
University of Oslo : Department of Informatics

INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

Language Models & Hidden Markov Models

Stephan Oepen & Erik Velldal

Language Technology Group (LTG)

October 14, 2015

1

Recall: By the End of the Semester . . .

. . . you should be able to determine
I which string is most likely:

I How to recognize speech vs. How to wreck a nice beach
I which category sequence is most likely for flies like an arrow :

I N V D N vs. V P D N
I which syntactic analysis is most likely:

S

��
�

HH
H

NP

I

VP

��
�

HH
H

VBD

ate

NP

�� HH
N

sushi

PP
�� PP
with tuna

S

�
��

H
HH

NP

I

VP

��
��

HH
HH

VBD

ate

NP

N

sushi

PP
�� PP
with tuna

2

Language Models — N -Grams
A probabilistic (or stochastic) language model M assigns probabilities
PM (x) to all strings x in language L.
We simplify using the Markov assumption (limited history):

the last n − 1 elements approximate the effect of the full sequence.

That is, instead of
I P(wi |w1, . . . wi−1)
selecting an n of 3, we use
I P(wi |wi−1, wi−2)

We call these short sequences of words n-grams:
I bigrams: I want, want to, to go, go to, to the, the beach
I trigrams: I want to, want to go, to go to, go to the
I 4-grams: I want to go, want to go to, to go to the

3

N -Gram Models

A generative model models a joint probability in terms of conditional
probabilities.

We talk about the generative story :

〈S〉 the cat

and

eat

P(and|the)

P(cat|the)

P(eat|the)

eats mice 〈/S〉

P(the|〈S〉) P(cat|the) P(eats|cat) P(mice|eats) P(〈/S〉|mice)

P(S) = P(the|〈S〉) P(cat|the) P(eats|cat) P(mice|eats) P(〈/S〉|mice)

4

N -Gram Models

An n-gram language model records the n-gram conditional probabilities:

P(I| 〈S〉) = 0.0429 P(to|go) = 0.1540
P(want|I) = 0.0111 P(the|to) = 0.1219
P(to|want) = 0.4810 P(beach|the) = 0.0006
P(go|to) = 0.0131

We calculate the probability of a sentence as (assuming bi-grams):

P (wn
1) ≈

n∏
i=1

P (wi |wi−1)

≈ P (I| 〈S〉)× P (want|I)× P (to|want)× P (go|to)× P (to|go)×
P (the|to)× P (beach|the)

≈ 0.0429× 0.0111× 0.4810× 0.0131× 0.1540×
0.1219× 0.0006 = 3.38× 10−11

5

Training an N -Gram Model

How to estimate the probabilities of n-grams?

By counting (e.g. for trigrams):

P (bananas|i like) = C (i like bananas)
C (i like)

The probabilities are estimated using the relative frequencies of observed
outcomes. This process is called Maximum Likelihood Estimation (MLE).

6

Bigram MLE Example

“I want to go to the beach”
w1 w2 C (w1w2) C (w1) P (w2|w1)
〈S〉 I 1039 24243 0.0429
I want 46 4131 0.0111
want to 101 210 0.4810
to go 128 9778 0.0131
go to 59 383 0.1540
to the 1192 9778 0.1219
the beach 14 22244 0.0006

What’s the probability of Others want to go to the beach ?

7

Problems with MLE of N -Grams

I Data sparseness: many perfectly acceptable n-grams will not be
observed

I Zero counts will result in a estimated probability of 0

I Remedy—reassign some of the probability mass of frequent events to
less frequent (or unseen) events.

I Known as smoothing or discounting
I The simplest approach is Laplace (‘add-one’) smoothing:

PL (wn |wn−1) = C (wn−1wn) + 1
C (wn−1) + V

8

Bigram MLE Example with Laplace Smoothing

“Others want to go to the beach”
w1 w2 C (w1w2) C (w1) P (w2|w1) PL (w2|w1)
〈S〉 I 1039 24243 0.0429 0.01934
〈S〉 Others 17 24243 0.0007 0.00033
I want 46 4131 0.0111 0.00140
Others want 0 4131 0 0.00003
want to 101 210 0.4810 0.00343
to go 128 9778 0.0131 0.00328
go to 59 383 0.1540 0.00201
to the 1192 9778 0.1219 0.03035
the beach 14 22244 0.0006 0.00029

