University of Oslo: Department of Informatics

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing

HMMs \& Context-Free Grammars

Stephan Oepen \& Erik Velldal
Language Technology Group (LTG)

October 21, 2015

Overview

Last Time

- Sequence Labeling
- Dynamic programming
- Viterbi algorithm

Today

- Mid-Way Evaluation
- Forward Algorithm
- Quiz and Bonus Points
- Syntactic structure
- Context-free grammar
- Treebanks

Recall: Training an N-Gram Model

How to estimate the probabilities of n-grams?
Maximum Likelihood Estimation; counting (e.g. for trigrams):

$$
P(\text { bananas } \mid \text { like })=\frac{C(\text { i like bananas })}{C(\text { i like })}
$$

Using Laplace ('add-one') smoothing:

$$
\begin{gathered}
P_{\mathrm{L}}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)=\frac{C\left(w_{n-2} w_{n-1} w_{n}\right)+1}{C\left(w_{n-2} w_{n-1}\right)+V} \\
C\left(w_{n-2} w_{n-1}\right)+V=\sum_{w \in V} C\left(w_{n-2} w_{n-1} w\right)+1
\end{gathered}
$$

Recall: Dynamic Programming

- Dynamic programming algorithms
- solve large problems by compounding answers from smaller sub-problems
- record sub-problem solutions for repeated use
- They are used for complex problems that
- can be described recursively
- require the same calculations over and over again
- Examples:
- Dijkstra's shortest path
- minimum edit distance
- longest common subsequence
- Viterbi

Recall: Ice Cream and Global Warming

Recall: Viterbi Algorithm

- To find the best state sequence, maximize:

$$
P\left(s_{1} \ldots s_{n} \mid o_{1} \ldots o_{n}\right)=P\left(s_{1} \mid s_{0}\right) P\left(o_{1} \mid s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(o_{2} \mid s_{2}\right) \ldots
$$

- The value we cache at each step:

$$
v_{i}(x)=\max _{k=1}^{L}\left[v_{i-1}(k) \cdot P(x \mid k) \cdot P\left(o_{i} \mid x\right)\right]
$$

- The variable $v_{i}(x)$ represents the maximum probability that the i-th state is x, given that we have seen O_{1}^{i}.
- At each step, we record backpointers showing which previous state led to the maximum probability.

Recall: An Example of the Viterbi Algorithmn

Recall: Using HMMs

The HMM models the process of generating the labelled sequence. We can use this model for a number of tasks:

- $P(S, O)$ given S and O
- $P(O)$ given O
- S that maximizes $P(S \mid O)$ given O
- $P\left(s_{x} \mid O\right)$ given O
- We can learn model parameters from a set of observations.

Computing Likelihoods

Task

Given an observation sequence O, determine the likelihood $P(O)$, according to the HMM.

Compute the sum over all possible state sequences:

$$
P(O)=\sum_{S} P(O, S)
$$

For example, the ice cream sequence 31 3:

$$
\begin{aligned}
& P(313)=P(313, C \text { C C })+ \\
& \text { P(313,C C H) + } \\
& P(313, \mathrm{H} H \mathrm{C})+\ldots
\end{aligned}
$$

The Forward Algorithm

Again, we use dynamic programming-storing and reusing the results of partial computations in a trellis α.

Each cell in the trellis stores the probability of being in state x after seeing the first i observations:

$$
\begin{aligned}
\alpha_{i}(x) & =P\left(o_{1} \ldots o_{i}, s_{i}=x\right) \\
& =\sum_{k=1}^{L} \alpha_{i-1}(k) \cdot P(x \mid k) \cdot P\left(o_{i} \mid x\right)
\end{aligned}
$$

Note \sum, instead of the max in Viterbi.

An Example of the Forward Algorithmn

An Experiment in High-Tech Teaching

- For student involvement and incremental exam preparation:
- two more short quiz sessions with extra points towards exercises.

Example Quiz (0 + 0 Points)

1. Live programming can be useful?
A: yes; B: no
2. Lisp was first developed by:

A: Alan Turing; B: John McCarthy

Give us Those Bonus Points

Rules of the Game

- Up to two bonus points towards Exercise (2) or (3).
- Get one post-it; at the top, write your first and last name.
- Write down your UiO user name (e.g. oe, in my case).
- Write each answer on a line of its own; prefix each with the question number.
- Do not consult with your neighbors; they will likely mess things up (also, this is an exam-related activity).

