University of Oslo: Department of Informatics

INF4820: Algorithms for
 Artificial Intelligence and
 Natural Language Processing
 Chart Parsing

Stephan Oepen \& Erik Velldal

Language Technology Group (LTG)

October 28, 2015

Overview

Last Time

- Mid-Way Evaluation
- Forward Algorithm
- Quiz \& Bonus Points
- Syntactic Structure

Overview

Last Time

- Mid-Way Evaluation
- Forward Algorithm
- Quiz \& Bonus Points
- Syntactic Structure

Today

- Context-Free Grammar
- Treebanks
- Probabilistic CFGs
- Syntactic Parsing
- Naïve: Recursive-Descent
- Dynamic Programming: CKY

Recall: Question (2): Language Modelling

Group members at the Language Technology Group supervise a variety of topics for MSc projects in natural language processing. Many candidate projects are available on-line. Please make contact with us.
(2) What is the probability of the bi-gram
language technology
when ignoring case and punctuation, and using Laplace smoothing?

Recall: Interpreting the Questions?

$$
\begin{array}{ll}
? \text { technology following right after language } & \rightarrow P(B \mid A) \\
? \text { language technology occuring somewhere } & \rightarrow P(A, B)
\end{array}
$$

Recall: Interpreting the Questions?

? technology following right after language $\rightarrow P(B \mid A)$
? language technology occuring somewhere $\rightarrow P(A, B)$
? language and technology occuring somewhere $\rightarrow P(A, B)$

Recall: Interpreting the Questions?

? technology following right after language
$\rightarrow P(B \mid A)$
? language technology occuring somewhere $\rightarrow P(A, B)$
? tange and technology oceuring somewhere $\rightarrow P(A, B)$

Recall: Interpreting the Questions?

$$
\begin{array}{ll}
\text { ? technology following right after language } & \rightarrow P(B \mid A) \\
\text { ? language technology occuring somewhere } & \rightarrow P(A, B) \\
\text { ? and techology oceuring somewhere } & \rightarrow P(A, B)
\end{array}
$$

Recall: Joint and Conditional Probabilities

$$
\begin{gathered}
P(A, B)=P(A) \times P(B \mid A) \\
A \equiv\left\{w_{i-1}=\text { language }\right\} B \equiv\left\{w_{i}=\text { technolog } y\right\}
\end{gathered}
$$

Recall: Interpreting the Questions?

? technology following right after language
$\rightarrow P(B \mid A)$
? language technology occuring somewhere
$\rightarrow P(A, B)$
? taguge and technology oceuring somewhere $\rightarrow P(A, B)$

Recall: Joint and Conditional Probabilities

$$
\begin{gathered}
P(A, B)=P(A) \times P(B \mid A) \\
A \equiv\left\{w_{i-1}=\text { language }\right\} B \equiv\left\{w_{i}=\text { technolog } y\right\}
\end{gathered}
$$

Alternatively: A Complex Event

$$
A \equiv\left\{w_{i-1}=\text { language } \wedge w_{i}=\text { technology }\right\}
$$

Recall: Syntactic Structures

Constituency

- Words tends to lump together into groups that behave like single units: we call them constituents.
- Constituency tests give evidence for constituent structure:
- interchangeable in similar syntactic environments.
- can be co-ordinated
- can be moved within a sentence as a unit

Recall: Syntactic Structures

Constituency

- Words tends to lump together into groups that behave like single units: we call them constituents.
- Constituency tests give evidence for constituent structure:
- interchangeable in similar syntactic environments.
- can be co-ordinated
- can be moved within a sentence as a unit
(4) Kim read [a very interesting book about grammar] $]_{N P}$. Kim read $[i t]_{N P}$.
(5) Kim [read a book] $]_{V P}$, [gave it to Sandy] $]_{V P}$, and [left $]_{V P}$.
(6) [Interesting books about grammar] I like.

Recall: Grammar Aids Understanding

Formal grammars describe a language, giving us a way to:

- judge or predict well-formedness

Kim was happy because \qquad passed the exam.
Kim was happy because \qquad final grade was an A.

Recall: Grammar Aids Understanding

Formal grammars describe a language, giving us a way to:

- judge or predict well-formedness

Kim was happy because \qquad passed the exam.
Kim was happy because \qquad final grade was an A.

