Today we'll talk about ...

- MPEG-4 / ISO/IEC 14496 ...
 - ... is more than a new audio-/video-cencoder
 - ... handles Objects – not pixels
 - ... offers interactivity beyond «fast-forward»
Parts of MPEG-4

- ISO/IEC 14496 has 10 parts:
 1) Systems
 2) Visual
 3) Audio
 4) Conformance Testing
 5) Reference Software
 6) Delivery Multimedia Integration Framework (DMIF)
 7) Optimized Software for MPEG-4 tools
 8) 4 on IP framework
 9) Reference Hardware Description
 10) Advanced Video Coding (AVC)

MPEG-4 Overview (1)

- Represents aural, visual, and audio-visual content in «Media Objects» (MO)
- MO can be of natural or synthetic origin
- Describe composition of MO
- Multiplex and synchronize the data associated with MO for transport over network channels providing QoS
- Interact with the audiovisual scene generated at the receiver's end.
MPEG-4 Overview (2)

- Coded representation of MO
- Composition of MO
- Description and synchronization of streaming data for MO
- Delivery of streaming data
- Interaction with MO
- Management and Identification of Intellectual Property

Coded representation of MO

- Still images (e.g., fixed background)
- Video objects (e.g., talking person wo. background)
- Audio objects (e.g., voice, background noise)

- Natural / synthetic; 2D / 3D
- Text and graphics, talking heads, synthetic sound

- MPEG-4 standardizes:
 - coded representation of a number of MO
Composition of MO

- Describe complex scenes
 - Place MO
 - Transforms
 - change geometrical / acoustical appearance of MO
 - Group primitive MO to compound MO
 - Apply streamed data to a MO (e.g., sound, moving texture, animation parameters for synthetic face)
 - Change interactively the user's viewing / listening points
 - VRML concepts!

MPEG-4 Scenes

- Organises MO in a hierarchical system
- Leafs are simple media objects like:
 - Still images
 - Video objects
 - Audio objects
 - Textures
 - 2D and 3D
 - etc.
Description and synchronization of streaming data for MO

- Object descriptor identifies all streams associated to one MO
 - Hierarchically encoded data
 - Meta-information
 - Intellectual property rights
- Each stream characterized by descriptors
 - Decoder resources
 - Precision of encoded timing information
 - QoS requirements
- Synchronisation by time stamps
Interaction with MO

- Examples
 - Change viewing / listening point, navigation
 - Drag objects to different position
 - Trigger cascade of events by clicking on specified object
 - Select desired language when multiple tracks are available
 - Trigger more complex kinds of behavior

Major Functionalities in MPEG-4

- Transport
 - MPEG-4 does not define transport layers
 - Adaptation defined for
 - Transport over MPEG-2 Transport Stream
 - Transport over IP

- DMIF
 - Transparent interface to interactive peer, broadcast, local storage, ...
 - Control of the establishment of FlexMux channels
 - Support for mobile networks
Delivery of streaming data

- DMIF – Delivery Multimedia Integration Framework (part 6 of MPEG-4)
 - Grouping of ES
- TransMux Layer (only interface specified in MPEG-4)

Major Functionalities in MPEG-4

- Systems
 - Description of the relationship between audio-visual components that constitute a scene.
 - BIFS – Binary Format For Scenes
 - Describes spatio-temporal arrangements of MO
 - 2D – 3D – based on VRML
 - Object Descriptors (OD)
 - Describes relationship between ES pertinent to each object.
 - Additional information, e.g., URL
Major Functionalities in MPEG-4

• Systems
 – Standard file format, MP4
 – Interactivity, including client-server based interaction, event model, event handling and routing
 – Java – MPEG-J – «MPEGlets»
 – Interleaving of multiple streams to one single stream (FlexMuxTool)
 – Independent of Transport Layer
 – ...

• Audio
 – General Audio Signals
 – Speech Signals
 – Synthetic Audio
 – Synthesized SpeechScalable
Major Functionalities in MPEG-4

• Visual
 – Pixel based – synthetic scenes
 • 5 kbit/s – 1Gbit/s
 • Progressive, interlaced
 • Sub-QCIF – Studio resolution (4k x 4k)
 – Content based functionalities
 – Scalability of textures, images and video
 – Shape and alpha channel coding
 – Faces and body animation
 – 2D meshes, 3D polygonal meshes

MPEG-4 Extensions

• IPMP Extension
 – Identify intellectual property of MPEG-4 objects
 – Stores unique identifiers issued by e.g., ISAN, ISRC
 – Identify intellectual property by key-value pair

• Animation Framework eXtension, AFX
• Multi User Worlds
• Advanced Video Coding / H.264
• Audio extensions
 – Bandwidth extension
 – Parametric coding
Profiles in MPEG-4

• Visual Profiles

• Audio Profiles
• Graphics Profiles
• Scene Graph Profiles
• MPEG-J Profiles
• Object Descriptor Profile