After the Quiz

- Post your answers at the front of your table, we will come around and collect all notes.
- Discuss your answers with your neighbor(s); explain why you are right (in a professional tone).

Question (1): The Monty Hall Problem

On a gameshow, there are three doors.
Behind two doors, there is a goat. Behind the third door, there is a car.
The contestant selects a door, hoping for the car. Before she opens that door, the gameshow host opens one of the other doors and reveals a goat.
The contestant can now open the door she originally chose, or switch to the other unopened door.
(1) What is the probability of finding the car when switching?

Question (2): Language Modelling

Group members at the Language Technology Group supervise a variety of topics for MSc projects in natural language processing.
Many candidate projects are available on-line. Please make contact with us.
(2) What is the probability of the bi-gram language technology
when ignoring case and punctuation, and using Laplace smoothing?

Question (3): Space Complexity

We have discussed the time complexity of the Viterbi algorithm in relation to two variables:
the number of distinct states L and the length of the observation sequence N.
(3) What is the order of growth for memory space used by the Viterbi algorithm, relative to L and N ?

Question (4): HMM Viterbi vs. Forward

Recall the recursive formulation of the Viterbi Algorithm:

$$
v_{i}(x)=\max _{k=1}^{L}\left[v_{i-1}(k) \cdot P(x \mid k) \cdot P\left(o_{i} \mid x\right)\right]
$$

(4) What is different in the Forward Algorithm; and what HMM-related task does it compute?

Moving Onwards

Determining

- which string is most likely:
- How to recognize speech vs. How to wreck a nice beach
- which tag sequence is most likely for flies like flowers:
- NNS VB NNS vs. VBZ P NNS
- which syntactic structure is most likely:

From Linear Order to Hierarchical Structure

- The models we have looked at so far:
- n-gram models (Markov chains).
- Purely linear (sequential) and surface oriented.
- sequence labeling: HMMs.
- Adds one layer of abstraction: PoS as hidden variables.
- Still only sequential in nature.
- Formal grammar adds hierarchical structure.
- In NLP, being a sub-discipline of AI, we want our programs to 'understand' natural language (on some level).
- Finding the grammatical structure of sentences is an important step towards 'understanding'.
- Shift focus from sequences to syntactic structures.

Why We Need Structure (1/3)

Constituency

- Words tends to lump together into groups that behave like single units: we call them constituents.
- Constituency tests give evidence for constituent structure:
- interchangeable in similar syntactic environments.
- can be co-ordinated
- can be moved within a sentence as a unit
(1) Kim read [a very interesting book about grammar] $]_{N P}$. Kim read [it] ${ }_{N P}$.
(2) Kim [read a book]vp, [gave it to Sandy]vp, and [left]vp.
(3) You said I should read the book and [read it] ve I did.

Why We Need Structure (2/3)

Constituency

- Constituents are theory-dependent, and are not absolute or language-independent.
- Language word order is often described in terms of constituents, and word order may be more or less free within constituents or between them.
- A constituent usually has a head element, and is often named according to the type of its head:
- A noun phrase (NP) has a nominal (noun-type) head:
(4) [a very interesting book about grammar $]_{\mathrm{NP}}$
- A verb phrase (VP) has a verbal head:
(5) [gives books to students $]_{V P}$

Why We Need Structure (3/3)

Grammatical functions

- Terms such as subject and object describe the grammatical function of a constituent in a sentence.
- Agreement establishes a symmetric relationship between grammatical features.

The decision of the Nobel committee members surprises most of us.

- Why would a purely linear model have problems predicting this phenomenon?
- Verb agreement reflects the grammatical structure of the sentence, not just the sequential order of words.

Syntactic Ambiguity

(Speculative Grammarian, The Journal of Satirical Linguistics)

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, giving us a way to:

- judge or predict well-formedness

Kim was happy because \qquad passed the exam.
Kim was happy because \qquad final grade was an A.

- make explicit structural ambiguities

Have her report on my desk by Friday!
I like to eat sushi with $\{$ chopsticks|tuna \}.

- derive abstract representations of meaning

Kim gave Sandy a book.
Kim gave a book to Sandy.
Sandy was given a book by Kim.