- make explicit structural ambiguities

Have her report on my desk by Friday!
I like to eat sushi with $\{$ chopsticks | tuna \}.

Recall: Grammar Aids Understanding

Formal grammars describe a language, giving us a way to:

- judge or predict well-formedness

Kim was happy because \qquad passed the exam.

Kim was happy because \qquad final grade was an A.

- make explicit structural ambiguities

Have her report on my desk by Friday!
I like to eat sushi with $\{$ chopsticks | tuna \}.

- derive abstract representations of meaning

Kim gave Sandy a book.
Kim gave a book to Sandy.
Sandy was given a book by Kim.

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" } \\
& \mathrm{V} \rightarrow \text { "amó" } \\
& \mathrm{P} \rightarrow \text { "en" }
\end{aligned}
$$

A Grossly Simplified Example

The Grammar of Spanish

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
& \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\
& \mathrm{PP} \rightarrow \mathrm{PNP} \\
& \mathrm{NP} \rightarrow \text { "nieve" } \\
& \mathrm{NP} \rightarrow \text { "Juan" } \\
& \mathrm{NP} \rightarrow \text { "Oslo" }
\end{aligned}
$$

$$
\mathrm{V} \rightarrow \text { "amó" } \quad\{\lambda b \lambda a \text { adore }(a, b)\}
$$

$$
\mathrm{P} \rightarrow \text { "en" } \quad\{\lambda d \lambda c \operatorname{in}(c, d)\}
$$

Meaning Composition (Still Very Simplified)

S: \{in (adore (John , snow), Oslo) \}

$$
\mathrm{VP} \rightarrow \mathrm{~V} \text { NP } \quad\{\mathrm{V}(\mathrm{NP})\}
$$

Another Interpretation

S: \{adore (John, in (snow ,Oslo)\}

Juan
V: $\{\lambda b \lambda a$ adore $(a, b)\}$ NP: $\{$ in (snow, Oslo $)\}$
$\stackrel{1}{\text { amó }}$

$\mathrm{NP} \rightarrow \mathrm{NP} \operatorname{PP}\{\operatorname{PP}(\mathrm{NP})\}$

Context Free Grammars (CFGs)

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules

Context Free Grammars (CFGs)

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules
- Formal models of 'language' in a broad sense
- natural languages, programming languages, communication protocols,...

Context Free Grammars (CFGs)

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules
- Formal models of 'language' in a broad sense
- natural languages, programming languages, communication protocols,...
- Can be expressed in the 'meta-syntax' of the Backus-Naur Form (BNF) formalism.
- When looking up concepts and syntax in the Common Lisp HyperSpec, you have been reading (extended) BNF.

Context Free Grammars (CFGs)

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules
- Formal models of 'language' in a broad sense
- natural languages, programming languages, communication protocols,...
- Can be expressed in the 'meta-syntax' of the Backus-Naur Form (BNF) formalism.
- When looking up concepts and syntax in the Common Lisp HyperSpec, you have been reading (extended) BNF.
- Powerful enough to express sophisticated relations among words, yet in a computationally tractable way.

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: $G=\langle C, \Sigma, P, S\rangle$

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: $G=\langle C, \Sigma, P, S\rangle$

- C is the set of categories (aka non-terminals),
- $\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{V}\}$

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: $G=\langle C, \Sigma, P, S\rangle$

- C is the set of categories (aka non-terminals),
- $\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{V}\}$
- Σ is the vocabulary (aka terminals),
- \{Kim, snow, adores, in $\}$

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: $G=\langle C, \Sigma, P, S\rangle$

- C is the set of categories (aka non-terminals),
- $\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{V}\}$
- Σ is the vocabulary (aka terminals),
- \{Kim, snow, adores, in $\}$
- P is a set of category rewrite rules (aka productions)

$$
\begin{array}{lr}
\mathrm{S} \rightarrow \mathrm{NP} \text { VP } & \mathrm{NP} \rightarrow \text { Kim } \\
\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} & \mathrm{NP} \rightarrow \text { snow } \\
& \mathrm{V} \rightarrow \text { adores }
\end{array}
$$

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: $G=\langle C, \Sigma, P, S\rangle$

