How to wreck a nice beach
- which category sequence is most likely for flies like an arrow:
- N V D N vs. V P D N
- which syntactic analysis is most likely:

- Experiment (or trial)
- the process we are observing
- Sample space (Ω)
- the set of all possible outcomes
- Event(s)
- the subset of Ω we are interested in
$P(A)$ is the probability of event A , a real number $\in[0,1]$
- Experiment (or trial)
- rolling a die
- Sample space (Ω)
- $\Omega=\{1,2,3,4,5,6\}$
- Event(s)
- $A=$ rolling a six: $\{6\}$
- $B=$ getting an even number: $\{2,4,6\}$
$P(A)$ is the probability of event A , a real number $\in[0,1]$
- Experiment (or trial)
- flipping two coins
- Sample space (Ω)
- $\Omega=\{H H, H T, T H, T T\}$
- Event(s)
- $A=$ the same both times: $\{H H, T T\}$
- $B=$ at least one head: $\{H H, H T, T H\}$
$P(A)$ is the probability of event A , a real number $\in[0,1]$

Probability Basics (4/4)

- Experiment (or trial)
- rolling two dice
- Sample space (Ω)
- $\Omega=\{11,12,13,14,15,16,21,22,23,24, \ldots, 63,64,65,66\}$
- Event(s)
- $A=$ results sum to $6:\{15,24,33,42,51\}$
- $B=$ both results are even: $\{22,24,26,42,44,46,62,64,66\}$
$P(A)$ is the probability of event A , a real number $\in[0,1]$

Joint Probability

- $P(A, B)$: probability that both A and B happen
- also written: $P(A \cap B)$

What is the probability, when throwing two fair dice, that

- A : the results sum to 6 and
- B : at least one result is a 1 ?

Joint Probability

- $P(A, B)$: probability that both A and B happen
- also written: $P(A \cap B)$

What is the probability, when throwing two fair dice, that

- A : the results sum to 6 and
- B : at least one result is a 1 ?

Joint Probability

- $P(A, B)$: probability that both A and B happen
- also written: $P(A \cap B)$

What is the probability, when throwing two fair dice, that

- A: the results sum to 6 and $\frac{5}{36}$
- B : at least one result is a 1 ?

Joint Probability

- $P(A, B)$: probability that both A and B happen
- also written: $P(A \cap B)$

What is the probability, when throwing two fair dice, that

- A: the results sum to 6 and $\frac{5}{36}$
- B: at least one result is a 1 ? $\quad \frac{11}{36}$

Conditional Probability

Often, we know something about a situation.
What is the probability $P(A \mid B)$, when throwing two fair dice, that

- A : the results sum to 6 given
- B : at least one result is a 1 ?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad(\text { where } P(B)>0)
$$

Joint probability is symmetric:

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B \mid A) \\
& =P(B) P(A \mid B) \quad \text { (multiplication rule) }
\end{aligned}
$$

More generally, using the chain rule:
$P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots P\left(A_{n} \mid \cap_{i=1}^{n-1} A_{i}\right)$
The chain rule will be very useful to us through the semester:

- it allows us to break a complicated situation into parts;
- we can choose the breakdown that suits our problem.

(Conditional) Independence

If knowing event B is true has no effect on event A, we say
A and B are independent of each other.

If A and B are independent:

- $P(A)=P(A \mid B)$
- $P(B)=P(B \mid A)$
- $P(A \cap B)=P(A) P(B)$

Intuition? (1/3)

Let's say we have a rare disease, and a pretty accurate test for detecting it. Yoda has taken the test, and the result is positive.

The numbers:

- disease prevalence: 1 in 1000 people
- test false negative rate: 1%
- test false positive rate: 2%

What is the probability that he has the disease?

Intuition? (2/3)

Given:

- event A: have disease
- event B: positive test

We know:

- $P(A)=0.001$
- $P(B \mid A)=0.99$
- $P(B \mid \neg A)=0.02$

We want

- $P(A \mid B)=$?

Intuition? (3/3)

$$
\begin{array}{c|cc|c}
& \mathrm{A} & \neg \mathrm{~A} & \\
\hline \mathrm{~B} & 0.00099 & 0.01998 & 0.02097 \\
\neg \mathrm{~B} & 0.00001 & 0.97902 & 0.97903 \\
\hline & 0.001 & 0.999 & 1 \\
P(A)=0.001 ; \quad P(B \mid A)=0.99 ; \quad P(B \mid \neg A)=0.02 \\
P(A \cap B)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.00099}{0.02097}=0.0472
\end{array}
$$

- From the two 'symmetric' sides of the joint probability equation:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- reverses the order of dependence (which can be useful)
- in conjunction with the chain rule, allows us to determine the probabilities we want from the probabilities we know

Other useful axioms

- $P(\Omega)=1$
- $P(A)=1-P(\neg A)$
- On a gameshow, there are three doors.
- Behind 2 doors, there is a goat.
- Behind the 3rd door, there is a car.
- The contestant selects a door that she hopes has the car behind it.
- Before she opens that door, the gameshow host opens one of the other doors to reveal a goat.
- The contestant now has the choice of opening the door she originally chose, or switching to the other unopened door.

What should she do?

- Do you want to come to the movies and
- Det var en ?
- Je ne parle pas ?

Natural language contains redundancy, hence can be predictable.
Previous context can constrain the next word

- semantically;
- syntactically;
\rightarrow by frequency.

Recall: By the End of the Semester

... you should be able to determine

- which string is most likely:
- How to recognise speech vs. How to wreck a nice beach
- which category sequence is most likely for flies like an arrow:
- N V D N vs. V P D N
- which syntactic analysis is most likely:

Language Models

- A probabilistic (also known as stochastic) language model M assigns probabilities $P_{M}(x)$ to all strings x in language L.
- L is the sample space
- $0 \leq P_{M}(x) \leq 1$
- $\sum_{x \in L} P_{M}(x)=1$
- Language models are used in machine translation, speech recognition systems, spell checkers, input prediction, ...
- We can calculate the probability of a string using the chain rule:

$$
P\left(w_{1} \ldots w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1} \cap w_{2}\right) \ldots P\left(w_{n} \mid \cap_{i=1}^{n-1} w_{i}\right)
$$

$P(I$ want to go to the beach $)=$
$P(I) P($ want $\mid I) P($ to $\mid I$ want $) P($ go| I want to $) P($ to \mid want to go $) \ldots$

We simplify using the Markov assumption (limited history):
the last $n-1$ elements can approximate the effect of the full sequence.

That is, instead of

- P(beach | I want to go to the)
selecting an n of 3 , we use
- $P($ beach \mid to the $)$

We call these short sequences of words n-grams:

- bigrams: I want, want to, to go, go to, to the, the beach
- trigrams: I want to, want to go, to go to, go to the
- 4-grams: I want to go, want to go to, to go to the

