
3 A Particular Matching Problem

We present a problem of matching under a set of equations. The set of
equations defines the algebra of actions that we use in our application to
contracts. The signature is formed of three functional symbols respecting
properties similar to semiring structures with aditional features like commu-
tativity or a restricted form of idempotence. The question that we put is
to determine the decidability of our particular matching problem. We sur-
vey the existing methods and results in the literature and discuss how they
are related to our problem. Our equational theory relates to undecidable
problems like unification under commutative rings, or to hard problems like
unification under left-right distributivity, or to simple problems like unifica-
tion under Boolean rings or ACUI theories.

3.1 Termination, Confluence, and Normal Form of CA

We want to have a normal form of actions of CAT . For this we transform
the axioms of the algebra (of Table 3) into a rewriting system. The rewriting
system proves to be not a trivial one and we need to use the latest termi-
nation techniques (i.e. dependency pairs termination criterion [AG00]) and
rewriting modulo equations (i.e. normalized rewriting [Mar96]) incorporated
in the CiME tool [CM96, CMTU05]. In this section we prove the convergence
of the rewriting system and give a characterization of the action normal form
in terms of pruned trees.

We recall first classical notions and notations for term rewriting systems
and equational unification from [BN98].

An order-sorted signature, denoted Σ, is a finite set of functional symbols
with a finite partially prdered set of sorts (S,≤). In our setting consider
the signature of the CA algebra which has three binary functional symbols
(+, ·, &), two special constants 1, 0 (i.e. a constant is a functional symbol of
arity 0), and another finite number of special constants AB which we called
basic actions. The ordered sorts were AB ≤ A&

B ≤ A where AB,A&
B,A ∈ S

are the three elements (sorts) of the set of sorts S. We assume an S-sorted
family V = {Vs}s∈S of disjoint sets of variables. T (Σ, V ) is the set of terms,
and T (Σ) is the set of ground terms. V (t) with t ∈ T (Σ, V ) a term represents
the set of variables occurring in t. The set of ground terms corresponds to
the carrier set A of the algebra CA. We will be working in this section on
the term algebra TCA. The set of positions of a term t is denoted Pos(t) and
the set of nonvariable positions PosΣ(t). The subterm of t at position p is
denoted t|p and the replacing of the subterm at position p of the term t with
a new term u is denoted t[u]p. A substitution ς is a sorted mapping from
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a finite subset Dom(ς) of V into T (Σ, V ). The set of variables introduced
by ς is denoted Ran(ς). Substitutions can be extended homomorphicaly
from variables to the whole set of terms. A substitution applied to a term is
denoted tς. Composition of two substitutions is denoted ςς ′ and when applied
to a term tςς ′ it can also be understood as first applying ς and afterwards
applying ς ′.

An identity (or equation) is a pair of terms t = t′ with t, t′ ∈ T (Σ, V ).
Intuitively, an identity holds in the term algebra iff the equality of the two
terms is true for all the ways of replacing the variables. The equational
theory induced by a set of identities E is the relation =E = {(t, t′) ∈
T (Σ, V ) × T (Σ, V ) | E |= t = t′} where the symbol |= represents the se-
mantics consequence relation. The axioms of the CA algebra is a set of
identities, and the relation =CA is a congruence over the set of actions from
A.

A rewrite rule is a directed identity l → r satisfying l 6∈ V and V (r) ⊆
V (l). A variant of a rule l → r is lς → rς where ς is a variable renaming
substitution (i.e. a substitution which assigns to each variable from Dom(ς)
a fresh variable not from Dom(ς)). A term rewrite system TRS is a set of
rewrite rules. A rewrite relation  R associated with a TRS R is defined as:
t R t′ iff exists a variant l → r of a rewrite rule from R, ∃p ∈ PosΣ(t),
and ∃ς a substitution s.t. t|p = lς and t′ = t[rς]p. The transitive-reflexive
closure of  R is denoted  ∗

R. We denote by =R the transitive-reflexive-
symmetric closure of R. The same as =E we have that =R is a congruence.
A derivation of a term t is a sequaence t R t1 R t2 R . . . of rewrite rules
(sometimes also called rewrite steps). A TRS is said to be terminating iff
there is no infinite derivation from any term. A TRS is confluent iff for any
terms t, t1, t2 with t R t1 and t R t2 then ∃u s.t. t1 

∗
R u and t2 

∗
R u.

A TRS which is both terminating and confluent is called convergent (or
complete).

