
INF4820: Algorithms for

Artificial Intelligence and

Natural Language Processing

Generalized Chart Parsing

Stephan Oepen & Erik Velldal

Language Technology Group (LTG)

November 4, 2015

University of Oslo : Department of Informatics

Last Time

◮ Context-Free Grammar

◮ Treebanks

◮ Probabilistic CFGs
◮ Syntactic Parsing

◮ Naı̈ve: Recursive-Descent
◮ Dynamic Programming: CKY

Overview

Last Time

◮ Context-Free Grammar

◮ Treebanks

◮ Probabilistic CFGs
◮ Syntactic Parsing

◮ Naı̈ve: Recursive-Descent
◮ Dynamic Programming: CKY

Today

◮ Generalized Chart Parsing

◮ Inside the Parse Forest

◮ Viterbi Tree Decoding

◮ Parser Evaluation

Overview

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
◮ C is the set of categories (aka non-terminals),

◮ {S,NP,VP,V}

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
◮ C is the set of categories (aka non-terminals),

◮ {S,NP,VP,V}

◮ Σ is the vocabulary (aka terminals),
◮ {Kim, snow, adores, in}

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
◮ C is the set of categories (aka non-terminals),

◮ {S,NP,VP,V}

◮ Σ is the vocabulary (aka terminals),
◮ {Kim, snow, adores, in}

◮ P is a set of category rewrite rules (aka productions)

S→ NP VP NP→ Kim
VP→ V NP NP→ snow

V→ adores

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
◮ C is the set of categories (aka non-terminals),

◮ {S,NP,VP,V}

◮ Σ is the vocabulary (aka terminals),
◮ {Kim, snow, adores, in}

◮ P is a set of category rewrite rules (aka productions)

S→ NP VP NP→ Kim
VP→ V NP NP→ snow

V→ adores

◮ S ∈ C is the start symbol, a filter on complete results;

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
◮ C is the set of categories (aka non-terminals),

◮ {S,NP,VP,V}

◮ Σ is the vocabulary (aka terminals),
◮ {Kim, snow, adores, in}

◮ P is a set of category rewrite rules (aka productions)

S→ NP VP NP→ Kim
VP→ V NP NP→ snow

V→ adores

◮ S ∈ C is the start symbol, a filter on complete results;

◮ for each rule α→ β1, β2, ..., βn ∈ P: α ∈ C and βi ∈ C ∪ Σ

CFGs (Formally, this Time)

A Key Insight: Local Ambiguity

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

✬

✫

✩

✪2 3 4 5 6 7

boys with hats from France

1 2 3

4 5

6 7

8

9

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (3)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do

chart [i,i+1]← {α |α→ input i ∈ P};
for (1 ≤ l < |input |) do

for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do

if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then

chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

✎
✍

☞
✌Kim adored snow in Oslo

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (4)

Limitations of the CKY Algorithm

Built-In Assumptions

• Chomsky Normal Form grammars: α→ β1β2 or α→ γ (βi ∈ C, γ ∈ Σ);

• breadth-first (aka exhaustive): always compute all values for each cell;

• rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

• Liberate order of computation: no assumptions about earlier results;

• active edges encode partial rule instantiations, ‘waiting’ for additional

(adjacent and passive) constituents to complete: [1, 2,VP→ V •NP];

• parser can fill in chart cells in any order and guarantee completeness.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (5)

Limitations of the CKY Algorithm

Built-In Assumptions

• Chomsky Normal Form grammars: α→ β1β2 or α→ γ (βi ∈ C, γ ∈ Σ);

• breadth-first (aka exhaustive): always compute all values for each cell;

• rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

• Liberate order of computation: no assumptions about earlier results;

• active edges encode partial rule instantiations, ‘waiting’ for additional

(adjacent and passive) constituents to complete: [1, 2,VP→ V •NP];

• parser can fill in chart cells in any order and guarantee completeness.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (5)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as

equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (6)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as

equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (6)

Chart Parsing: Key Ideas

• The parse chart is a two-dimensional matrix of edges (aka chart items);

• an edge is a (possibly partial) rule instantiation over a substring of input;

• the chart indexes edges by start and end string position (aka vertices);

