University of Oslo : Department of Informatics

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing

Language Models & Hidden Markov Models

Stephan Oepen & Erik Velldal

Language Technology Group (LTG)

October 14, 2015

1

# Recall: By the End of the Semester ...



- ... you should be able to determine
- ► which string is most likely:
  - ► How to recognize speech vs. How to wreck a nice beach
- ▶ which category sequence is most likely for *flies like an arrow*:
  - NVDNvs. VPDN
- which syntactic analysis is most likely:





## Language Models — N-Grams



A probabilistic (or stochastic) language model M assigns probabilities  $P_{M}\left(x\right)$  to all strings x in language L.

We simplify using the Markov assumption (limited history):

the last n-1 elements approximate the effect of the full sequence.

That is, instead of

- $ightharpoonup P(w_i|w_1,\ldots w_{i-1})$
- selecting an n of 3, we use
- ►  $P(w_i|w_{i-1},w_{i-2})$

We call these short sequences of words n-grams:

- ▶ bigrams: I want, want to, to go, go to, to the, the beach
- ▶ trigrams: I want to, want to go, to go to, go to the
- ▶ 4-grams: I want to go, want to go to, to go to the

#### N-Gram Models



A generative model models a joint probability in terms of conditional probabilities.

We talk about the generative story:



$$P(S) = P(\mathsf{the}|\langle S \rangle) \ P(\mathsf{cat}|\mathsf{the}) \ P(\mathsf{eats}|\mathsf{cat}) \ P(\mathsf{mice}|\mathsf{eats}) \ P(\langle /S \rangle|\mathsf{mice})$$

#### N-Gram Models



An n-gram language model records the n-gram conditional probabilities:

We calculate the probability of a sentence as (assuming bi-grams):

$$\begin{array}{ll} P\left(w_{1}^{n}\right) & \approx & \displaystyle \prod_{i=1}^{n} P\left(w_{i}|w_{i-1}\right) \\ \\ & \approx & P\left(I|\left\langle S\right\rangle\right) \times P\left(\textit{want}|I\right) \times P\left(\textit{to}|\textit{want}\right) \times P\left(\textit{go}|\textit{to}\right) \times P\left(\textit{to}|\textit{go}\right) \times \\ \\ & P\left(\textit{the}|\textit{to}\right) \times P\left(\textit{beach}|\textit{the}\right) \\ \\ & \approx & 0.0429 \times 0.0111 \times 0.4810 \times 0.0131 \times 0.1540 \times \\ \\ & 0.1219 \times 0.0006 = 3.38 \times 10^{-11} \end{array}$$

## Training an N-Gram Model



How to estimate the probabilities of n-grams?

By counting (e.g. for trigrams):

$$P\left(\text{bananas}|\text{i like}\right) = \frac{C\left(\text{i like bananas}\right)}{C\left(\text{i like}\right)}$$

The probabilities are estimated using the relative frequencies of observed outcomes. This process is called Maximum Likelihood Estimation (MLE).

## Bigram MLE Example



"I want to go to the beach"

|                     |       | 0                      |                       |                             |
|---------------------|-------|------------------------|-----------------------|-----------------------------|
| $w_1$               | $w_2$ | $C\left(w_1w_2\right)$ | $C\left(w_{1}\right)$ | $P\left(w_{2} w_{1}\right)$ |
| $\langle S \rangle$ | I     | 1039                   | 24243                 | 0.0429                      |
| 1                   | want  | 46                     | 4131                  | 0.0111                      |
| want                | to    | 101                    | 210                   | 0.4810                      |
| to                  | go    | 128                    | 9778                  | 0.0131                      |
| go                  | to    | 59                     | 383                   | 0.1540                      |
| to                  | the   | 1192                   | 9778                  | 0.1219                      |
| the                 | beach | 14                     | 22244                 | 0.0006                      |
|                     |       |                        |                       |                             |

What's the probability of Others want to go to the beach?

7

#### Problems with MLE of N-Grams



- Data sparseness: many perfectly acceptable n-grams will not be observed
- Zero counts will result in a estimated probability of 0
- Remedy—reassign some of the probability mass of frequent events to less frequent (or unseen) events.
- Known as smoothing or discounting
- ► The simplest approach is Laplace ('add-one') smoothing:

$$P_{L}(w_{n}|w_{n-1}) = \frac{C(w_{n-1}w_{n}) + 1}{C(w_{n-1}) + V}$$

# Bigram MLE Example with Laplace Smoothing



| "Others w | ant to | go to | the | beach" |
|-----------|--------|-------|-----|--------|
|-----------|--------|-------|-----|--------|