We can associate to an equational system E an equivalent TRS R by
directing in an arbitrary way the identities from E. It is easy to see that
the two systems are equivalent (i.e. t =E t′ iff t =R t′) for any choice of
direction of the identities. More important is to find a directioning s.t. R is
convergent. Some identities are innerently nonterminating; for example the
identity f(t, t′) = f(t′, t) which defines the commutativity of the functional
symbol f . For this purpose it is common to define a rewrite relation modulo a
set of identities. The relation R/E is the composition of the two relations =E

◦ R ◦ =E where R is a set of rewrite rules and E is the set of “problematic”
identities. Alternatively, t R/E t′ iff ∃s, s′ ∈ T (Σ, V ) s.t. t =E s, t′ =E s′,
and s R s′. The notions of termination, confluence, and convergence are
defined naturally as for the R relation. We consider an order-sorted rewrite
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(1) α + 0 → α

(2) α + α → α

(3) (α · β) · γ → α · (β · γ)
(4) α · 1 → α

(5) 1 · α → α

(6) α · 0 → 0

(7) 0 · α → 0

(8) α · (β + γ) → α · β + α · γ
(9) (α + β) · γ → α · γ + β · γ
(10) α&1 → α

(11) α&0 → 0

(12) a&a → a for a ∈ AB

(13) α&(β + γ) → α&β + α&γ

(14) (α& · α)&(β& · β) → (α&&β&) · (α&β)

Table 4: A TRS equivalent modulo AC to CA and which is convergent modulo
AC.

theory to be R = (Σ, E, R) which has associated a rewrite relation  R/E .

The theory is said to be terminating (respectively confluent or convergent)
iff the rewrite relation is terminating (respectively confluent or convergent).

For the equational system of the CA algebra from Table 3 we obtain the
equivalent order-sorted rewrite theory TCA = (Σ, RCA, EAC+&). The signa-
ture Σ is the same signature of the algebra CA. The rules of the TRS RCA

are given in Table 4. The set of identities E = {A+, C+, A&, C&} is the
four axioms which define the associativity and commutativity of the func-
tional operators + and &. The associated rewrite relation is done modulo
AC (associativity and commutativity). These kind of rewriting as been well
investigated and good algorithms are known for it. Note that the rewrite rule
(12) is applied only to terms of sort AB (i.e. only to basic actions denoted
a). The rule (14) is applied to terms of sort A&

B which we denote by α&.
Terms of general sort A are denoted with α, β, γ.

To prove termination of the RCA we use the dependency pairs termination
criterion [AG00] which is implemented in CiME using the polynomial inter-
pretations method in order to generate the required orderings [CMTU05].
We present now how the dependency pairs termination criterion applies to
our term rewriting system RCA.

Let RCA be a set of rewrite rules. The set of defined symbols is DRCA
=

{root(l) | l → r ∈ RCA}; and the set of constructor symbols is CRCA
=

Σ \ DRCA
(root(t) returns the symbol ot the root of term t). For our con-

44



crete example DRCA
= {+, ·, &} and CRCA

= {1, 0, } ∪ AB. A dependency
pair is a pair of terms 〈f(s1, . . . , sn), g(t1, . . . , tm)〉 s.t. ∃f(s1, . . . , sn) →
C[g(t1, . . . , tm)] ∈ RCA a rewrite rule where C[ ] is a context and f, g ∈ DRCA

are defined symbols. The set of dependency pairs is finite if the TRS is finite
(which is in our case).

Theorem 3.1 ([AG00]). A TRS RCA is terminating iff there exists a well-
founded weakly monotonic quasi-ordering > where both > and > are closed
under substitution, s.t.

• l > r for all l → r ∈ RCA;

• s > t for all dependency pairs 〈s, t〉.

Finding the required quasi-ordering can be done automatically and rather
efficiently using dependency graphs and polynomial interpretations [AG00].
The method has been implemented in the CiME tool [CMTU05].

For our CA algebra the TRS RCA has a finite number of rules and thus
a finite number of dependency pairs, therefore the method above can be
applied. We have proven the term rewriting system RCA of Table 4 to be
terminating using CiME (see the implementation details in Section 3.1.1).
Thus, we have that the rewriting relation R is terminating. Note also that
the equivalence classes generated by the four identifies in E of associativity
and commutativity are finite. This and the fact that  R is terminating
implies that  R/E is terminating.

Theorem 3.2 (termination of TCA). The rewriting relation  RCA/EAC+&

given by the order-sorted rewrite theory TCA = (Σ, RCA, EAC+&) is termi-
nating.

Proof: The proof is done using the tool CiME and is based on the discussion
above. See Section 3.1.1. 2

Once the system is known to be terminating, proving confluence is done
using the critical pairs method for proving local confluence. See in Section
3.1.1 how we use CiME to prove confluence.

Theorem 3.3 (confluence of TCA). The rewriting relation RCA/EAC+&
given

by the order-sorted rewrite theory TCA = (Σ, RCA, EAC+&) is local confluent.
Because it is also terminating (by Theorem 3.2) it implies that the rewriting
relation is confluent.

Proof: The proof is done using the tool CiME. See Section 3.1.1. 2
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For convenience we write CA to stand for the rewrite relation RCA/EAC+&

given by the order-sorted rewrite theory TCA = (Σ, RCA, EAC+&) associated
to the algebra of actions CA.