- C is the set of categories (aka non-terminals),
- $\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{V}\}$
- Σ is the vocabulary (aka terminals),
- \{Kim, snow, adores,in\}
- P is a set of category rewrite rules (aka productions)

$$
\begin{array}{lr}
\mathrm{S} \rightarrow \mathrm{NP} \text { VP } & \mathrm{NP} \rightarrow \text { Kim } \\
\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} & \mathrm{NP} \rightarrow \text { snow } \\
& \mathrm{V} \rightarrow \text { adores }
\end{array}
$$

- $S \in C$ is the start symbol, a filter on complete results;

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: $G=\langle C, \Sigma, P, S\rangle$

- C is the set of categories (aka non-terminals),
- $\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{V}\}$
- Σ is the vocabulary (aka terminals),
- \{Kim, snow, adores,in\}
- P is a set of category rewrite rules (aka productions)

$$
\begin{array}{lr}
\mathrm{S} \rightarrow \mathrm{NP} \text { VP } & \mathrm{NP} \rightarrow \text { Kim } \\
\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} & \mathrm{NP} \rightarrow \text { snow } \\
& \mathrm{V} \rightarrow \text { adores }
\end{array}
$$

- $S \in C$ is the start symbol, a filter on complete results;
- for each rule $\alpha \rightarrow \beta_{1}, \beta_{2}, \ldots, \beta_{n} \in P: \alpha \in C$ and $\beta_{i} \in C \cup \Sigma$

Generative Grammar

Top-down view of generative grammars:

- For a grammar G, the language \mathcal{L}_{G} is defined as the set of strings that can be derived from S.
- To derive w_{1}^{n} from S, we use the rules in P to recursively rewrite S into the sequence w_{1}^{n} where each $w_{i} \in \Sigma$

Generative Grammar

Top-down view of generative grammars:

- For a grammar G, the language \mathcal{L}_{G} is defined as the set of strings that can be derived from S.
- To derive w_{1}^{n} from S, we use the rules in P to recursively rewrite S into the sequence w_{1}^{n} where each $w_{i} \in \Sigma$
- The grammar is seen as generating strings.
- Grammatical strings are defined as strings that can be generated by the grammar.

Generative Grammar

Top-down view of generative grammars:

- For a grammar G, the language \mathcal{L}_{G} is defined as the set of strings that can be derived from S.
- To derive w_{1}^{n} from S, we use the rules in P to recursively rewrite S into the sequence w_{1}^{n} where each $w_{i} \in \Sigma$
- The grammar is seen as generating strings.
- Grammatical strings are defined as strings that can be generated by the grammar.
- The 'context-freeness' of CFGs refers to the fact that we rewrite non-terminals without regard to the overall context in which they occur.

Treebanks

Generally

- A treebank is a corpus paired with 'gold-standard' (syntactic) analyses
- Can be created by manual annotation or selection among outputs from automated processing (plus correction).

Treebanks

Generally

- A treebank is a corpus paired with 'gold-standard' (syntactic) analyses
- Can be created by manual annotation or selection among outputs from automated processing (plus correction).

Penn Treebank (Marcus et al., 1993)

- About one million tokens of Wall Street Journal text
- Hand-corrected PoS annotation using 45 word classes
- Manual annotation with (somewhat) coarse constituent structure

One Example from the Penn Treebank

One Example from the Penn Treebank

One Example from the Penn Treebank

Elimination of Traces and Functions

Probabilitic Context-Free Grammars

- We are interested, not just in which trees apply to a sentence, but also to which tree is most likely.

Probabilitic Context-Free Grammars

- We are interested, not just in which trees apply to a sentence, but also to which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
- S \rightarrow NP VP
0.6
- $\mathrm{S} \rightarrow \mathrm{NP}$ VP PP
0.4
- These are conditional probabilities - the probability of the right hand side (RHS) given the left hand side (LHS)
- $\mathrm{P}(\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP})=\mathrm{P}(\mathrm{NP} \mathrm{VP} \mid \mathrm{S})$

Probabilitic Context-Free Grammars

- We are interested, not just in which trees apply to a sentence, but also to which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
- S \rightarrow NP VP
0.6
- $\mathrm{S} \rightarrow \mathrm{NP}$ VP PP
0.4
- These are conditional probabilities - the probability of the right hand side (RHS) given the left hand side (LHS)
- $\mathrm{P}(\mathrm{S} \rightarrow \mathrm{NP}$ VP $)=\mathrm{P}(\mathrm{NP}$ VP|S $)$
- We can learn these probabilities from a treebank, again using Maximum Likelihood Estimation.

