
INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

HMMs & Context-Free Grammars

Stephan Oepen & Erik Velldal

Language Technology Group (LTG)

October 21, 2015

University of Oslo : Department of Informatics

Last Time
I Sequence Labeling
I Dynamic programming
I Viterbi algorithm

Today
I Mid-Way Evaluation
I Forward Algorithm
I Quiz and Bonus Points
I Syntactic structure

I Context-free grammar
I Treebanks

Overview

How to estimate the probabilities of n-grams?
Maximum Likelihood Estimation; counting (e.g. for trigrams):

P (bananas|i like) =
C (i like bananas)

C (i like)

Using Laplace (‘add-one’) smoothing:

PL (wn |wn−2,wn−1) =
C (wn−2wn−1wn) + 1
C (wn−2wn−1) + V

C (wn−2wn−1) + V =
∑
w∈V

C (wn−2wn−1w) + 1

Recall: Training an N-Gram Model

I Dynamic programming algorithms
I solve large problems by compounding answers from

smaller sub-problems
I record sub-problem solutions for repeated use

I They are used for complex problems that
I can be described recursively
I require the same calculations over and over again

I Examples:
I Dijkstra’s shortest path
I minimum edit distance
I longest common subsequence
I Viterbi

Recall: Dynamic Programming

〈S〉

H C

〈/S〉

0.8 0.2

0.2

0.6 0.2

0.2

0.5

0.3

P(1|H)=0.2
P(2|H)=0.4
P(3|H)=0.4

P(1|C) = 0.5
P(2|C) = 0.4
P(3|C) = 0.1

Recall: Ice Cream and Global Warming

I To find the best state sequence, maximize:
P(s1 . . . sn |o1 . . . on) = P(s1|s0)P(o1|s1)P(s2|s1)P(o2|s2) . . .

I The value we cache at each step:

vi(x) =
L

max
k=1

[vi−1(k) · P(x |k) · P(oi |x)]

I The variable vi(x) represents the maximum probability that
the i-th state is x, given that we have seen O i

1.
I At each step, we record backpointers showing which

previous state led to the maximum probability.

Recall: Viterbi Algorithm

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P(H
|S)P

(3|H
)

0.8
∗ 0.4

P(C |S)P(3|C)
0.2
∗ 0.1

P(H|H)P(1|H)
0.6 ∗ 0.2P(C

|H)P(1|C)

0.2
∗ 0.5

P(
H|C

)P
(1|

H)

0.3
∗

0.2

P(C |C)P(1|C)
0.5 ∗ 0.5

P(H|H)P(3|H)
0.6 ∗ 0.4P(C

|H)P(3|C)

0.2
∗ 0.1

P(
H|C

)P
(3|

H)

0.3
∗

0.4

P(C |C)P(3|C)
0.5 ∗ 0.1

P(〈/S〉|H)0.2

P(〈
/S〉
|C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32 ∗ .1, .02 ∗
.25)

= .032

v3(H) =
max(.0384 ∗ .24, .032 ∗
.12)

= .009216

v3(C) =
max(.0384 ∗ .02, .032 ∗
.05)

= .0016

vf (〈/S〉) =
max(.009216 ∗ .2,

.0016 ∗ .2)
= .0018432

Recall: An Example of the Viterbi Algorithmn

The HMM models the process of generating the labelled
sequence. We can use this model for a number of tasks:

I P(S ,O) given S and O
I P(O) given O
I S that maximizes P(S |O) given O
I P(sx |O) given O
I We can learn model parameters from a set of observations.

Recall: Using HMMs

Task
Given an observation sequence O , determine the
likelihood P(O), according to the HMM.

Compute the sum over all possible state sequences:

P(O) =
∑

S

P(O ,S)

For example, the ice cream sequence 3 1 3:

P(3 1 3) = P(3 1 3,C C C) +

P(3 1 3,C C H) +

P(3 1 3,H H C) + . . .

Computing Likelihoods

Again, we use dynamic programming—storing and reusing the
results of partial computations in a trellis α.

Each cell in the trellis stores the probability of being in state x
after seeing the first i observations:

αi(x) = P(o1 . . . oi , si = x)

=

L∑
k=1

αi−1(k) · P(x |k) · P(oi |x)

Note
∑

, instead of the max in Viterbi.

The Forward Algorithm

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

P(H
|S)P

(3|H
)

0.8
∗ 0.4

P(C |S)P(3|C)
0.2
∗ 0.1

P(H|H)P(1|H)
0.6 ∗ 0.2P(C

|H)P(1|C)

0.2
∗ 0.5

P(
H|C

)P
(1|

H)

0.3
∗

0.2

P(C |C)P(1|C)
0.5 ∗ 0.5

P(H|H)P(3|H)
0.6 ∗ 0.4P(C

|H)P(3|C)

0.2
∗ 0.1

P(
H|C

)P
(3|

H)

0.3
∗

0.4

P(C |C)P(3|C)
0.5 ∗ 0.1

P(〈/S〉|H)0.2

P(〈
/S〉
|C)

0.2

α1(H) = 0.32

α1(C) = 0.02

α2(H) =∑
(.32 ∗ .12, .02 ∗ .06)

= .0396

α2(C) =∑
(.32 ∗ .1, .02 ∗ .25)

= .037

α3(H) =∑
(.0396∗ .24, .037∗ .12)

= .013944

α3(C) =∑
(.0396∗ .02, .037∗ .05)

= .002642

αf (〈/S〉) =∑
(.013944 ∗ .2,
.002642 ∗ .2)
= .0033172

P(3 1 3) = 0.0033172

An Example of the Forward Algorithmn

I For student involvement and incremental exam
preparation:

I two more short quiz sessions with extra points towards
exercises.