| $\overline{w_1}$               | $w_2$  | $C(w_1w_2)$ | $C\left(w_{1}\right)$ | $P\left(w_{2} w_{1}\right)$ | $P_L\left(w_2 w_1\right)$ |
|--------------------------------|--------|-------------|-----------------------|-----------------------------|---------------------------|
| $\overline{\langle S \rangle}$ |        | 1039        | 24243                 | 0.0429                      | 0.01934                   |
| $\langle S \rangle$            | Others | 17          | 24243                 | 0.0007                      | 0.00033                   |
| 1                              | want   | 46          | 4131                  | 0.0111                      | 0.00140                   |
| Others                         | want   | 0           | 4131                  | 0                           | 0.00003                   |
| want                           | to     | 101         | 210                   | 0.4810                      | 0.00343                   |
| to                             | go     | 128         | 9778                  | 0.0131                      | 0.00328                   |
| go                             | to     | 59          | 383                   | 0.1540                      | 0.00201                   |
| to                             | the    | 1192        | 9778                  | 0.1219                      | 0.03035                   |
| the                            | beach  | 14          | 22244                 | 0.0006                      | 0.00029                   |
|                                |        |             |                       |                             |                           |

$$P_{L}(w_{n}|w_{n-1}) = \frac{C(w_{n-1}w_{n}) + 1}{C(w_{n-1}) + 29534}$$

## N-Gram Summary



- ▶ The likelihood of the next word depends on its context.
- ► We can calculate this using the chain rule:

$$P\left(w_1^N\right) = \prod_{i=1}^N P\left(w_i|w_1^{i-1}\right)$$

▶ In an *n*-gram model, we approximate this with a Markov chain:

$$P\left(w_1^N\right) pprox \prod_{i=1}^N P\left(w_i | w_{i-n+1}^{i-1}\right)$$

- We use Maximum Likelihood Estimation to estimate the conditional probabilities.
- Smoothing techniques are used to avoid zero probabilities.

## Parts of Speech



- Known by a variety of names: part-of-speech, POS, lexical categories, word classes, morpho-syntactic classes, . . .
- ► 'Traditionally' defined semantically (e.g. "nouns are naming words"), but (arguably) more accurately by their distributional properties.
- Open-classes
  - New words created/updated/deleted all the time
- Closed-classes
  - ► Smaller classes, relatively static membership
  - Usually function words

### Open Class Words



- ► Nouns: dog, Oslo, scissors, snow, people, truth, cups
  - ► proper or common; countable or uncountable; plural or singular; masculine, feminine, or neuter; . . .
- ► Verbs: fly, rained, having, ate, seen
  - transitive, intransitive, ditransitive; past, present, passive; stative or dynamic; plural or singular; . . .
- ► Adjectives: good, smaller, unique, fastest, best, unhappy
  - comparative or superlative; predicative or attributive; intersective, subsective, or scopal; . . .
- Adverbs: again, somewhat, slowly, yesterday, aloud
  - intersective; scopal; discourse; degree; temporal; directional; comparative or superlative; . . .

#### Closed Class Words



- ▶ Prepositions: on, under, from, at, near, over, . . .
- ► Determiners: a, an, the, that, . . .
- ► Pronouns: <u>she</u>, <u>who</u>, <u>I</u>, <u>others</u>, . . .
- ► Conjunctions: <u>and</u>, <u>but</u>, <u>or</u>, <u>when</u>, . . .
- ► Auxiliary verbs: <u>can</u>, <u>may</u>, <u>should</u>, <u>must</u>, . . .
- ► Interjections, particles, numerals, negatives, politeness markers, greetings, existential there . . .

(Examples from Jurafsky & Martin, 2008)

## POS Tagging



The (automatic) assignment of POS tags to word sequences

- ► non-trivial where words are ambiguous: fly (v) vs. fly (n)
- choice of the correct tag is context-dependent
- useful in pre-processing for parsing, etc; but also directly for text-to-speech synthesis: content (n) vs. content (adj)
- difficulty and usefulness can depend on the tagset
  - English
    - ► Penn Treebank (PTB)—45 tags: NNS, NN, NNP, JJ, JJR, JJS http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
  - Norwegian
    - ► Oslo-Bergen Tagset—multi-part: ⟨subst appell fem be ent⟩ http://tekstlab.uio.no/obt-ny/english/tags.html

### Labeled Sequences



▶ We are interested in the probability of sequences like:

```
flies like the wind NNS VB DT NN Or VBZ P DT NN
```

- ▶ In normal text, we see the words, but not the tags.
- Consider the POS tags to be underlying skeleton of the sentence, unseen but influencing the sentence shape.
- ► A structure like this, consisting of a hidden state sequence, and a related observation sequence can be modelled as a *Hidden Markov Model*.

