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◮ Mid-Way Evaluation

◮ Forward Algorithm

◮ Quiz & Bonus Points
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Today

◮ Context-Free Grammar

◮ Treebanks

◮ Probabilistic CFGs
◮ Syntactic Parsing

◮ Naı̈ve: Recursive-Descent
◮ Dynamic Programming: CKY

Overview



Group members at the Language Technology Group
supervise a variety of topics for MSc projects

in natural language processing.
Many candidate projects are available on-line.

Please make contact with us.

(2) What is the probability of the bi-gram

language technology

when ignoring case and punctuation,

and using Laplace smoothing?

Recall: Question (2): Language Modelling
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? language technology occuring somewhere → P(A,B)
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? technology following right after language → P(B|A)

? language technology occuring somewhere → P(A,B)

? language and technology occuring somewhere → P(A,B)

Recall: Joint and Conditional Probabilities

P(A,B) = P(A) × P(B|A)

A ≡
{

wi−1 = language
}

B ≡
{

wi = technology
}

Alternatively: A Complex Event

A ≡
{

wi−1 = language ∧ wi = technology
}

Recall: Interpreting the Questions?



Constituency

◮ Words tends to lump together into groups that behave like
single units: we call them constituents.

◮ Constituency tests give evidence for constituent structure:
◮ interchangeable in similar syntactic environments.
◮ can be co-ordinated
◮ can be moved within a sentence as a unit

Recall: Syntactic Structures



Constituency

◮ Words tends to lump together into groups that behave like
single units: we call them constituents.

◮ Constituency tests give evidence for constituent structure:
◮ interchangeable in similar syntactic environments.
◮ can be co-ordinated
◮ can be moved within a sentence as a unit

(4) Kim read [a very interesting book about grammar]NP.

Kim read [it]NP.

(5) Kim [read a book]VP, [gave it to Sandy]VP, and [left]VP.

(6) [Interesting books about grammar] I like.

Examples from Linguistic Fundamentals for NLP: 100 Essentials from Morphology and Syntax. Bender (2013)

Recall: Syntactic Structures



Formal grammars describe a language, giving us a way to:

◮ judge or predict well-formedness

Kim was happy because passed the exam.

Kim was happy because final grade was an A.
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Formal grammars describe a language, giving us a way to:

◮ judge or predict well-formedness

Kim was happy because passed the exam.

Kim was happy because final grade was an A.

◮ make explicit structural ambiguities

Have her report on my desk by Friday!

I like to eat sushi with { chopsticks | tuna }.

◮ derive abstract representations of meaning

Kim gave Sandy a book.

Kim gave a book to Sandy.

Sandy was given a book by Kim.

Recall: Grammar Aids Understanding



The Grammar of Spanish✬

✫

✩

✪

S→ NP VP

VP→ V NP

VP→ VP PP

PP→ P NP

NP→ “nieve”

NP→ “Juan”

NP→ “Oslo”

V→ “amó”

P→ “en”

A Grossly Simplified Example
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P→ “en”

S

NP

Juan

VP

VP

V

amó
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A Grossly Simplified Example



The Grammar of Spanish✬

✫

✩

✪

S→ NP VP

VP→ V NP

VP→ VP PP

PP→ P NP

NP→ “nieve”

NP→ “Juan”

NP→ “Oslo”

V→ “amó”
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NP

nieve

PP

P

en

NP

Oslo✞✝ ☎✆Juan amó nieve en Oslo

A Grossly Simplified Example



The Grammar of Spanish✬

✫

✩

✪

S→ NP VP

VP→ V NP

VP→ VP PP

PP→ P NP

NP→ “nieve”

NP→ “Juan”

NP→ “Oslo”

V→ “amó”
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A Grossly Simplified Example



The Grammar of Spanish✬

✫

✩

✪

S→ NP VP

VP→ V NP

VP→ VP PP

PP→ P NP

NP→ “nieve”

NP→ “Juan”