Transport of MPEG-4

• MPEG-4 on MPEG-2
 – MPEG-4 uses MPEG-2 TS (ISO/IEC 13818-1)

• MPEG-4 over IP
 – Developed jointly with IETF AVT working group
 – RTP payload specifications
 – Part 8 of MPEG-4 (ISO/IEC 14496-8)
 – MPEG-4 sessions over RTP, RTSP, and HTTP
 – Normative mapping functions to MPEG-4 SL packets
DMIF

- **Delivery Multimedia Integration Framework**
- Session protocol
- Returns pointers to where to get streamed data
- DMIF is both framework and protocol
 - DMIF-Application Interface (DAI)
 - QoS considered in DMIF design

DMIF Communication Architecture

- Remote application vs. broadcast / local storage
- Application un-awareness (not entirely true in broadcast / local storage)
- DNI (DMIF Network Interface)
Transport Layer

- MPEG-4 does not define Transport Layer
- Uses existing Transport Protocols
- E.g., RTP, H223, ATM, MPEG-2, ...

Sync Layer

- Synchronisation and buffering of compressed media
- DMIF Application Interface towards transport layer
- Independent of network
Media Layer

- Decoding (and encoding)
- Elementary Stream IF towards sync layer
- BIFS protocol
- Object descriptors

FlexTime Model

- Traditional MPEG-4 Timing model
 - Hard timestamps / reference clocks (as in MPEG-2)
- Advanced Synchronisation Model
 - CoStart, CoEnd, Meet
 - Flexible duration – spring metaphor
 - Minimum length
 - Maximum length
 - Optimal time
 - Compensate for delay, jitter
 - Synchronise nodes of unknown length
 - Synchronise BIFS updates
 - Re-adjust out-of-sync situations
Binary Format for Scene description (BIFS)

- Composition of objects in scenes
- Based on VRML
- Represented as a graph
- Nodes are MOs
- Dynamic tree-structure

Advanced BIFS

- Advanced sound environment modeling
- Body animation
- Chroma keying
- Inclusion of hierarchical 3D meshes
- Associating interactive commands to media nodes (return-channel)
- PROTOs and EXTERNPROTOs
BIFS – Textual Format

• Extensible MPEG-4 Textual format (XMT)
• Interoperable with
 – X3D (by Web3D consortium)
 – SMIL (by W3C consortium)
• XMT-A: XML-based subset of X3D

MPEG-J

• MPEG-J: programmatic system of MPEG-4
• Parametric: Presentation Engine
• Java Application: separate ES
MPEG-4 Video Encoding

NVC – Natural Video Coding (Motivation)
Natural Video Coding (NVC)

- Coding of silhouettes (shape)
- Motion estimation and -compensation
- Texture coding
- Error handling
- Coding of «sprites»
- Scalability

Structure (NVC)
NVC (details)

- Shape coding
 - Binary mode, described by binary mask
 - Gray value (corresponds alpha channel)
- Motion coding
 - Block size 16x16 or 8x8
 - I-VOP, P-VOP, B-VOP

Texture coding (NVC)

- YCbCr coding
- I-VOP full, second change
- «Standard» DCT and quantization
- Especially for blocks outside the shape
«Sprite» coding (NVC)

- Sprites are regions of a VO that «are there all the time» (e.g., background, globe)
- Like for I-VOP
- Need to be sent only once

Scalability (NVC)

- Two or more VOL
- Depending on bandwidth more or less is sent
- Both temporal and «spatial»
Scalability (NVC)

Enhancement Layer

Base Layer

Scalability (NVC)

Vol.1

Vol.2

Frame Number

Enhancement Layer

Base Layer
MPEG-Audio

- Natural Sound

![Diagram showing different bandwidths for audio types]

Audio

- Speech: 2 to 24 kbit/s
- Synthetic speech
- Lip synchronisation
- General audio
- Synthetic audio
Profiles

- Profile = part of the standard
- Limits what a decoder must implement
- Like in previous MPEG standards
- For audio (8), video (19), and graphics (4)

File format, MP4

- Based on QuickTime
- Consists of objects: «Atoms»
- Atoms describe a hierarchy of meta data
- Meta data can be included
 - Pointers to content outside file
 - Pointers to content inside file
MPEG-4 File Format

- **Atoms**
 - Unique tag, length
 - Describe hierarchy of metadata with index points, durations, pointers to media data.
 - Movie atom contains collection of atoms

- Relation between different objects / atoms
MPEG-4 File Format

- RTP protocol hint tracks to stream simple video movie
- Streaming format
- Streamable format

It is called MPEG-4 – however it isn't ...

- Microsoft MPEG 4 v1-v3 (does not support «QuickTime» file format)
- DivX;-) hack of the hack, Uses MS AVI file format
End of Lecture

Thank you for your attention!