Example Quiz (0 + 0 Points)
1. Live programming can be useful?

A: yes; B: no

2. Lisp was first developed by:

A: Alan Turing; B: John McCarthy

An Experiment in High-Tech Teaching

Rules of the Game

I Up to two bonus points towards Exercise (2) or (3).
I Get one post-it; at the top, write your first and last name.
I Write down your UiO user name (e.g. oe, in my case).
I Write each answer on a line of its own; prefix each with the

question number.
I Do not consult with your neighbors; they will likely mess

things up (also, this is an exam-related activity).

After the Quiz
I Post your answers at the front of your table, we will come

around and collect all notes.
I Discuss your answers with your neighbor(s); explain why

you are right (in a professional tone).

Give us Those Bonus Points

On a gameshow, there are three doors.
Behind two doors, there is a goat.

Behind the third door, there is a car.
The contestant selects a door, hoping for the car.

Before she opens that door, the gameshow host opens
one of the other doors and reveals a goat.

The contestant can now open the door she originally
chose, or switch to the other unopened door.

(1) What is the probability of finding the car when switching?

Question (1): The Monty Hall Problem

Group members at the Language Technology Group
supervise a variety of topics for MSc projects

in natural language processing.
Many candidate projects are available on-line.

Please make contact with us.

(2) What is the probability of the bi-gram
language technology

when ignoring case and punctuation,
and using Laplace smoothing?

Question (2): Language Modelling

We have discussed the time complexity
of the Viterbi algorithm in relation to two variables:

the number of distinct states L
and the length of the observation sequence N.

(3) What is the order of growth for memory space used by
the Viterbi algorithm, relative to L and N?

Question (3): Space Complexity

Recall the recursive formulation of the Viterbi Algorithm:

vi(x) =
L

max
k=1

[vi−1(k) · P(x |k) · P(oi |x)]

(4) What is different in the Forward Algorithm;
and what HMM-related task does it compute?

Question (4): HMM Viterbi vs. Forward

Determining
I which string is most likely: X

I How to recognize speech vs. How to wreck a nice beach

I which tag sequence is most likely for flies like flowers: X
I NNS VB NNS vs. VBZ P NNS

I which syntactic structure is most likely:
S

NP

I

VP

VBD

ate

NP

N

sushi

PP

with tuna

S

NP

I

VP

VBD

ate

NP

N

sushi

PP

with tuna

Moving Onwards

I The models we have looked at so far:
I n-gram models (Markov chains).

I Purely linear (sequential) and surface oriented.
I sequence labeling: HMMs.

I Adds one layer of abstraction: PoS as hidden variables.
I Still only sequential in nature.

I Formal grammar adds hierarchical structure.
I In NLP, being a sub-discipline of AI, we want our programs

to ‘understand’ natural language (on some level).

I Finding the grammatical structure of sentences is an
important step towards ‘understanding’.

I Shift focus from sequences to syntactic structures.

From Linear Order to Hierarchical Structure

Constituency
I Words tends to lump together into groups that behave like

single units: we call them constituents.
I Constituency tests give evidence for constituent structure:

I interchangeable in similar syntactic environments.
I can be co-ordinated
I can be moved within a sentence as a unit

(1) Kim read [a very interesting book about grammar]NP .
Kim read [it]NP .

(2) Kim [read a book]VP , [gave it to Sandy]VP , and [left]VP .

(3) You said I should read the book and [read it]VP I did.

Examples from Linguistic Fundamentals for NLP: 100 Essentials from Morphology and Syntax. Bender (2013)

Why We Need Structure (1/3)

Constituency
I Constituents are theory-dependent, and are not absolute

or language-independent.

I Language word order is often described in terms of
constituents, and word order may be more or less free
within constituents or between them.

I A constituent usually has a head element, and is often
named according to the type of its head:

I A noun phrase (NP) has a nominal (noun-type) head:

(4) [a very interesting book about grammar]NP

I A verb phrase (VP) has a verbal head:

(5) [gives books to students]VP

Why We Need Structure (2/3)

Grammatical functions
I Terms such as subject and object describe the

grammatical function of a constituent in a sentence.

I Agreement establishes a symmetric relationship between
grammatical features.

The decision of the Nobel committee members
surprises most of us.

I Why would a purely linear model have problems predicting
this phenomenon?

I Verb agreement reflects the grammatical structure of the
sentence, not just the sequential order of words.

Why We Need Structure (3/3)

(Speculative Grammarian, The Journal of Satirical Linguistics)

Syntactic Ambiguity

Formal grammars describe a language, giving us a way to:
I judge or predict well-formedness

Kim was happy because passed the exam.

Kim was happy because final grade was an A.

I make explicit structural ambiguities

Have her report on my desk by Friday!

I like to eat sushi with { chopsticks | tuna }.

I derive abstract representations of meaning

Kim gave Sandy a book.

Kim gave a book to Sandy.

Sandy was given a book by Kim.

Grammars: A Tool to Aid Understanding