NP→ “Oslo”

V→ “amó”
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The Grammar of Spanish✬

✫

✩

✪

S→ NP VP {VP ( NP ) }

VP→ V NP {V ( NP ) }

VP→ VP PP {PP ( VP ) }

PP→ P NP {P ( NP ) }

NP→ “nieve” { snow }

NP→ “Juan” { John }

NP→ “Oslo” {Oslo }

V→ “amó” {λbλa adore ( a, b ) }

P→ “en” {λdλc in ( c, d ) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo✞✝ ☎✆Juan amó nieve en Oslo

A Grossly Simplified Example



S: {in ( adore ( John , snow ) , Oslo )}

NP: {John}

Juan

VP: {λa in ( adore ( a, snow ) , Oslo )}

VP: {λa adore ( a, snow )}

V:{λbλa adore ( a, b )}

amó

NP:{snow}

nieve

PP:{λc in ( c,Oslo )}

P:{λdλc in ( c, d )}

en

NP:{Oslo}

Oslo✎
✍

☞
✌VP→ V NP { V ( NP ) }

Meaning Composition (Still Very Simplified)



S: {adore (John, in ( snow ,Oslo )}

NP: {John}

Juan

VP: {λa adore (a, in ( snow,Oslo )}

V:{λbλa adore ( a, b )}

amó

NP:{in ( snow,Oslo )}

NP:{snow}

nieve

PP:{λc in ( c,Oslo )}

P:{λdλc in ( c, d )}

en

NP:{Oslo}

Oslo✎
✍

☞
✌NP→ NP PP { PP ( NP ) }

Another Interpretation



◮ Formal system for modeling constituent structure.

◮ Defined in terms of a lexicon and a set of rules

Context Free Grammars (CFGs)



◮ Formal system for modeling constituent structure.

◮ Defined in terms of a lexicon and a set of rules

◮ Formal models of ‘language’ in a broad sense
◮ natural languages, programming languages,

communication protocols, . . .

Context Free Grammars (CFGs)



◮ Formal system for modeling constituent structure.

◮ Defined in terms of a lexicon and a set of rules

◮ Formal models of ‘language’ in a broad sense
◮ natural languages, programming languages,

communication protocols, . . .

◮ Can be expressed in the ‘meta-syntax’ of the Backus-Naur
Form (BNF) formalism.

◮ When looking up concepts and syntax in the Common Lisp
HyperSpec, you have been reading (extended) BNF.

Context Free Grammars (CFGs)



◮ Formal system for modeling constituent structure.

◮ Defined in terms of a lexicon and a set of rules

◮ Formal models of ‘language’ in a broad sense
◮ natural languages, programming languages,

communication protocols, . . .

◮ Can be expressed in the ‘meta-syntax’ of the Backus-Naur
Form (BNF) formalism.

◮ When looking up concepts and syntax in the Common Lisp
HyperSpec, you have been reading (extended) BNF.

◮ Powerful enough to express sophisticated relations among
words, yet in a computationally tractable way.

Context Free Grammars (CFGs)



Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
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Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
◮ C is the set of categories (aka non-terminals),

◮ {S,NP,VP,V}

◮ Σ is the vocabulary (aka terminals),
◮ {Kim, snow, adores, in}

◮ P is a set of category rewrite rules (aka productions)

S→ NP VP NP→ Kim
VP→ V NP NP→ snow

V→ adores

◮ S ∈ C is the start symbol, a filter on complete results;

◮ for each rule α→ β1, β2, ..., βn ∈ P: α ∈ C and βi ∈ C ∪ Σ

CFGs (Formally, this Time)



Top-down view of generative grammars:

◮ For a grammar G, the language LG is defined as the set of
strings that can be derived from S.

◮ To derive wn
1

from S, we use the rules in P to recursively
rewrite S into the sequence wn

1
where each wi ∈ Σ

Generative Grammar
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Top-down view of generative grammars:

◮ For a grammar G, the language LG is defined as the set of
strings that can be derived from S.