We get as a corollary to Theorems 3.2 and 3.3 that there exists of a
normal form of actions (NB: normal forms cannot be reduced anymore).
The normal form is with respect to the rewriting relation  CA and thus,
there exists a whole equivalence class (given by the set of identifies EAC+&)
of actions which denote the normal form. For an action α ∈ CA we denote
the normal form by α!. By Theorem 2.13 the normal form of α is in canonical
form (NB: the canonical form of an action is just a nice way of writing any
action; a canonical form may still be reduced) which is special in the sense
that: none of the concurrent actions αi

& is 0 (or ⊥?) nor it contains a 0; and
none of the αi are 1 (or ⊤?).

Note: At this point we give more clear intuitions about some relations
between trees and actions. Note that trees formed only by applying the tree
operations (∪, ,̂ ‖) are related to the canonic form of actions. Moreover,
when applying the pruning procedure to a tree is the same as going from the
canonical form of an action to its normal form.

We cannot show exactly how the normal form looks like, but guided by
the completeness result of Theorem 2.10 we give a characterization of normal
form of actions in terms of pruned trees in Theorem 3.4. Instead of working
with the normal form of an action we work with the pruned tree that we
obtain from the initial action. This gives us a clear structure of the normal
form which is easy to work with.

Theorem 3.4 (Interpretation of normal form of actions). Consider an ar-
bitrary action α. The tree interpreting the normal form of action α is iso-
morphic to the pruned tree ICA(α) interpreting α. Moreover, the pruning
procedure cannot be applied to an action in normal form.

Proof: The normal form of an action α is obtained from the action by
applying the axioms of the algebra from Table 3 exhaustively. That means
that to the normal form α! no more axioms can be applied.

We prove first the more easy part of the theorem which is part two. This
can be rewritten as: ICA(α!) = Prune(ICA(α!)). We prove this by reductio
ad absurdum and we suppose we can apply the pruning procedure to the tree
interpreting action α!. The contradiction will be that each time we show that
the normal form α! can be rewritten even more using  CA; i.e. by applying
one of the reduction rules of Table 4. This is impossible as a normal form
by definition cannot be further reduced. We need to consider a case for each
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possible way of applying the pruning procedure. That means we need to
consider a case for each step of the pruning procedure in the Definition 2.9.

Case 1. Suppose there exists an edge (m, τγ, n :{⊤}) such that step 1a
of the pruning procedure can be applied. By using the inverse interpretation
function as defined in the proof before of Theorem 2.10 we know that we can
associate to the tree an action which by Theorem 2.13 is in canonical form:
β · (I−1

CA
((m, τγ, n :{⊤})) · β ′ + . . .). It is clear that the action I−1

CA
((m, τγ, n :

{⊤})) comes from a concurrent composition and it should look like 1&γ and

thus our initial action is β · (1&γ · β ′ + . . .)
(10)
 CA β · (γ · β ′ + . . .). Therefore,

we have a contradiction because we can reduce even more.

Case 2. Suppose there exists an edge (m, τ, n :{⊤}) where n is not a leaf
node with siblings, such that step 1b of the pruning procedure can be applied.
This means that we can have two kinds of actions: one β·(I−1

CA
((m, τ, n :{⊤})))

when n is a leaf node but it has no siblings, and the second β · (I−1
CA

((m, τ, n :
{⊤}))·β ′+. . .) when n is not a leaf node (i.e. β ′ 6= 1). The tree (m, τ, n :{⊤})

comes from the action 1. The first action is thus β · 1
(4)
 CA β. The second

action is β ·(1 ·β ′+ . . .)
(5)
 CA β ·(β ′+ . . .). Therefore, we have a contradiction

in for each of the two actions.

Case 3. Suppose that the edge (m, γ, n : {⊥}) ends in a bottom node
and γ can be any label (even τ). A tree containing this edge can come from
any action; i.e. of the form: β · (I−1

CA
((m, γ, n : {⊥})) · β ′ + . . .) where the

bottom node can come only from combination with the tree (m, τ, n : {⊥})
modelling 0. Now suppose γ 6= τ then the initial action must be of the form

β ·(0&γ ·β ′+. . .)
(11)
 CA β ·(0·β ′+. . .). On the other hand, when γ = τ then we

have the following situations for the action β · (0 ·β ′ + . . .): suppose β ′ exists

then we have the derivation β · (0 · β ′ + . . .)
(7)
 CA β · (0 + . . .); suppose that

β ′ does not exist, but we still have a derivation β · (0 + . . .)
(1)
 CA β · (+ . . .).

If the β ′ does not exists and also there is no sibling for the node n then

we still have the derivation β · 0
(6)
 CA 0. In the case when β does not exist

either, we are in the special case when the tree is only the edge (m, τ, n :{⊥})
interpreting action 0 which is allready in normal form.

The three cases above finish the proof of the second part of the theorem
and thus ICA(α!) = Prune(ICA(α!)).