#### Hidden Markov Models



The generative story:



$$\begin{split} P(S,O) &= P(|\mathsf{DT}| \langle S \rangle) \; P(\mathsf{the}|\mathsf{DT}) \; P(\mathsf{NN}|\mathsf{DT}) \; P(\mathsf{cat}|\mathsf{NN}) \\ &\quad P(\mathsf{VBZ}|\mathsf{NN}) \; P(\mathsf{eats}|\mathsf{VBZ}) \; P(\mathsf{NNS}|\mathsf{VBZ}) \; P(\mathsf{mice}|\mathsf{NNS}) \\ &\quad P(\langle /S \rangle|\mathsf{NNS}) \end{split}$$

#### Hidden Markov Models



For a bi-gram HMM, with observations  $\mathcal{O}_1^N$ :

$$P(S,O) = \prod_{i=1}^{N+1} \frac{P(s_i|s_{i-1})P(o_i|s_i)}{P(s_i|s_{i-1})P(o_i|s_i)} \quad \text{where} \quad s_0 = \langle S \rangle, \ s_{N+1} = \langle S \rangle$$

- ► The transition probabilities model the probabilities of moving from state to state.
- ► The emission probabilities model the probability that a state *emits* a particular observation.

### Using HMMs



The HMM models the process of generating the labeled sequence. We can use this model for a number of tasks:

- ightharpoonup P(S,O) given S and O
- ightharpoonup P(O) given O
- ▶ S that maximizes P(S|O) given O
- ▶  $P(s_x|O)$  given O
- ▶ We can learn the model parameters, given labeled observations.

Our observations will be words  $(w_i)$ , and our states PoS tags  $(t_i)$ .

#### Estimation



As so often in NLP, we learn an HMM from labeled data:

#### Transition Probabilities

Based on a training corpus of previously tagged text, with tags as our states, the MLE can be computed from the counts of observed tags:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$

#### **Emission Probabilities**

Computed from relative frequencies in the same way, with the words as observations:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

## Implementation Considerations



$$P(S, O) = P(s_1|\langle S \rangle)P(o_1|s_1)P(s_2|s_1)P(o_2|s_2)P(s_3|s_2)P(o_3|s_3)\dots$$
  
= 0.0429 \times 0.0031 \times 0.0044 \times 0.0001 \times 0.0072 \times \dots

- lacktriangle Multiplying many small probabilities  $\rightarrow$  risk of numeric underflow
- Solution: work in log(arithmic) space:
  - $\log(AB) = \log(A) + \log(B)$
  - ► hence  $P(A)P(B) = \exp(\log(A) + \log(B))$

Still, the issues related to MLE that we discussed for n-gram models also apply here  $\dots$ 

# Ice Cream and Global Warming



#### Missing records of weather in Baltimore for Summer 2007

- ► Jason likes to eat ice cream.
- ► He records his daily ice cream consumption in his diary.
- ► The number of ice creams he ate was influenced, but not entirely determined by the weather.
- ► Today's weather is partially predictable from yesterday's.

#### A Hidden Markov Model

#### with:

- ▶ Hidden states:  $\{H, C\}$  (plus pseudo-states  $\langle S \rangle$  and  $\langle /S \rangle$ )
- ▶ Observations:  $\{1, 2, 3\}$

# Ice Cream and Global Warming





## Using HMMs

The HMM models the process of generating the labeled sequence. We can use this model for a number of tasks:

- ightharpoonup P(S,O) given S and O
- ▶ P(O) given O
- ▶ S that maximizes P(S|O) given O
- ▶  $P(s_x|O)$  given O
- ▶ We can also learn the model parameters, given a set of observations.

## Part-of-Speech Tagging

We want to find the tag sequence, given a word sequence. With tags as our states and words as our observations, we know:

$$P(S, O) = \prod_{i=1}^{N+1} P(s_i|s_{i-1})P(o_i|s_i)$$

We want:  $P(S|O) = \frac{P(S,O)}{P(O)}$ 

Actually, we want the state sequence  $\widehat{S}$  that maximizes P(S|O):

$$\hat{S} = \underset{S}{\operatorname{arg\,max}} \frac{P(S,O)}{P(O)}$$

Since P(O) always is the same, we can drop the denominator.

