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1 Life

Thoralf Albert Skolem was born on 23 May 1887 in Sandsvær close to and
later incorporated into the city of Kongsberg in Southern Norway � 80 km
west of Oslo. He grew up in a rural environment. His forefathers had been
farmers at the farm Skoli for generations and his father was an elementary
teacher in the village.

He studied at the University of Oslo (then Kristiania) and graduated
in 1913. In 1915-16 he was in Göttingen, Germany and had a position
1930-38 at a research institute in Bergen, Norway. Else he remained at the
University of Oslo. He retired in 1957, but was active in research until his
death on 23 March 1963.

2 Sources

The main source is "Selected Works in Logic. Universitetsforlaget 1970"
with Jens Erik Fenstad as editor. There we have

• Jens Erik Fenstad: "Thoralf Albert Skolem in memoriam" � a bio-
graphical sketch (8 pages)

• Hao Wang: "A survey of Skolem's work in logic" � a scienti�c assess-
ment of his work in logic (46 pages)

• 50 selected articles in logic (660 pages)
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• The bibliography of 192 items by Skolem with indications of where
the items where reviewed.

The "Selected works" has stood the test of time. The 50 selected articles
contains all the important ones. In reference to Skolems articles we use the
numbering from the bibliography.

In addition we have the Skolem chapter in "Handbook of The History
of Logic. Volume 5. Logic from Russell to Church. Dov Gabbay and John
Woods (eds). North-Holland 2009.". There we have

• The bibliography of Skolem.

• A reprint of Wangs assessment.

• An update of the biographical sketch.

• Supplementary notes by Jens Erik Fenstad where he refers to more
recent scholarship on Skolem.

And then from the Department of Mathematics, University of Oslo. I
started as a student there in the Fall of 1962 and never met Skolem. But
there were many stories about him in the Department.

3 Background and style

Hao Wang writes in the Selected Works "Skolem has a tendency of treating
general problems by concrete examples. Often proofs seem to be presented
in the same order as he came to discover them. This results in a fresh
informality as well as a certain inconclusiveness. Many of his papers give
the impression of reports on work in progress. Yet his ideas are often
pregnant and potentially capable of wide applications. He was very much
a "free spirit": he did not belong to any school, he did not found any
school of his own, he did not usually make heavy use of known results in
more specialized developments, rather he was very much an innovator and
most of his papers can be read and understood by people without much
specialized knowledge. It seems quite likely that if he were young today,
logic, in its more developed stage, would not have appealed to him."

A main change since 1970 is that there are now more ways to do logic.
The in�uence from computer science with the emphasis on algorithms and
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complexity has changed much. This logic would have appealed to Skolem.
But Skolems way of doing mathematics had always found a place within
mathematics.

Skolems other scienti�c interest were in number theory (especially Dio-
phantine equations) and combinatorics. He published 2nd edition of Netto:
Lehrbuch der Combinatorik (1927c) with new chapters and on his own
"Diophantische Gleichungen" (1938c).

4 Main achievements

Skolem published almost 200 papers, but his most interesting work is in his
�rst 20 years.

• Starting lattice theory

• Skolem-Löwenheim theorem

• Skolem functions

• Method of elimination of quanti�ers

• Term models are su�cient to show satis�ability

• Primitive recursive arithmetic

• Axioms of set theory

• Non-standard models of arithmetic and set theory

Skolem worked mostly on his own. He had few students � practically
none in logic. He usually gave lectures in algebra and number theory. He
preferred not to lecture in logic � he thought it hard to to lecture with all
the syntactical details used in logic and it took too long time to get to what
he thought was the interesting stu�.

5 Skolems development

Below we shall sketch a path through his most important work. The work
was mostly developed on his own. There are few references to results by
other, but his work was read and absorbed in the logical tradition.
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5.1

Skolem worked in what van Heijenoort called the algebraic tradition of
logic (Boole � Peirce � Schröder). He used Schröders notation in his papers
through the 1930's.

5.2

In his �rst works � 1913b and 1919a � he introduced what much later was
called lattice theory and especially distributive lattices. He had to remind
others in 1936g about this earlier work.

Formulas were used to express propositions, and a typical problem
was whether a formula could be satis�ed. This is simple in propositional
logic, but complicated when we come to quanti�ers � it corresponds to the
Entscheidungsproblem which we know is unsolvable. Skolems main work
concerned the treatment of quanti�ers � if satis�ability of a formula is like
solving an equation, then how should quanti�ers be treated?