For the first part, the statement of the theorem basically says that given
α we need to prove that ÎCA(α)

.
= ICA(α!); i.e. the pruned tree interpreting

the action α is isomorphic to the tree interpreting its normal form. Having

47



the second part of the theorem proven before we can rewrite this statement
as: ÎCA(α)

.
= ÎCA(α!). Without loss of generality we can consider α and

its normal form α! as having a minimal difference which is: α! is obtained
from α by application of only one reduction rule of the TCA from Table 4.
For example when looking at rule (4) we consider α = α′ · 1 and α! = α′.
Therefore, the rest of the proof needs only to consider one case for each rule
of Table 4.

Case given by rule (1). We consider α = α′ + 0 and α! = α′. The tree
ÎCA(α) = ÎCA(α′ + 0) = Prune(ICA(α′ + 0)). On the other hand ICA(α′ +
0) = ICA(α′) ∪ ICA(0). This means that the operator ∪ adds to the first
level of the tree ICA(α′) one edge (r, τ, n :{⊥}) interpreting the tree ICA(0).
The pruning procedure that must be applied after the joining of the two
trees will apply step 3b and remove the newly added edge thus remaining
with the tree ICA(α′). We know from the second part of the theorem that
Prune(ICA(α′)) = ICA(α′) (and because our supposition states that α′ = α!)
and thus we have finished the proof.

Case given by rule (2). We consider α = α′ + α′ and α! = α′. This case is
take care of only by the definition of the ∪ operator, which combines each two
edges which are labeled with the same label and then continues downwards
in the same manner. Therefore, the two identical trees ICA(α′) are united
into only one ICA(α′). Thus we have our proof that ÎCA(α) = ÎCA(α!).

Case given by rule (3). We consider α = (α′ · β) · γ and α! = α′ · (β · γ).
This case is taken care by the definition of the tree operators. More precisely
ICA((α′ · β) · γ) is obtained as ICA(α′ · β )̂ ICA(γ) = (ICA(α′)̂ ICA(β))̂ ICA(γ),
which from the associativity of the ̂ operation on trees (see Proposition
2.6) we conclude that it is the same as the tree ICA(α′)̂ (ICA(β )̂ ICA(γ)) =
ICA(α′ · (β · γ)). Thus we have proven this case of not prunde trees; i.e.
ICA(α)

.
= ICA(α!), and because the pruning procedure behaves like a function

we have the proof for the pruned versions ÎCA(α)
.
= ÎCA(α!).

Case given by rules (4) and (5). We consider α = 1 · α′ and α! = α′. The
symmetric case when α = α′ ·1 is treated similarly. The tree ÎCA(α) = ÎCA(1·
α′) = Prune(ICA(1 · α′)). The tree ICA(1 · α′) is obtained by concatenation
of the tree ICA(α′) to the tree formed by only one edge (m, τ, n : {⊤}). On
the other hand the pruning procedure applies step 1b and removes the first
edge (m, τ, n : {⊤}) thus remaining with the tree ICA(α′), and the proof is
finished.

Case given by rules (6) and (7). We consider α = 0 · α′ and α! = 0.
The tree ÎCA(α) = ÎCA(0 · α′) = Prune(ICA(0 · α′)). The tree ICA(0 · α′)

48



is obtained by concatenation of the tree ICA(α′) to the tree formed by only
one edge (m, τ, n : {⊥}). Now the pruning procedure applies step 2a and
removes the whole tree ICA(α) coming after the bottom node n and we are
left with the tree formed of only the edge (m, τ, n :{⊥}) which is ICA(0). The
symmetric case when α = α′ · 0 is treated similarly only that the other steps
then 2a of the pruning procedure that deal with bottom nodes are applied.
The concatenation operation spreads the bottom node of the tree ICA(0) to
all leaf nodes of the tree ICA(α′) and thus any path in the tree has a bottom
node on it. Because of this the step 3b can never be applied. Therefore the
bottom node propagates upwards until reaching the topmost edge. Thus we
have now the tree ICA(0).

Case given by rule (8). We consider α = α′ · (β + γ) and α! = α′ ·β +α′ · γ.
This case follows immediately from the definition of the join tree operation
∪; more precisely see Proposition 2.6 for a proof of this general property
on trees. Particularly, we need to prove that the tree ÎCA(α)

.
= ÎCA(α!), for

which it is enough to prove this for the not prunned versions; i.e. ICA(α′ ·(β+
γ))

.
= ICA(α′ ·β+α′ ·γ). But the above equality translates to ICA(α′)̂ (ICA(β)∪

ICA(γ))
.
=(ICA(α′)̂ ICA(β)) ∪ (ICA(α′)̂ ICA(γ)). This follows directly from the

distributivity of the concatenation operation ̂ over the joining operation ∪.

Case given by rule (9). This case follows similarly as the one above from the
general property on tree which is proven in Proposition 2.6.

Case given by rule (10). We consider α = α′&1 and α! = α′. This case is
treated similarly to the case for axiom (4) before only that now the step 1a
of the pruning procedure is applied.