# Decoding

#### Task

Find the most likely state sequence  $\widehat{S}$ , given an observation sequence O.

| . Н                                                                                         | if $O = 3 \ 1 \ 3$                                                                        |                                                                                      |             |                  |                  |                                                                                  |                                                  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|------------------|------------------|----------------------------------------------------------------------------------|--------------------------------------------------|
| $P(H \langle S \rangle) = 0.8$ $P(H H) = 0.6$ $P(H C) = 0.3$ $P(\langle S \rangle H) = 0.2$ | $P(C \langle S \rangle) = 0.2$ $P(C H) = 0.2$ $P(C C) = 0.5$ $P(\langle S \rangle) = 0.2$ | $\langle S \rangle$ $\langle S \rangle$ $\langle S \rangle$ $\langle S \rangle$      | Н           | H<br>H<br>C<br>C | H<br>C<br>H<br>C | $ \langle/S\rangle \\ \langle/S\rangle \\ \langle/S\rangle \\ \langle/S\rangle $ | 0.0018432<br>0.0001536<br>0.0007680<br>0.0003200 |
| P(1 H) = 0.2 $P(2 H) = 0.4$ $P(3 H) = 0.4$                                                  | P(1 C) = 0.5<br>P(2 C) = 0.4<br>P(3 C) = 0.1                                              | $ \langle S \rangle \\ \langle S \rangle \\ \langle S \rangle \\ \langle S \rangle $ | C<br>C<br>C | H<br>H<br>C<br>C |                  | $ \langle/S\rangle \\ \langle/S\rangle \\ \langle/S\rangle \\ \langle/S\rangle $ | 0.0000576<br>0.0000048<br>0.0001200<br>0.0000500 |

## Dynamic Programming

For (only) two states and a (short) observation sequence of length three, comparing all possible sequences may be workable, but ...

- for N observations and L states, there are  $L^N$  sequences;
- ▶ we end up doing the same partial calculations over and over again.

#### Dynamic Programming:

- records sub-problem solutions for further re-use
- useful when a complex problem can be described recursively
- examples: Dijkstra's shortest path, minimum edit distance, longest common subsequence, Viterbi algorithm

## Viterbi Algorithm

Recall our problem:

maximize 
$$P(s_1 \dots s_n | o_1 \dots o_n) = P(s_1 | s_0) P(o_1 | s_1) P(s_2 | s_1) P(o_2 | s_2) \dots$$

Our recursive sub-problem:

$$v_i(x) = \max_{k=1}^{L} [v_{i-1}(k) \cdot P(x|k) \cdot P(o_i|x)]$$

The variable  $v_i(x)$  represents the maximum probability that the *i*-th state is x, given that we have seen  $O_1^i$ .

At each step, we record backpointers showing which previous state led to the maximum probability.

## An Example of the Viterbi Algorithmn



# Pseudocode for the Viterbi Algorithm

```
Input: observations of length N, state set of size L
Output: best-path
create a path probability matrix viterbi[N, L+1]
create a path backpointer matrix backpointer[N, L+1]
foreach state s from 1 to L do
      viterbi[1, s] \leftarrow trans(\langle S \rangle, s) \times emit(o_1, s)
      backpointer[1, s] \leftarrow 0
end
foreach time step i from 2 to N do
      foreach state s from 1 to L do
             viterbi[i, s] \leftarrow \max_{s'=1}^{L} viterbi[i-1, s'] \times trans(s', s) \times emit(o_i, s)
             backpointer[i, s] \leftarrow \arg\max_{s'=1}^{L} viterbi[i-1, s'] \times trans(s', s)
      end
end
viterbi[N, L+1] \leftarrow \max_{s=1}^{L} viterbi[N, s] \times trans(s, \langle /S \rangle)
backpointer[N, L+1] \leftarrow \arg\max_{s=1}^{L} viterbi[N, s] \times trans(s, \langle /S \rangle)
return the path by following backpointers from backpointer[N, L+1]
```

# Diversion: Complexity and O(N)

Big-O notation describes the complexity of an algorithm.

- ► it describes the worst-case *order of growth* in terms of the size of the input
- ▶ only the largest order term is represented
- ► constant factors are ignored
- ► determined by looking at loops in the code

# Pseudocode for the Viterbi Algorithm

```
Input: observations of length N, state set of length L
Output: best-path
create a path probability matrix viterbi[N, L+1]
create a path backpointer matrix backpointer[N, L+1]
foreach state s from 1 to L do
      viterbi[1, s] \leftarrow trans(\langle S \rangle, s) \times emit(o_1, s)
      backpointer[1, s] \leftarrow 0
end
foreach time step i from 2 to N do
      foreach state s from 1 to 1 do
             viterbi[i, s] \leftarrow \max_{s'=1}^{L} viterbi[i-1, s'] \times trans(s', s) \times emit(o_i, s)
             backpointer[i, s] \leftarrow \arg\max_{s'=1}^{L} viterbi[i-1, s'] \times trans(s', s)
      end
end
viterbi[N, L+1] \leftarrow \max_{s=1}^{L} viterbi[N, 1] \times trans(s, \langle /S \rangle)
backpointer[N, L+1] \leftarrow \arg\max_{s=1}^{L} viterbi[N, 1] \times trans(s, \langle /S \rangle)
return the path by following backpointers from backpointer[N, L+1]
```

 $O(L^2N)$