◮ To derive wn
1

from S, we use the rules in P to recursively
rewrite S into the sequence wn

1
where each wi ∈ Σ

◮ The grammar is seen as generating strings.

◮ Grammatical strings are defined as strings that can be
generated by the grammar.

◮ The ‘context-freeness’ of CFGs refers to the fact that we
rewrite non-terminals without regard to the overall context
in which they occur.

Generative Grammar



Generally

◮ A treebank is a corpus paired with ‘gold-standard’
(syntactic) analyses

◮ Can be created by manual annotation or selection among
outputs from automated processing (plus correction).

Treebanks



Generally

◮ A treebank is a corpus paired with ‘gold-standard’
(syntactic) analyses

◮ Can be created by manual annotation or selection among
outputs from automated processing (plus correction).

Penn Treebank (Marcus et al., 1993)

◮ About one million tokens of Wall Street Journal text

◮ Hand-corrected PoS annotation using 45 word classes

◮ Manual annotation with (somewhat) coarse constituent
structure

Treebanks
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Elimination of Traces and Functions



◮ We are interested, not just in which trees apply to a
sentence, but also to which tree is most likely.

Probabilitic Context-Free Grammars



◮ We are interested, not just in which trees apply to a
sentence, but also to which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment
CFGs by adding probabilities to each production, e.g.

◮ S→ NP VP 0.6
◮ S→ NP VP PP 0.4
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◮ We are interested, not just in which trees apply to a
sentence, but also to which tree is most likely.

◮ Probabilistic context-free grammars (PCFGs) augment
CFGs by adding probabilities to each production, e.g.

◮ S→ NP VP 0.6
◮ S→ NP VP PP 0.4

◮ These are conditional probabilities — the probability of the
right hand side (RHS) given the left hand side (LHS)

◮ P(S→ NP VP) = P(NP VP|S)

◮ We can learn these probabilities from a treebank, again
using Maximum Likelihood Estimation.

Probabilitic Context-Free Grammars
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Estimating PCFGs (1/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 1
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1
VP→ VBN ADVP 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1
VP→ VBN ADVP 1
VP→ VBG VP 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1
VP→ VBN ADVP 1
VP→ VBG VP 1
\. → . 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1
VP→ VBN ADVP 1
VP→ VBG VP 1
\. → . 1
S→ ADVP |,| NP VP \. 1

Estimating PCFGs (2/3)



(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1
VP→ VBN ADVP 1
VP→ VBG VP 1
\. → . 1
S→ ADVP |,| NP VP \. 1
START→ S 1

Estimating PCFGs (2/3)



Once we have counts of all the rules, we turn them into
probabilities.

Estimating PCFGs (3/3)



Once we have counts of all the rules, we turn them into
probabilities.

S→ ADVP |,| NP VP \. 50 S→ NP VP \. 400
S→ NP VP PP \. 350 S→ VP ! 100
S→ NP VP S \. 200 S→ NP VP 50

Estimating PCFGs (3/3)



Once we have counts of all the rules, we turn them into
probabilities.

S→ ADVP |,| NP VP \. 50 S→ NP VP \. 400
S→ NP VP PP \. 350 S→ VP ! 100
S→ NP VP S \. 200 S→ NP VP 50

P(S→ ADVP |, | NP VP \.) ≈
C(S→ ADVP |, | NP VP \.)

C(S)

Estimating PCFGs (3/3)



Once we have counts of all the rules, we turn them into
probabilities.

S→ ADVP |,| NP VP \. 50 S→ NP VP \. 400
S→ NP VP PP \. 350 S→ VP ! 100
S→ NP VP S \. 200 S→ NP VP 50

P(S→ ADVP |, | NP VP \.) ≈
C(S→ ADVP |, | NP VP \.)