5.3

In Diophantine equations we can � using new variables � show that it
su�ces to consider system of equations of degree 2. For say we start with

x3 + y2z = 0

then introduce new variables r, s, t and the system of equations

x2 = r

rx = s

y2 = t

s+ tz = 0

The �rst system is solvable if and only if the second is.
In analogy with this Skolem did a similar thing in logic. Let us say that

we start with the formula

∀x.∃y.∀z.Rxyz
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and then replace it with a conjunction of (universally quanti�ed) equiv-
alences with new predicates S, T , and U .

∀z.Rxyz ↔ Sxy

∃u.Sxu ↔ Tx

∀v.Tv ↔ U

and replacing biconditionals with conditionals and changing names for
some bounded variables

∀z.Rxyz ← Sxy

∀a.Rxya → Sxy

∃u.Sxu ← Tx

∃b.Sxb → Tx

∀v.Tv ← U

∀c.T c → U

Writing this system out in prenex form we can get the quanti�ers with
∀-quanti�ers outside the ∃-quanti�ers starting with an outermost prenex

∀x∀y∀z∀b∀v∃a∃u∃c

and a quanti�erfree matrix inside

Mxyzuvabc

We say that we have a formula of type ∀∗∃∗ and the reduction of satis-
�ability to such formulas.

Here is Skolems �rst result about quanti�ers. For solving logical formu-
las it is su�cient to consider formulas of form ∀∗∃∗ provided we are allowed
to introduce new predicates.

5.4

Skolem learned about Löwenheims theorem in Göttingen 1915-16. He thought
the proof of it had gaps and developed his own proof. The formulas ∀∗∃∗
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can be interpreted as giving a functional connection. In the example above
we have the functional connections going from any xyzbv to selecting ap-
propriate auc. And we have the Skolem-Löwenheim theorem � if a formula
is satis�able, then it is satis�able in a countable domain. Skolem proved
this in 1920c using axiom of choice to realize the functional connections.
The ∀∗∃∗-formulas are straightforward to interpret.

5.5

In 1922c Skolem has sharpened this result. He gave a process to �nd out
whether a �rst order formula is satis�able

• We start with a formula in ∀∗∃∗-form.

• We construct a possible model by stages and start with the possible
models of the matrix of the formula where we have substituted in
constants from the formula.

• At each stage we introduce more constants from the ∀∗∃∗-connection
and look at the models extending the models constructed so far.

• Each stage is performed in a constructive way and we construct a tree
where at each node we have a model. The model at a node extends
the models at the nodes below it.

• It may happen that at some stage we get no models. Then the original
formula would be refutable.

• Or it may happen that we get an in�nite branch in the tree and this
gives a model of the formula.

In this way Skolem uses a variant of the termmodel � built up from
Skolem functions � instead of the axiom of choice. For the countable case
this works �ne and gives not only the Skolem-Löwenheim result but also
the completeness of �rst order logic. In 1928a coming back to the result he
showed that the procedure is complete.

Why did not Skolem state and explicitly prove the completeness theo-
rem? His interests seem to lie elsewhere. He was interested in procedures
for �nding whether formulas are satis�able. This is quite clear in 1928a.
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There he showed the completeness of a procedure for checking whether a
formula F in ∀∗∃∗-form is satis�able. The formula gives functional connec-
tion which hopefully can be realized. We get a �nitary process where we
build up the model.

These are all the ingredients to get the completeness theorem of Gödel
from 1930. But Skolem never formulated the completeness theorem as a
result. It is noteworthy that in his later lectures he never mentioned the
completeness theorem as an interesting result.

5.6

In 1922b Skolem introduced the modern axiom system for set theory. Zer-
melo with his Aussonderungsaxiom and Fraenkel with his replacement ax-
iom used the unanalyzed notion of de�nite proposition. Skolem used axiom
schemas with ordinary �rst order formulas � as we now do. Hao Wang
mentions that because of this one should perhaps use Skolems name in the
name of the axioms of set theory.

Skolem was not interested in set theory as a foundational theory. He
observed that if set theory (in his formulation) had a model, then it had a
countable model. In his view it would not work as a foundational theory.

The unintended models of set theory leads up to other unintended mod-
els. Skolem mentions in 1922b that one could have models of number theory
with unintended versions of induction.