PL (wn |wn−1) = C (wn−1wn) + 1
C (wn−1) + 29534

9

N -Gram Summary

I The likelihood of the next word depends on its context.
I We can calculate this using the chain rule:

P
(
wN

1

)
=

N∏
i=1

P
(
wi |wi−1

1

)
I In an n-gram model, we approximate this with a Markov chain:

P
(
wN

1

)
≈

N∏
i=1

P
(
wi |wi−1

i−n+1

)
I We use Maximum Likelihood Estimation to estimate the conditional
probabilities.

I Smoothing techniques are used to avoid zero probabilities.

10

Parts of Speech

I Known by a variety of names: part-of-speech, POS, lexical categories,
word classes, morpho-syntactic classes, . . .

I ‘Traditionally’ defined semantically (e.g. “nouns are naming words”),
but (arguably) more accurately by their distributional properties.

I Open-classes
I New words created/updated/deleted all the time

I Closed-classes
I Smaller classes, relatively static membership
I Usually function words

11

Open Class Words

I Nouns: dog, Oslo, scissors, snow, people, truth, cups
I proper or common; countable or uncountable; plural or singular;
masculine, feminine, or neuter; . . .

I Verbs: fly, rained, having, ate, seen
I transitive, intransitive, ditransitive; past, present, passive; stative or
dynamic; plural or singular; . . .

I Adjectives: good, smaller, unique, fastest, best, unhappy
I comparative or superlative; predicative or attributive; intersective,
subsective, or scopal; . . .

I Adverbs: again, somewhat, slowly, yesterday, aloud
I intersective; scopal; discourse; degree; temporal; directional; comparative
or superlative; . . .

12

Closed Class Words

I Prepositions: on, under, from, at, near, over, . . .
I Determiners: a, an, the, that, . . .
I Pronouns: she, who, I, others, . . .
I Conjunctions: and, but, or, when, . . .
I Auxiliary verbs: can, may, should, must, . . .
I Interjections, particles, numerals, negatives, politeness markers,
greetings, existential there . . .

(Examples from Jurafsky & Martin, 2008)

13

POS Tagging

The (automatic) assignment of POS tags to word sequences
I non-trivial where words are ambiguous: fly (v) vs. fly (n)
I choice of the correct tag is context-dependent
I useful in pre-processing for parsing, etc; but also directly for
text-to-speech synthesis: content (n) vs. content (adj)

I difficulty and usefulness can depend on the tagset
I English

I Penn Treebank (PTB)—45 tags: NNS, NN, NNP, JJ, JJR, JJS
http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

I Norwegian
I Oslo-Bergen Tagset—multi-part: 〈subst appell fem be ent〉

http://tekstlab.uio.no/obt-ny/english/tags.html

14

http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
http://tekstlab.uio.no/obt-ny/english/tags.html

Labeled Sequences

I We are interested in the probability of sequences like:
flies like the wind or flies like the wind
nns vb dt nn vbz p dt nn

I In normal text, we see the words, but not the tags.
I Consider the POS tags to be underlying skeleton of the sentence,
unseen but influencing the sentence shape.

I A structure like this, consisting of a hidden state sequence, and a related
observation sequence can be modelled as a Hidden Markov Model.

15

Hidden Markov Models

The generative story:

〈S〉 DT

the

NN

cat

VBZ

eats

NNS

mice

〈/S〉

P(DT |〈S〉)

P(the|DT)

P(NN |DT)

P(cat|NN)

P(VBZ |NN)

P(eats|VBZ)

P(NNS |VBZ)

P(mice|NNS)

P(〈/S〉|NNS)

P(S , O) = P(DT|〈S〉) P(the|DT) P(NN|DT) P(cat|NN)
P(VBZ|NN) P(eats|VBZ) P(NNS|VBZ) P(mice|NNS)
P(〈/S〉|NNS)

16

Hidden Markov Models

For a bi-gram HMM, with observations ON
1 :

P(S , O) =
N+1∏
i=1

P(si |si−1)P(oi |si) where s0 = 〈S〉, sN+1 = 〈/S〉

I The transition probabilities model the probabilities of moving from state
to state.