Case given by rule (11). We consider α = α′&0 and α! = 0. This case
is similar to the case for axiom (7) before. In a first state the ‖ operation
spreads the edge (m, τ, n : {⊥}) all over the first level of the tree ICA(α′).
Therefore, each edge on the first level of the resulting tree will be ending in
a bottom node because ‖ makes the conjoining of the nodes (i.e. ⊥ ∧φ =⊥
or ⊥ ∧⊤ =⊥). Now it is easy to see that the pruning procedure applies
first step 1a to remove the newly added τ labels, and then applies step 2a to
remove all edges on the levels starting below the bottom nodes. Then step
2b is applied and transforms all the labels of the remaining edges into τ . The
last application is of the step 3b several times until we are left with only one
edge denoting the tree ICA(0). The proof is finished.

Case given by rule (12). We consider α = a&a and α! = a where a ∈
AB is a basic action. We need to prove ÎCA(a&a)

.
= ÎCA(a) for which it

suffices to prove ICA(a&a)
.
= ICA(a). More precisely we have to proove that
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ICA(a) ‖ ICA(a)
.
= ICA(a). This case is trivial as the operation ‖ takes care

that duplicated entries on a label of a tree are removed.15

Case given by rule (13). We consider α = α′&(β + γ) and α! = α′&β +
α′&γ. We prove this case for the not-pruned trees, which can by auto-
matically extended to pruned trees. Therefore, we prove that ICA(α′&(β +
γ))

.
= ICA(α′&β + α′&γ). The basic idea for this case is that the ‖ operation

works on each level of the tree at a time and makes the cartesian product of
the labels from both trees on each level. It is easy to see how the two trees
are the same: ICA(α′) ‖ (ICA(β) ∪ ICA(γ))

.
=(ICA(α′) ‖ ICA(β)) ∪ (ICA(α′) ‖

ICA(γ)). The details are left to the reader.

Case given by rule (14). We consider α = (α& · α′)&(β& · β) and α! =
(α&&β&) · (α′&β). We prove this case for the not-pruned trees, which can by
automatically extended to pruned trees. Therefore, we prove that ICA((α& ·
α′)&(β& · β))

.
= ICA((α&&β&) · (α′&β)). This case uses arguments similar to

the case before. This time they refer to the fact that the ‖ operation is
applied on each level of the tree at a time. The details are felt to the reader.

The remaining rules and the identifies of EAC+& are dealt with by the
definition of the guarded rooted trees and the definition of the operations on
trees. For the identifies defining associativity and commutativity of the +
constructor (i.e. axioms (1) and (2) of Table 3), these are taken care of by
the definition of guarded rooted trees. In a guarded rooted tree there is no
order on the branches. For the identifies of associativity and commutativity
of & constructor (i.e. axioms (10) and (11) of Table 3) this is taken care of
by the associativity and commutativity of union of sets of labels of the edges,
and the classical definition of cartesian product of two sets. 2

3.1.1 Implementation in CiME

CiME is a tool for checking termination and confluence of term rewriting
systems. It can do a lot more, like completion or unification. The latest
version of CiME is 2.02 and incorporates the termination checking.16 The
input syntax is natural for a term rewriting systems. We have specified the
term rewriting system from Table 4 in CiME.17

We need to define first the signature of our TRS and a set of variables

15Recall that the labels of the edges of the tree ar sets of basic actions of AB .
16The CiME web site is: http://cime.lri.fr/
17See input specification files for the CiME tool on the COSoDIS project homepage:

http://www.ifi.uio.no/cosodis/software.shtml
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to work with. CiME does not support order-sorting (like Maude does f.ex.).
But we are lucky because our sorts are finite

let F = signature "

0,1,a,b : constant;

+ : AC;

. : infix binary;

& : AC;

";

let X = vars "x y z";

let R = TRS F X "

x + 0 -> x;

x + x -> x;

x . 1 -> x;

1 . x -> x;

x . 0 -> 0;

0 . x -> 0;

(x . y) . z -> x . (y . z);

(x . y) + (x . z) -> x . (y + z);

(x + y) . z -> (x . z) + (y . z);

x & 1 -> x;

x & 0 -> 0;

a & a -> a;

b & b -> b;

x & (y + z) -> (x & y) + (x & z);

(a . x) & (a . y) -> (a & a) . (x & y);

(a . x) & (b . y) -> (a & b) . (x & y);

(a . x) & (a & b . y) -> (a & a & b) . (x & y);

(b . x) & (b . y) -> (b & b) . (x & y);

(b . x) & (a & b . y) -> (b & a & b) . (x & y);

(a & b . x) & (a & b . y) -> (a & b & a & b) . (x & y);

a & (a . x) -> (a & a) . x;

a & (b . x) -> (a & b) . x;

a & (a & b . x) -> (a & a & b) . x;

b & (a . x) -> (b & a) . x;

b & (b . x) -> (b & b) . x;

b & (a & b . x) -> (b & a & b) . x;

a & b & (a & b . x) -> (a & b & a & b) . x;

a & b & (a . x) -> (a & b & a) . x;

a & b & (b . x) -> (a & b & b) . x;