5.7

Skolem had in Göttingen learnt about Russell and Whiteheads "Principia
Mathematicae" and disagreed with their foundational view. In 1923a he
published a remarkable work with an alternative foundation. In modern
terms he introduced

Datastructure: Natural numbers as built from 1 and the successor

Programming language: The primitive recursive functions

Programming logic: Primitive recursive arithmetic
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Skolem showed how to develop number theory up to prime number de-
composition within this framework. Both Grassman (1860) and Dedekind
(1890) had used the primitive recursive de�nition of addition and multipli-
cation, but Skolem was the �rst to use it towards expressing a substantial
�eld of knowledge. Instead of quanti�ers Skolem showed how to use free
variable reasoning. He used

• de�ning equations of primitive recursive functions

• induction over quanti�er free formulas which may contain free vari-
ables

In the development of number theory Skolem did not use the whole
of primitive recursive functions. He used especially bounded sums and
products � what is later called the Kalmar elementary functions.

In 1927-28 Hilberts students Sudan and Ackermann gave examples of
computable functions which were not primitive recursive. Skolem observed
that the graph of the functions are still primitive recursive and continued
to look for good examples from mathematics where we had to go beyond
the primitive recursive � without �nding any. An attempt is in 1956c.

5.8

The quanti�ers are stumbling blocks in going from propositional logic to �rst
order logic. Skolem showed that in a number of cases he could eliminate
them

• Skolem introduced the method of elimination of quanti�ers in 1919b.
He showed there how it could be done with a special sort of Boolean
algebra � the subsets of a given set.

• In 1929a he treated dense linear orders and gave a new proof that the
theory is decidable.

• In 1930c he used quanti�er elimination on Presburger arithmetic �
arithmetic with only addition. Skolem treated also the theory of arith-
metic with only multiplication, and showed that it is decidable.

The elimination of quanti�ers are often very sensitive to the language
used, and requires ingenuity in getting the right formulations.
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5.9

From the Skolem-Löwenheim theorem we get unintended models of set the-
ory. Skolem remarked in 1922a that we also get unintended models of
arithmetic where induction is problematic. In 1933d and 1934b he gave a
direct construction of an unintended model of arithmetic. His construction
is a version of the ultrapower construction done 30 years later.

5.10

It is clear that Skolem was quite close to the incompleteness theorem of
Gödel. He had given unintended models of arithmetic and also shown how
to develop much of syntax within number theory. When he later was asked
about Gödels contribution he emphasized the Gödels β-function � con-
structed using the Chinese remainder theorem. With the β-function Gödel
was able to treat �nite sequences of information within arithmetic with ad-
dition and multiplication. This step was lacking in Skolems development.

If Skolem had chosen a better datastructure in 1923a than the natural
numbers, he could have come much closer. In the datastructure of binary
trees we can explicitly de�ne a β-function using bounded quanti�ers and
bounded search. (This works also with the datastructure of binary words
and the datastructure of hereditarily �nite sets.) The problems comes with
the natural numbers as a datastructure. There we use addition and multipli-
cation as functions and get the β-function de�ned using an extra unbounded
quanti�er. This is su�cient for the incompleteness theorem. Skolem showed
in 1930c that we could not work with neither addition alone nor with mul-
tiplication alone.

5.11

An interesting application of coding syntax was done in 1958d. We may
have �nite axiomsets and sets where we use axiom schemas. Skolem showed
that any theory formulated with axiom schemas, could also be formulated
with a �nite axiom set. This is similar to set theory where we have axiom
schemas in Zermelo-Fraenkel and �nite sets of axioms in Gödel-Bernays
axiom system.
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Say we have a system S formulated with axiom schemas. We then
consider a new system S∗ where we have

• two sorts of individuals

� �nite sequences of individuals from S

� predicates from S

• predicates between the sorts expressing

� identity between sequences

� the �nite sequences are of same length

� concatenation of �nite sequences

� a �nite sequence satis�es a predicate

In S∗ we can give a �nite set of axioms expressing all the axioms of S
including the axiom schemas. The development is fairly straightforward,
but is also a typical Skolem argument. We refer the reader to the paper, or
let the reader reconstruct the Skolem argument by showing that in S∗ we
can express the following

• that a sequence of individuals consists of only one element

• the atomic formulas of S

• the permutations of sequences of individuals

• propositional operations on formulas from S

• quantifying formulas from S

• axiom schemes from S

We then simulate S in S∗ using �nitely many axioms.
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5.12

Skolem continued his work throughout his life. There are papers on

• Reduction classes of satis�ability

• Recursive function theory

• Foundations of set theory

• and much more

But his main contributions to logic are the items mentioned above.

6 References

For a full bibliography see his Selected Works.
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