• dot in rule RHS indicates degree of completion: α→ β1 . . . βi−1 • βi . . . βn;

• active edges (aka incomplete items) — partial RHS: [1,2,VP→ V •NP];

• passive edges (aka complete items) — full RHS: [1, 3,VP→ V NP•];

✬

✫

✩

✪

The Fundamental Rule

[i, j, α→ β1...βi−1 • βi...βn] + [j, k, βi → γ+•]

7→ [i, k, α→ β1...βi • βi+1...βn]

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (7)

An Example of a (Near­ and Over­)Complete Chart

1 2 3 4 5

0
NP→NP •PP
S→NP •VP
NP→ kim •

S→NP VP •

1 VP→V •NP
V→adores •

VP→VP •PP
VP→V NP •

VP→VP •PP
VP→VP PP •
VP→V NP •

2 NP→NP •PP
NP→ snow •

NP→NP •PP
NP→NP PP •

3 PP→P •NP
P→ in • PP→P NP •

4 NP→NP •PP
NP→oslo •

✗
✖

✔
✕0 Kim 1 adores 2 snow 3 in 4 Oslo 5

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (8)

(Even) More Active (and Passive) Edges

0 1 2 3

0
S→ •NP VP

NP→ •NP PP
NP→ • kim

S→NP •VP
NP→NP •PP

NP→ kim •
kim

S→NP VP •

1
VP→ •VP PP
VP→ •V NP
V→ • adores

VP→V •NP
V→adores •

adores
VP→VP •PP
VP→V NP •

2 NP→ •NP PP
NP→ • snow

NP→NP •PP
NP→ snow •

snow

3

• Include all grammar rules as epsilon edges in each chart [i,i] cell.

• after initialization, apply fundamental rule until fixpoint is reached.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (9)

Combinatorics: Keeping Track of Remaining Work

The Abstract Goal

• Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naı̈ve Strategy

• Keep iterating through the complete chart, combining all possible pairs,

until no additional edges can be derived (i.e. the fixpoint is reached);

• frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy

• Combine each pair exactly once, viz. when both elements are available;

• maintain agenda of new edges, yet to be checked against chart edges;

• new edges go into agenda first, add to chart upon retrieval from agenda.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (10)

Combinatorics: Keeping Track of Remaining Work

The Abstract Goal

• Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naı̈ve Strategy

• Keep iterating through the complete chart, combining all possible pairs,

until no additional edges can be derived (i.e. the fixpoint is reached);

• frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy

• Combine each pair exactly once, viz. when both elements are available;

• maintain agenda of new edges, yet to be checked against chart edges;

• new edges go into agenda first, add to chart upon retrieval from agenda.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (10)

Backpointers: Recording the Derivation History

0 1 2 3

0
2: S→ •NP VP

1: NP→ •NP PP
0: NP→ • kim

10: S→8 •VP
9: NP→8 •PP
8: NP→ kim •

17: S→8 15 •

1
5: VP→ •VP PP
4: VP→ •V NP
3: V→ • adores

12: VP→11 •NP
11: V→adores •

16: VP→15 •PP
15: VP→11 13 •

2 7: NP→ •NP PP
6: NP→ • snow

14: NP→13 •PP
13: NP→ snow •

3

• Use edges to record derivation trees: backpointers to daughters;

• a single edge can represent multiple derivations: backpointer sets.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (11)

Ambiguity Packing in the Chart

General Idea

• Maintain only one edge for each α from i to j (the ‘representative’);

• record alternate sequences of daughters for α in the representative.

Implementation

• Group passive edges into equivalence classes by identity of α, i, and j;

• search chart for existing equivalent edge (h, say) for each new edge e;

• when h (the ‘host’ edge) exists, pack e into h to record equivalence;

• e not added to the chart, no derivations with or further processing of e;

→ unpacking multiply out all alternative daughters for all result edges.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (12)

An Example (Hypothetical) Parse Forest

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (13)

An Example (Hypothetical) Parse Forest

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (13)

Unpacking: Cross­Multiplying Local Ambiguity

1 →
〈

2 3
〉

|
〈

4 3
〉

2 →
〈

5 6
〉

|
〈

5 7
〉

4 →
〈

8 6
〉

|
〈

8 7
〉

|
〈

9 6
〉

|
〈

9 7
〉

6 →
〈

10
〉

|
〈

11
〉

✤

✣

✜

✢
How many complete trees in total?