Estimating PCFGs (1/3)

Estimating PCFGs (2/3)

```
(S
    (ADVP (RB "Still"))
(|,| ",')
    (NP
        (NP (NNP "Time") (POS "’s"))
    (NN "move"))
    (VP
        (VBZ "is")
        (VP
            (VBG "being")
            (VP
            (VBN "received")
            (ADVP (RB "well")))))
    (\. "."))
```


Estimating PCFGs (2/3)

$$
\mathrm{RB} \rightarrow \text { Still } \quad 1
$$

```
(S
    (ADVP (RB "Still"))
    (I,| ",")
    (NP
        (NP (NNP "Time") (POS "’s"))
        (NN "move"))
    (VP
        (VBZ "is")
        (VP
            (VBG "being")
            (VP
            (VBN "received")
            (ADVP (RB "well")))))
(\. "."))
```


Estimating PCFGs (2/3)

```
(S
    (ADVP (RB "Still"))
    (|,| ",")
    (NP
        (NP (NNP "Time") (POS "'s"))
    (NN "move"))
    (VP
    (VBZ "is")
        (VP
        (VBG "being")
        (VP
            (VBN "received")
            (ADVP (RB "well")))))
(\. "."))

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```
AVP \(\rightarrow\) RB ..... 1
 ..... 1

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```
AVP \(\rightarrow\) RB ..... 1
 ..... 1
NNP \(\rightarrow\) Time ..... 1

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",')
(NP
(NP (NNP "Time") (POS "'s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```
AVP \(\rightarrow\) RB ..... 1
 ..... 1
NNP \(\rightarrow\) Time ..... 1
POS \(\rightarrow\) 's ..... 1

\section*{Estimating PCFGs (2/3)}
```

RB Still 1
AVP }->\textrm{RB}\quad
|,| ->,
NNP }->\mathrm{ Time 1
POS }->\mathrm{ 's 1
NP }->\mathrm{ NNP POS }

```
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))
(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "'s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

RB }->\mathrm{ Still 1
AVP }->\mathrm{ RB
|,| ->, 1
NNP }->\mathrm{ Time 1
POS }->\mathrm{ 's 1
NP }->\mathrm{ NNP POS }
NN }->\mathrm{ move
1

```
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))
(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "'s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```
RB \(\rightarrow\) Still ..... 1
AVP \(\rightarrow\) RB ..... 1
 ..... 1
NNP \(\rightarrow\) Time ..... 1
POS \(\rightarrow\) 's ..... 1
\(\mathrm{NP} \rightarrow\) NNP POS ..... 1
\(\mathrm{NN} \rightarrow\) move ..... 1
\(\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{NN}\) ..... 1
VBZ \(\rightarrow\) is ..... 1

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",')
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",')
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))
RB \(\rightarrow\) Still ..... 1
\(\mathrm{AVP} \rightarrow \mathrm{RB}\) ..... 2
 ..... 1
NNP \(\rightarrow\) Time ..... 1
POS \(\rightarrow\) 's ..... 1
NP \(\rightarrow\) NNP POS ..... 1
\(\mathrm{NN} \rightarrow\) move ..... 1
\(\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{NN}\) ..... 1
VBZ \(\rightarrow\) is ..... 1
VBG \(\rightarrow\) being ..... 1
VBN \(\rightarrow\) received ..... 1
RB \(\rightarrow\) well ..... 1
VP \(\rightarrow\) VBN ADVP ..... 1
VP \(\rightarrow\) VBG VP ..... 1
\(\backslash . \rightarrow\). ..... 1

\section*{Estimating PCFGs (2/3)}
```

(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))