";

3.2 Simple matching modulo CA

The problem presented in this section is important in giving the branching
semantics of obligations in Section 4.1. We present a particular matching
problem modulo the set of equations of the CA algebra.
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(1) x + (y + z) = (x + y) + z (A+)
(2) x + y = y + x (C+)
(3) x + 0 = 0 + x = x (U+0)
(4) ∀x, ∃x− s.t. x + x− = 0 (In+)
(5) x · (y · z) = (x · y) · z (A.)
(6) x · 1 = 1 · x = x (U.1)
(7) x · (y + z) = x · y + x · z (D.+l)
(8) (x + y) · z = x · z + y · z (D.+r)
(9) x · y = y · x (C.)
(10) x · x = x (I.)

Table 5: Axioms for commutative ring and Boolean ring

Our problem comes from the broad field of unification theory. Before
presenting the problem we give preliminary related definitions.

3.2.1 Commutative ring compared with Boolean ring

We would like to understand a rather strange situation: elementary unifi-
cation modulo a commutative ring is proven to be undecidable; elementary
unification modulo Boolean ring equations is NP-compete.

A ring structure is defined by the axioms (1)-(8). If one adds the commu-
tativity property (9) for the multiplicative operation then we get a commuta-
tive ring (denoted CR henceforth). On the other hand if one adds the identity
property (10) for the multiplicative operation then one gets a Boolean ring
structure (denoted BR henceforth).

The proof that unification in commutative rings is undecidable is given
in [BS94] and is based on the proof of undecidability of Hilbert’s 10th prob-
lem [Mat73, Mat93]. It is known that the integers with the operations
{+, ·,− , 0, 1} form a ring; i.e. the ring of integers (where − is the inverse with
respect to the aditive operation). The ring of integers is the initial model
of the commutative ring, therefore any constructor term over the signature
of the CR can be viewed as an integer; any ground term over CR can be
viewed as an operation with integers (i.e. addition, multiplication); and any
term with n variables over CR can be viewed as a polinomial over the in-
tegers with n unknowns. Conversely, every such polinomial can be viewed
as a term in CR. A unification problem over CR has a solution iff it has a
solution that substitutes only ground terms for the variables. Substituting
ground terms for variables can be viewed in the integers as evaluating the
polinomial with the unknowns substituted for integers. Thus, a unification
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problem over the CR can be translated into the ring of integers and it re-
duces to solving equations between polinomials with solutions in the ring of
integers. But this problem is known to be undecidable which implies that
also elementary unification in CR is undecidable.

Let us now remind basic results for Boolean rings [MN89]. The BR has
the extra axiom of idempotence for the multiplicative operation, which turns
out to be stronger than the commutativity of CR. Indeed, we can prove the
commutativity of · in BR. First we have to prove that each element is its
own invers w.r.t. +; that is x + x = 0. The proof is x + x = (x + x)2 =
x2 + x2 + x2 + x2 = x + x + x + x now we add in both parts of the equation
−x to obtain 0 = x + x. Note that we use powers to write multiplication of
the same element several times. To prove the commutativity x · y = y · x

we do: x + y = (x + y)2 = x2 + x · y + y · x + y2 = x + x · y + y · x + y.
We again use the inverse of the elements x and y (which we know to exist)
and obtain that 0 = x · y + y · x. By using the property before we have
x · y + x · y = x · y + y · x and we add the inverse of x · y and the fact that
0 is unity element for + to get x · y = y · x. Moreover, in Boolean rings
we can prove x · 0 = 0 which is the axiom added in the semiring structure
instead of the inverse property of the rings. In conclusion, any Boolean ring
is also a commutative ring. On the other hand, the Boolean ring has not
as a model the ring of integers. This breakes the undecidability proof we
did before. Even more, the extra properties on the elements of a Boolean
ring make the unification problem decidable. Note that the above results are
based not only on the idempotency of the multiplicative operation, but also
on the equation for the inverse of each element with respect to the aditive
operation.

Examples of models of Boolean ring are the powerset P(S) of a set S

with symmetric difference for + and intersection for ·, and S for 1 and ∅ for
0. A second example of Boolean ring is the set of well-formed formulas of
propositional calculus under the operations of exclusive or and conjunction
for respectively + and ·, where 1, 0 represent true, false.

At an intuitive level, the undecidability of unification in commutative
ring comes from the fact that terms may be expanded indefinitely, creating
an infinite number of different elements. This comes from terms like x+x+. . .

or x ·x · . . .. On the other hand, in Boolean rings this is not the case because
of equations x + x = 0 and x · x = x. Moreover, Boolean rings have a finite
number of elements.