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (14)

In Conclusion—What Happened this Far

Syntactic Structure

• Languages (formal or natural) exhibit complex, hierarchical structures;

• grammars encode rules of the language: dominance and sequencing;

• context-free grammar ‘generates’ a language: strings and derivations;

• ambiguity in natural language grows exponentially: a search problem;

• bounding (or ‘packing’) of local ambiguity madantory for tractability;

• chart parsing uses dynamic programming: free order of computation.

Coming up Next

• Viterbi adaptation over parse forest; PTB parsing; parser evaluation.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (15)

In Conclusion—What Happened this Far

Syntactic Structure

• Languages (formal or natural) exhibit complex, hierarchical structures;

• grammars encode rules of the language: dominance and sequencing;

• context-free grammar ‘generates’ a language: strings and derivations;

• ambiguity in natural language grows exponentially: a search problem;

• bounding (or ‘packing’) of local ambiguity madantory for tractability;

• chart parsing uses dynamic programming: free order of computation.

Coming up Next

• Viterbi adaptation over parse forest; PTB parsing; parser evaluation.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (15)

Ambiguity Resolution Remains a (Major) Challenge

The Problem

• With broad-coverage grammars, even moderately complex sentences typ-

ically have multiple analyses (tens or hundreds, rarely thousands);

• unlike in grammar writing, exhaustive parsing is useless for applications;

• identifying the ‘right’ (intended) analysis is an ‘AI-complete’ problem;

• inclusion of (non-grammatical) sortal constraints nowadays undesirable.

Once Again: Probabilities to the Rescue

• Design and use statistical models to select among competing analyses;

• for string S, some analyses Ti are more or less likely: maximize P (Ti|S);

→ Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (16)

Probability Theory and Natural Language?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (17)

Probability Theory and Natural Language?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (17)

Probability Theory and Natural Language?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (17)

Probability Theory and Natural Language?

The most important questions of life are, for the most part,
really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with
mathematicians who have attempted to predict random events

from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion ‘probability’ of a
sentence is an entirely useless one, under any known

interpretation of this term. (Noam Chomsky, 1969)

Every time I fire a linguist,
system performance improves. (Fredrick Jelinek, 1980s)

inf4820 — -nov- (oe@ifi.uio.no)

Generalized Chart Parsing (17)

Initialization

◮ for each word in input string
◮ add passive lexical edge 〈word•〉 to chart
◮ for each α→ word ∈ P

◮ add passive 〈α→ word •〉 edge to agenda

Main Loop

◮ while edge← pop-agenda()
◮ if equivalent edge in chart, pack; otherwise insert edge
◮ if edge is passive

◮ for each active edge a to the left, fundamental-rule(a, edge)
◮ predict new edges from P, and add to the agenda

◮ else
◮ for each passive edge p to the right, fundamental-rule(edge, p)

Termination

◮ return all edges with category S that span the full input

Generalized Chart Parsing

◮ Recall the Viterbi algorithm for HMMs

vi(x) =
L

max
k=1

[vi−1(k) · P(x|k) · P(oi|x)]

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(x) =
L

max
k=1

[vi−1(k) · P(x|k) · P(oi|x)]

◮ In our parse forest, we no longer have a linear order, but
we can still build up cached Viterbi values successively:

v(e) = max















P(β1, . . . βn|α) ×
∏

i

v(βi)















◮ Similar to HMM decoding, we also need to keep track of
the set of daughters that led to the maximum probability.

Viterbi Decoding over the Parse Forest

◮ Recall the Viterbi algorithm for HMMs

vi(x) =
L

max
k=1

[vi−1(k) · P(x|k) · P(oi|x)]

◮ In our parse forest, we no longer have a linear order, but
we can still build up cached Viterbi values successively:

v(e) = max















P(β1, . . . βn|α) ×
∏

i

v(βi)















◮ Similar to HMM decoding, we also need to keep track of
the set of daughters that led to the maximum probability.

◮ Implementation: Cache the highest-scoring edge within e,
recording the maximum probability of its sub-tree and the
daughter sequence that led to it.

Viterbi Decoding over the Parse Forest