```

\section*{Estimating PCFGs (2/3)}
(S
(ADVP (RB "Still"))
(|,| ",")
(NP
(NP (NNP "Time") (POS "’s"))
(NN "move"))
(VP
(VBZ "is")
(VP
(VBG "being")
(VP
(VBN "received")
(ADVP (RB "well")))))
(\. "."))
RB \(\rightarrow\) Still ..... 1
AVP \(\rightarrow\) RB ..... 2
 ..... 1
NNP \(\rightarrow\) Time ..... 1
POS \(\rightarrow\) 's ..... 1
\(\mathrm{NP} \rightarrow\) NNP POS ..... 1
\(\mathrm{NN} \rightarrow\) move ..... 1
NP \(\rightarrow\) NP NN ..... 1
VBZ \(\rightarrow\) is ..... 1
VBG \(\rightarrow\) being ..... 1
VBN \(\rightarrow\) received ..... 1
RB \(\rightarrow\) well ..... 1
VP \(\rightarrow\) VBN ADVP ..... 1
VP \(\rightarrow\) VBG VP ..... 1
\(\backslash . \rightarrow\). ..... 1
S \(\rightarrow\) ADVP |, NP VP \(\backslash\). ..... 1

\section*{Estimating PCFGs (3/3)}

Once we have counts of all the rules, we turn them into probabilities.

\section*{Estimating PCFGs (3/3)}

Once we have counts of all the rules, we turn them into probabilities.
\[
\begin{array}{llll}
S \rightarrow \text { ADVP }|,| \mathrm{NP} \text { VP } \backslash . & 50 & S \rightarrow \text { NP VP } \backslash . & 400 \\
S \rightarrow \text { NP VP PP } \backslash . & 350 & S \rightarrow \text { VP }! & 100 \\
S \rightarrow \text { NP VP } S . & 200 & S \rightarrow \text { NP VP } & 50
\end{array}
\]

\section*{Estimating PCFGs (3/3)}

Once we have counts of all the rules, we turn them into probabilities.
\[
\begin{array}{llll}
\mathrm{S} \rightarrow \mathrm{ADVP}|,| \mathrm{NP} \text { VP } \backslash . & 50 & \mathrm{~S} \rightarrow \mathrm{NP} \text { VP } \backslash . & 400 \\
\mathrm{~S} \rightarrow \mathrm{NP} \text { VP PP } \backslash . & 350 & \mathrm{~S} \rightarrow \mathrm{VP}! & 100 \\
\mathrm{~S} \rightarrow \mathrm{NP} \text { VP S } \backslash . & 200 & \mathrm{~S} \rightarrow \mathrm{NP} \text { VP } & 50 \\
& \\
P(S \rightarrow A D V P|,| N P V P \backslash .) & \approx \frac{C(S \rightarrow A D V P|,| N P V P \backslash .)}{C(S)}
\end{array}
\]

\section*{Estimating PCFGs (3/3)}

Once we have counts of all the rules, we turn them into probabilities.
\[
\begin{array}{llll}
S \rightarrow \text { ADVP }|,| \mathrm{NP} \text { VP } \backslash . & 50 & \mathrm{~S} \rightarrow \mathrm{NP} \text { VP } \backslash . & 400 \\
\mathrm{~S} \rightarrow \mathrm{NP} \text { VP PP } \backslash . & 350 & \mathrm{~S} \rightarrow \mathrm{VP}! & 100 \\
\mathrm{~S} \rightarrow \mathrm{NP} \text { VP } \mathrm{S} \backslash . & 200 & \mathrm{~S} \rightarrow \mathrm{NP} \text { VP } & 50
\end{array} \quad \begin{aligned}
P(S \rightarrow A D V P|,| N P \text { VP } \backslash .) & \approx \frac{C(S \rightarrow A D V P|,| N P V P \backslash .)}{C(S)} \\
& =\frac{50}{1150} \\
& =0.0435
\end{aligned}
\]

\section*{Parsing with CFGs: Moving to a Procedural View}
\[
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mid \mathrm{V} \text { NP } \mid \text { VP PP } \\
& \mathrm{NP} \rightarrow \mathrm{NP} P P \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { Kim } \mid \text { snow } \mid \text { Oslo } \\
& \mathrm{V} \rightarrow \text { adores } \\
& \mathrm{P} \rightarrow \text { in }
\end{aligned}
\]

\section*{All Complete Derivations}
- are rooted in the start symbol \(S\);
- label internal nodes with categories \(\in C\), leafs with words \(\in \Sigma\);
- instantiate a grammar rule \(\in P\) at each local subtree of depth one.