The algorithms for unification in Boolean ring are based on ideas from
Bool or Löwenheim and are presented in [MN89] (see also [Rud74]). The
insights of these algorithms are based on the finiteness of the Boolean algebras
generated by a finite set of generators. The following theorem is at the basis
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of the unification algorithms for Boolean ring.

Theorem 3.5 ([MN89]).

1. Any unification problem in Boolean rings can be reduced to a (set of)
problem(s) written in the following schema:

f(x) = 0.

2. Let D be the (finite) subalgebra of BR generated by the set of constant
symbols that appear in the term f(x). The following hold:

(a) The equation f(x) = 0 has a solution in BR iff it has a solution
in D;

(b) Any most general unifyier (mgu) of f(x) = 0 w.r.t. D is also a
mgu w.r.t. BR.

The theorem shows that we need to be concerned with only solving equa-
tions in the finite Boolean subalgebra generated by the constants found in
the term f(x); which becomes a simpler problem. A method for finding a
mgu is called “successive variable elimination” and was proposed by Bool
and then further extended by Rudeanu [Rud74].

We now take a look at the axioms of the CA algebra from Table 3.

3.2.2 Narrowing and related recent results

The narrowing relation was introduced by Hullot in [Hul80]; the definition
that we give here is taken from Middeldorp and Hamoen [MH94].

Definition 3.1 (narrowing relation). Consider two terms t, t′, a nonvariable
position p ∈ PosΣ(t), a variant of a rewrite rule l → r, and a substitution ς

such that:

• ς is a most general unifyier of t|p and l,

• t′ = (t[r]p)ς

In this case we say that t and t′ are in the narrowing relation (or equivaletly

we say that t is narrowable into t′) and we denote it by t
ς
 [p,l→r] t

′ (or simply

by t
ς
 t′).

We denote by t1
ς

 ∗ tn a narrowing derivation to stand for t1
ς1
 t2

ς2
 . . . tn−1

ςn−1

 tn
where ς = ς1ς2 . . . ςn−1.

Note that the rewriting relation is a special case of the narrowing relation
where the rewrite rule l → r has no variables in common with t and ς is
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restricted only to the variables occuring in l and thus ς becomes a matcher
and not a mgu.

Narrowing was designated to solve equational unification problems. We
show how can this be done. We first need to extend the signature with a
binary symbol =? and a new special constant true. Moreover, we add to
the set of rewrite rules the special rule x =? x → true. The new symbols are
restricted even more (such that to not interfeer with the normal rewriting
process):

1. we consider only terms which do not contain any occurrences of =? or
true;

2. or terms t =? t′ (called goals) where t, t′ are terms as defined in 1.;

3. the constant true is a term.

The next result gives a suficient condition for determining an unifyier of
two terms. This is also called the soundness of the narrowing procedure.

Lemma 3.6 ([MH94]). Let R be a term rewriting system. If t =? t′
ς

 ∗ true

then ς is an R-unifyier of t and t′.

This lemma alone does not provide a decision procedure for the unification
problem because there may be unification problems for which there exists
a unifyier which is not found by the narrowing procedure (i.e. the term
t =? t′ is not narrowed to true). Therefore, the completeness property for
the narrowing procedure is desirable.

Lemma 3.7 ([MH94]). Let R be a convergent term rewriting system. If there

exists ς s.t. tς =R t′ς then there exists a narrowing derivation t =? t′
ς′

 ∗ true

s.t. ς ′ is more general than ς.

Moreover, we obtain as a corollary that the narrowing procedure generates
a complete set of R-unifyiers.

The main problem with the narrowing procedure is that we do not know if
it terminates; in fact it seldom does. For this reason Hullot [Hul80] devised
a termination criterion for narrowing, which is called basic narrowing. In
short, basic narrowing is a restricted form of narrowing which restricts the
positions p at which the narrowing relation can be applied to only basic
positions. The purpose of basic narrowing is to not allow the application of
narrowing on terms introduced by the substitution in an earlier narrowing
step. The following result ensures terminaiton of the narrowing procedure.
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Lemma 3.8 ([Hul80]). If all basic narrowing derivations starting at the right-
hand side of a rewrite rule terminates, then any narrowing derivation starting
at any term terminates.

Unfortunately, our equational system which defines the CA algebra does
not allow for application of the narrowing procedure because it is not a
convergent system. Therefore, more elaborated techniques for narrowing are
required which may allow more general equational systems.

We now see a natural extension of narrowing which is called narrowing
modulo a set of equations [JKK83]. Consider as before a rewrite theory
T = (Σ, E, R) which satisfies the following properties (some of which we
formally defined before also):

(a) A set of equations E is called regular iff for each t = t′ we have that
V (t) = V (t′) and is sort preserving which means that ∀ς the terms tς

and t′ς have the same sort.

(b) E has a finitary and complete unification algorithm; which implies that
E-mathcing is also finitary and complete.

(c) For each rewrite rule l → r ∈ R we have that V (l) ⊆ V (r).