I The emission probabilities model the probability that a state emits a
particular observation.

17

Using HMMs

The HMM models the process of generating the labeled sequence. We can
use this model for a number of tasks:
I P(S , O) given S and O
I P(O) given O
I S that maximizes P(S |O) given O
I P(sx |O) given O

I We can learn the model parameters, given labeled observations.

Our observations will be words (wi), and our states PoS tags (ti).

18

Estimation

As so often in NLP, we learn an HMM from labeled data:

Transition Probabilities
Based on a training corpus of previously tagged text, with tags as our
states, the MLE can be computed from the counts of observed tags:

P(ti |ti−1) = C (ti−1, ti)
C (ti−1)

Emission Probabilities
Computed from relative frequencies in the same way, with the words as
observations:

P(wi |ti) = C (ti , wi)
C (ti)

19

Implementation Considerations

P(S , O) = P(s1|〈S〉)P(o1|s1)P(s2|s1)P(o2|s2)P(s3|s2)P(o3|s3) . . .

= 0.0429× 0.0031× 0.0044× 0.0001× 0.0072× . . .

I Multiplying many small probabilities → risk of numeric underflow
I Solution: work in log(arithmic) space:

I log(AB) = log(A) + log(B)
I hence P(A)P(B) = exp(log(A) + log(B))
I log(P(S , O)) = −1.368 +−2.509 +−2.357 +−4 +−2.143 + . . .

Still, the issues related to MLE that we discussed for n-gram models also
apply here . . .

20

Ice Cream and Global Warming

Missing records of weather in Baltimore for Summer 2007
I Jason likes to eat ice cream.
I He records his daily ice cream consumption in his diary.
I The number of ice creams he ate was influenced, but not entirely
determined by the weather.

I Today’s weather is partially predictable from yesterday’s.

A Hidden Markov Model
with:
I Hidden states: {H , C} (plus pseudo-states 〈S〉 and 〈/S〉)
I Observations: {1, 2, 3}

21

Ice Cream and Global Warming

〈S〉

H C

〈/S〉

0.8 0.2

0.2

0.6 0.2

0.2

0.5

0.3

P(1|H)=0.2
P(2|H)=0.4
P(3|H)=0.4

P(1|C) = 0.5
P(2|C) = 0.4
P(3|C) = 0.1

22

Using HMMs

The HMM models the process of generating the labeled sequence. We can
use this model for a number of tasks:
I P(S , O) given S and O
I P(O) given O
I S that maximizes P(S |O) given O
I P(sx |O) given O
I We can also learn the model parameters, given a set of observations.

23

Part-of-Speech Tagging

We want to find the tag sequence, given a word sequence. With tags as
our states and words as our observations, we know:

P(S , O) =
N+1∏
i=1

P(si |si−1)P(oi |si)

We want: P(S |O) = P(S , O)
P(O)

Actually, we want the state sequence Ŝ that maximizes P(S |O):

Ŝ = arg max
S

P(S , O)
P(O)

Since P(O) always is the same, we can drop the denominator.

24

Decoding

Task
Find the most likely state sequence Ŝ , given an observation sequence O.

HMM if O = 3 1 3

P(H |〈S〉) = 0.8 P(C |〈S〉) = 0.2 〈S〉 H H H 〈/S〉 0.0018432
P(H |H) = 0.6 P(C |H) = 0.2 〈S〉 H H C 〈/S〉 0.0001536
P(H |C) = 0.3 P(C |C) = 0.5 〈S〉 H C H 〈/S〉 0.0007680

P(〈/S〉|H) = 0.2 P(〈/S〉|C) = 0.2 〈S〉 H C C 〈/S〉 0.0003200

P(1|H) = 0.2 P(1|C) = 0.5 〈S〉 C H H 〈/S〉 0.0000576
P(2|H) = 0.4 P(2|C) = 0.4 〈S〉 C H C 〈/S〉 0.0000048
P(3|H) = 0.4 P(3|C) = 0.1 〈S〉 C C H 〈/S〉 0.0001200

〈S〉 C C C 〈/S〉 0.0000500

25

Dynamic Programming

For (only) two states and a (short) observation sequence of length three,
comparing all possible sequences may be workable, but . . .
I for N observations and L states, there are LN sequences;
I we end up doing the same partial calculations over and over again.