\section*{Parsing with CFGs: Moving to a Procedural View}
\[
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \mid \mathrm{V} \text { NP } \mid \text { VP PP } \\
& \mathrm{NP} \rightarrow \mathrm{NP} P P \\
& \mathrm{PP} \rightarrow \mathrm{P} \text { NP } \\
& \mathrm{NP} \rightarrow \text { Kim } \mid \text { snow } \mid \text { Oslo } \\
& \mathrm{V} \rightarrow \text { adores } \\
& \mathrm{P} \rightarrow \text { in }
\end{aligned}
\]

\section*{All Complete Derivations}
- are rooted in the start symbol \(S\);
- label internal nodes with categories \(\in C\), leafs with words \(\in \Sigma\);
- instantiate a grammar rule \(\in P\) at each local subtree of depth one.


Chart Parsing for Context-Free Grammars (18)

\section*{Recursive Descend: A Naïve Parsing Algorithm}

\section*{Control Structure}
- top-down: given a parsing goal \(\alpha\), use all grammar rules that rewrite \(\alpha\);
- successively instantiate (extend) the right-hand sides of each rule;
- for each \(\beta_{i}\) in the RHS of each rule, recursively attempt to parse \(\beta_{i}\);
- termination: when \(\alpha\) is a prefix of the input string, parsing succeeds.

\section*{Recursive Descend: A Naïve Parsing Algorithm}

\section*{Control Structure}
- top-down: given a parsing goal \(\alpha\), use all grammar rules that rewrite \(\alpha\);
- successively instantiate (extend) the right-hand sides of each rule;
- for each \(\beta_{i}\) in the RHS of each rule, recursively attempt to parse \(\beta_{i}\);
- termination: when \(\alpha\) is a prefix of the input string, parsing succeeds.

\section*{(Intermediate) Results}
- Each result records a (partial) tree and remaining input to be parsed;
- complete results consume the full input string and are rooted in \(S\);
- whenever a RHS is fully instantiated, a new tree is built and returned;
- all results at each level are combined and successively accumulated.
\(\qquad\)
Chart Parsing for Context-Free Grammars (19)

\section*{The Recursive Descent Parser}
```

(defun parse (input goal)
(if (equal (first input) goal)
(let ((edge (make-edge :category (first input))))
(list (make-parse :edge edge :input (rest input))))
(loop
for rule in (rules-deriving goal)
append (extend-parse (rule-lhs rule) nil (rule-rhs rule) input))))

```
```

(defun extend-parse (goal analyzed unanalyzed input)
(if (null unanalyzed)
(let ((tree (cons goal analyzed)))
(list (make-parse :tree tree :input input)))
(loop
for parse in (parse input (first unanalyzed))
append (extend-parse
goal (append analyzed (list (parse-tree parse)))
(rest unanalyzed)
(parse-input parse)))))

```

\section*{Quantifying the Complexity of the Parsing Task}


Kim adores snow (in Oslo) \({ }^{n}\)
\begin{tabular}{|c|c|c|}
\hline \(\boldsymbol{n}\) & trees & calls \\
\hline \hline 0 & 1 & 46 \\
1 & 2 & 170 \\
2 & 5 & 593 \\
3 & 14 & 2,093 \\
4 & 42 & 7,539 \\
5 & 132 & 27,627 \\
6 & 429 & 102,570 \\
7 & 1430 & 384,566 \\
8 & 4862 & \(1,452,776\) \\
\(:\) & \(:\) & \(\vdots\) \\
\hline
\end{tabular}

\section*{Top-Down vs. Bottom-Up Parsing}

\section*{Top-Down (Goal-Oriented)}
- Left recursion (e.g. a rule like 'VP \(\rightarrow \mathrm{VP}\) PP') causes infinite recursion;
- search is uninformed by the (observable) input: can hypothesize many unmotivated sub-trees, assuming terminals (words) that are not present;
\(\rightarrow\) assume bottom-up as basic search strategy for remainder of the course.