(d) R is sort-decreasing.

(e) R is convergent modulo E which means that the relation  R/E is con-
vergent.

On another hand the relation R/E is undecidable in general because the
E-congruence classes may be infinite; therefore, an equivalen relation is used
in practice [PS81].

Definition 3.2 (R, E rewrite relation). Consider a rewrite theory (Σ, E, R)
with the properties (a)-(e) from above. We define the rewrite relation  R,E

as t R,E t′ iff ∃p ∈ PosΣ(t), ∃l → r ∈ R, ∃ς, such that t|p =E lς and
t′ = t[rς]p (i.e. ς is an E-matcher of t|p and l).

We give on important property of  R,E (first defined in [JKK83]):

(f)  R,E is E-coherent iff ∀t1, t2, t3 we have that if t1 R,E t2 and t1 =E t3
then ∃t4, t5 s.t. t2 

∗
R,E t4 and t3 

+
R,E t5 and t4 =E t5.

Definition 3.3 (R,E narrowing relation). Consider an order-sorted rewrite
theory T = (Σ, E, R) which has the properties (a)-(f) from above. The R, E-

narrowing relation is denoted by
ς
 R,E and is defined as t

ς
 R,E t′ iff ∃p ∈

PosΣ(t), ∃l → r ∈ R, and ∃ς a substitution from the complete set of unifyiers
of t|p and l, and t′ = t[rς]p.
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Note that in the case of (simple) narrowing of Definition 3.1 ς is just a
mgu because we do syntactic unification of the two terms t|p and l. In the
case of R, E-narrowing of Definition 3.3 we do E-unification and, as expected
when going from sntactic to equational unification, we change from mgu to
a (minimal) complete set of unifyiers. The property (b) of T ensures that
there exists a compelte set of unifyiers for each E-unification problem.

The definition of R, E-narrowing requires that the rewrite theory (Σ, E, R)
has the six properties (a)-(f), therefore testing for these properties must be
decidable in order for R, E-narrowing relation to be useful. Testing (a) for
regularity and sort preserving of E is decidable as there are finitely many
identifies in E. The unification algorithm for E is considered given. Test-
ing (c) and (d) is clearly simple. Testing (e) for convergence of R modulo
E is in general undecidable, but techniques exists for many of the interest-
ing systems; thus we can decide this property using some of these classical
techniques.

Not too clear is how to (and if we can) test for the property (f). Fortu-
nately, in [JKK83] it has also been given a sufficient and decidable condition
for testing E-coherence.

Definition 3.4 ([JKK83]). Consider two rules l → r and l′ → r′ with V (l)∩
V (l′) = ∅, s.t. l E-overlaps l′ at position p with a complete set S of E-
overlappings. We say that l E-overlaps l′ at p ∈ PosΣ(l′) with a complete
set S of E-overlappings iff S is a complete set of E-unifyiers of l and l′|p.

We call a complete set of E-critical pairs of the two rules l → r and
l′ → r′ the set {(P, Q) | P = r′ς, Q = (l′[r]p)ς, ∀ς ∈ S}.

The complete set of E-critical pairs associated to a rewrite theory (Σ, E, R)
is the union of all the nontrivial E-critical pairs from the complete sets ob-
tained from the rules of R together with the rules t → t′ with t = t′ ∈ E.

Lemma 3.9 ([JKK83]). Consider a rewrite theory T = (Σ, E, R) with prop-
erties (a)-(e). The rewrite relation  R,E is E-coherent if any E-critical pair
(P = r′ς, Q) from the complete set of E-critical pairs associated to the rewrite
theory T satisfies P  R,E P ′ at some position p ∈ PosΣ(r′) and P ′! =E Q!
(i.e. the two normal forms w.r.t.  R,E are equal modulo the set of identities
in E).

It is easy to see that the condition of the lemma above is decidable. This is
because there is a finite number of rules in R and a finite number of identities
in E and each term has a finite number of positions on which E-overlappings
may occur; therefore there is a finite number of E-critical pairs to test. The
test for each E-critical pair involves the normalization of the two terms which
is decidable as the rewrite theory is convergent.
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R, E-narrowing procedure is proven sound and complete in the same man-
ner as we presented before. We get a similar decision procedure for equational
unification, only that in this case we work with complete sets of unifyiers. To
avoid the same nontermination problem as with (general) narrowing [JKK83]
defined basic R, E-narrowing in a similar manner as Hullot and proved it to
be sound and complete.

Unfortunately, in [CLD05] it was shown by counterexample that the com-
pleteness result for basic R, E-narrowing was wrong. It seams that this has
happend because [JKK83] based their proofs on the similarities with the lift-
ing lemma of [Hul80] which was later shown (and corrected in [MH94]) to
have some notorious flaw in its proof.

Nevertheless in [EMS08] all was repaired by introducing the variant nar-
rowing relation which builds up on the ideas of R, E-narrowing and on the
variant property of [CLD05].

3.2.3 The solution
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