Dynamic Programming:
I records sub-problem solutions for further re-use
I useful when a complex problem can be described recursively
I examples: Dijkstra’s shortest path, minimum edit distance, longest
common subsequence, Viterbi algorithm

26

Viterbi Algorithm

Recall our problem:

maximize P(s1 . . . sn |o1 . . . on) = P(s1|s0)P(o1|s1)P(s2|s1)P(o2|s2) . . .

Our recursive sub-problem:

vi(x) = Lmax
k=1

[vi−1(k) · P(x|k) · P(oi |x)]

The variable vi(x) represents the maximum probability that the i-th state
is x, given that we have seen Oi

1.

At each step, we record backpointers showing which previous state led to
the maximum probability.

27

An Example of the Viterbi Algorithmn

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P(H|S
)P(3|H

)

0.8 ∗
0.4

P(C|S)P(3|C)
0.2 ∗ 0.1

P(H|H)P(1|H)
0.6 ∗ 0.2P(C|H)P(1|C)

0.2 ∗ 0.5

P(H
|C

)P
(1|

H)

0.3
∗ 0.2

P(C|C)P(1|C)
0.5 ∗ 0.5

P(H|H)P(3|H)
0.6 ∗ 0.4P(C|H)P(3|C)

0.2 ∗ 0.1

P(H
|C

)P
(3|

H)

0.3
∗ 0.4

P(C|C)P(3|C)
0.5 ∗ 0.1

P(〈/S〉|H)0.2

P(〈/
S〉|

C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗
.06)

= .0384

v2(C) =
max(.32 ∗
.1, .02 ∗ .25)

= .032

v3(H) =
max(.0384 ∗
.24, .032 ∗ .12)

= .009216

v3(C) =
max(.0384 ∗
.02, .032 ∗ .05)

= .0016

vf (〈/S〉) =
max(.009216 ∗ .2,

.0016 ∗ .2)
= .0018432

28

Pseudocode for the Viterbi Algorithm

Input: observations of length N , state set of size L
Output: best-path
create a path probability matrix viterbi[N , L + 1]
create a path backpointer matrix backpointer [N , L + 1]
foreach state s from 1 to L do

viterbi[1, s]← trans(〈S〉, s)× emit(o1, s)
backpointer [1, s]← 0

end
foreach time step i from 2 to N do

foreach state s from 1 to L do
viterbi[i, s]← maxL

s′=1 viterbi[i − 1, s′]× trans(s′, s)× emit(oi , s)
backpointer [i, s]← arg maxL

s′=1 viterbi[i − 1, s′]× trans(s′, s)
end

end
viterbi[N , L + 1]← maxL

s=1 viterbi[N , s]× trans(s, 〈/S〉)
backpointer [N , L + 1]← arg maxL

s=1 viterbi[N , s]× trans(s, 〈/S〉)
return the path by following backpointers from backpointer [N , L + 1]

29

Diversion: Complexity and O(N)

Big-O notation describes the complexity of an algorithm.
I it describes the worst-case order of growth in terms of the size of the
input

I only the largest order term is represented
I constant factors are ignored
I determined by looking at loops in the code

30

Pseudocode for the Viterbi Algorithm

Input: observations of length N , state set of length L
Output: best-path
create a path probability matrix viterbi[N , L + 1]
create a path backpointer matrix backpointer [N , L + 1]
foreach state s from 1 to L do L

viterbi[1, s]← trans(〈S〉, s)× emit(o1, s)
backpointer [1, s]← 0

end
foreach time step i from 2 to N do N

foreach state s from 1 to L do L
viterbi[i, s]← maxL

s′=1 viterbi[i − 1, s′]× trans(s′, s)× emit(oi , s) L
backpointer [i, s]← arg maxL

s′=1 viterbi[i − 1, s′]× trans(s′, s)
end

end
viterbi[N , L + 1]← maxL

s=1 viterbi[N , 1]× trans(s, 〈/S〉)
backpointer [N , L + 1]← arg maxL

s=1 viterbi[N , 1]× trans(s, 〈/S〉)
return the path by following backpointers from backpointer [N , L + 1] N

O(L2N)
31