C(S)

=
50

1150

= 0.0435

Estimating PCFGs (3/3)



Parsing with CFGs: Moving to a Procedural View

✬

✫

✩

✪

S→ NP VP

VP→ V | V NP | VP PP

NP→ NP PP

PP→ P NP

NP→ Kim | snow | Oslo

V→ adores

P→ in

All Complete Derivations

• are rooted in the start symbol S;

• label internal nodes with cate-

gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at

each local subtree of depth one.
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Recursive Descend: A Naı̈ve Parsing Algorithm

Control Structure

• top-down: given a parsing goal α, use all grammar rules that rewrite α;

• successively instantiate (extend) the right-hand sides of each rule;

• for each βi in the RHS of each rule, recursively attempt to parse βi;

• termination: when α is a prefix of the input string, parsing succeeds.

(Intermediate) Results

• Each result records a (partial) tree and remaining input to be parsed;

• complete results consume the full input string and are rooted in S;

• whenever a RHS is fully instantiated, a new tree is built and returned;

• all results at each level are combined and successively accumulated.
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The Recursive Descent Parser
✬

✫

✩

✪

(defun parse (input goal)

(if (equal (first input) goal)

(let ((edge (make-edge :category (first input))))

(list (make-parse :edge edge :input (rest input))))

(loop

for rule in (rules-deriving goal)

append (extend-parse (rule-lhs rule) nil (rule-rhs rule) input))))

✬

✫

✩

✪

(defun extend-parse (goal analyzed unanalyzed input)

(if (null unanalyzed)

(let ((tree (cons goal analyzed)))

(list (make-parse :tree tree :input input)))

(loop

for parse in (parse input (first unanalyzed))

append (extend-parse

goal (append analyzed (list (parse-tree parse)))

(rest unanalyzed)

(parse-input parse)))))
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Quantifying the Complexity of the Parsing Task

1 2 3 4 5 6 7 8

Number of Prepositional Phrases (n)

0

250000

500000

750000

1000000

1250000

1500000

Recursive Function Calls

• • • • • •
•

•

•

Kim adores snow (in Oslo)n

n trees calls

0 1 46

1 2 170

2 5 593

3 14 2,093

4 42 7,539

5 132 27,627

6 429 102,570

7 1430 384,566

8 4862 1,452,776
... ... ...
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Top­Down vs. Bottom­Up Parsing

Top-Down (Goal-Oriented)

• Left recursion (e.g. a rule like ‘VP→ VP PP’) causes infinite recursion;

• search is uninformed by the (observable) input: can hypothesize many

unmotivated sub-trees, assuming terminals (words) that are not present;

→ assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

• unary (left-recursive) rules (e.g. ‘NP→ NP’) would still be problematic;

• lack of parsing goal: compute all possible derivations for, say, the input

adores snow ; however, it is ultimately rejected since it is not sentential;

• availability of partial analyses desirable for, at least, some applications.
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A Key Insight: Local Ambiguity

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

✬

✫

✩

✪2 3 4 5 6 7

boys with hats from France

1 2 3

4 5

6 7

8

9
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The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do

chart [i,i+1]← {α |α→ input i ∈ P};
for (1 ≤ l < |input |) do

for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do

if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then

chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

✬

✫

✩

✪

[0,2]← [0,1] + [1,2]
· · ·

[0,5]← [0,1] + [1,5]
[0,5]← [0,2] + [2,5]
[0,5]← [0,3] + [3,5]
[0,5]← [0,4] + [4,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP
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Limitations of the CKY Algorithm

Built-In Assumptions

• Chomsky Normal Form grammars: α→ β1β2 or α→ γ (βi ∈ C, γ ∈ Σ);

• breadth-first (aka exhaustive): always compute all values for each cell;

• rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

• Liberate order of computation: no assumptions about earlier results;

• active edges encode partial rule instantiations, ‘waiting’ for additional

(adjacent and passive) constituents to complete: [1, 2,VP→ V •NP];

• parser can fill in chart cells in any order and guarantee completeness.
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