\section*{Top-Down vs. Bottom-Up Parsing}

\section*{Top-Down (Goal-Oriented)}
- Left recursion (e.g. a rule like 'VP \(\rightarrow\) VP PP') causes infinite recursion;
- search is uninformed by the (observable) input: can hypothesize many unmotivated sub-trees, assuming terminals (words) that are not present;
\(\rightarrow\) assume bottom-up as basic search strategy for remainder of the course.

\section*{Bottom-Up (Data-Oriented)}
- unary (left-recursive) rules (e.g. 'NP \(\rightarrow\) NP') would still be problematic;
- lack of parsing goal: compute all possible derivations for, say, the input adores snow; however, it is ultimately rejected since it is not sentential;
- availability of partial analyses desirable for, at least, some applications.

Chart Parsing for Context-Free Grammars (22)

\section*{A Key Insight: Local Ambiguity}
- For many substrings, more than one way of deriving the same category;
-NPs: \(\boldsymbol{1}|\boldsymbol{2}| \boldsymbol{3}|\boldsymbol{6}| \mathbf{7} \mid \mathbf{9}\); PPs: \(\mathbf{4}|\mathbf{5}| \boldsymbol{8}\); \(\mathbf{9}=\mathbf{1}+\boldsymbol{8} \mid \boldsymbol{6}+\mathbf{5}\);
- parse forest - a single item represents multiple trees [Billot \& Lang, 89].


Chart Parsing for Context-Free Grammars (23)

\section*{The CKY (Cocke, Kasami, \& Younger) Algorithm}
```

for $(0 \leq i<\mid$ input $\mid)$ do
chart $_{[i, i+1]} \leftarrow\left\{\alpha \mid \alpha \rightarrow\right.$ input $\left._{i} \in P\right\} ;$
for $(1 \leq l<\mid$ input $\mid)$ do
for ($0 \leq i<\mid$ input $\mid-l$) do
for $(1 \leq j \leq l)$ do
if $\left(\alpha \rightarrow \beta_{1} \beta_{2} \in P \wedge \beta_{1} \in \operatorname{chart}_{[i, i+j]} \wedge \beta_{2} \in \operatorname{chart}_{[i+j, i+l+1]}\right)$ then
$\operatorname{chart}_{[i, i+l+1]} \leftarrow \operatorname{chart}_{[i, i+l+1]} \cup\{\alpha\} ;$

```
\[
\begin{gathered}
{[0,2] \leftarrow[0,1]+[1,2]} \\
\ldots \\
{[0,5] \leftarrow[0,1]+[1,5]} \\
{[0,5] \leftarrow[0,2]+[2,5]} \\
{[0,5] \leftarrow[0,3]+[3,5]} \\
{[0,5] \leftarrow[0,4]+[4,5]}
\end{gathered}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{1} & 2 & 3 & 4 & 5 \\
\hline 0 & NP & & S & & S \\
\hline 1 & & V & VP & & VP \\
\hline 2 & & & NP & & NP \\
\hline 3 & & & & P & PP \\
\hline 4 & & & & & NP \\
\hline
\end{tabular}

\section*{Limitations of the CKY Algorithm}

\section*{Built-In Assumptions}
- Chomsky Normal Form grammars: \(\alpha \rightarrow \beta_{1} \beta_{2}\) or \(\alpha \rightarrow \gamma\left(\beta_{i} \in C, \gamma \in \Sigma\right)\);
- breadth-first (aka exhaustive): always compute all values for each cell;
- rigid control structure: bottom-up, left-to-right (one diagonal at a time).

\section*{Limitations of the CKY Algorithm}

\section*{Built-In Assumptions}
- Chomsky Normal Form grammars: \(\alpha \rightarrow \beta_{1} \beta_{2}\) or \(\alpha \rightarrow \gamma\left(\beta_{i} \in C, \gamma \in \Sigma\right)\);
- breadth-first (aka exhaustive): always compute all values for each cell;
- rigid control structure: bottom-up, left-to-right (one diagonal at a time).

\section*{Generalized Chart Parsing}
- Liberate order of computation: no assumptions about earlier results;
- active edges encode partial rule instantiations, 'waiting' for additional (adjacent and passive) constituents to complete: \([1,2, \mathrm{VP} \rightarrow \mathrm{V} \bullet \mathrm{NP}]\);
- parser can fill in chart cells in any order and guarantee completeness.

Chart Parsing for Context-Free Grammars (25)```

