
INF5390 – Kunstig intelligens

Solving Problems by Searching

Roar Fjellheim

INF5390-03 Solving Problems by Searching

Outline

 Problem-solving agents

 Example problems

 Search programs

 Uninformed search

 Informed search

 Summary

AIMA Chapter 3: Solving Problems by Searching

2

INF5390-03 Solving Problems by Searching

Problem-solving agents

 Goal-based agents know their goals and the
effect of their actions

 How do such agents determine the sequence
of actions that lead to the goal?

 Problem-solving agents are goal-based agents
that use search to find action sequences

 The agent must formulate the search problem
in terms of goals and actions before solving it

3

INF5390-03 Solving Problems by Searching

Formulation of a search problem

 Initial state
 Initial state of environment

 Actions
 Set of actions available to agent

 Path
 Sequence of actions leading from one state to another

 Goal test
 Test to check if a state is a goal state

 Path cost
 Function that assigns cost to a path

 Solution
 Path from initial state to a state that satisfies goal test

Defines the

state space

4

INF5390-03 Solving Problems by Searching

Some real-world problems

 Route finding

 E.g. airline or car
travel planning

 “Traveling salesman”

 E.g. movements of
circuit board drills

 Robot navigation

 Route finding in continuous space

 Automatic assembly sequencing

 Synthesizing assembly operation sequences

5

INF5390-03 Solving Problems by Searching

Simple problem-solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq, an action sequence, initially empty; state, some description of the

current world state; goal, a goal, initially null; problem, a problem formulation

state <= UPDATE-STATE(state, percept)

if seq is empty then

 goal <= FORMULATE-GOAL(state)

 problem <= FORMULATE-PROBLEM(state, goal)

 seq <= SEARCH(problem)

 if seq = failure then return a null action

action <= FIRST(seq)

seq <= REST(seq)

return action

6

INF5390-03 Solving Problems by Searching

Implied environment properties

 Fully observable

 Agent has full knowledge

 Deterministic

 No surprises

 Static

 No changes under deliberation

 Discrete

 Discrete alternative actions

Simplest
possible
environment
type!

7

INF5390-03 Solving Problems by Searching

Example toy problem: 8-puzzle

 States

 Location of each tile

 Operators

 Blank moves left, right,
up, down

 Goal test

 State matches goal
configuration

 Path cost

 Number of moves

5 4

6 1 8

7 3 2

5 4 6

1

8 7

3 2

Start

state

Goal

state

8

INF5390-03 Solving Problems by Searching

Expanding a search tree fully …

9

5 4

6 1 8

7 3 2

5 4

6 1 8

7 3 2

5 4

6 1

8

7 3 2

5 4

6 1 8

7 3 2

5 4

6 1 8

7 3 2

5 4

6

1

8

7 3 2

5 4

6 1 8

7 3 2

5 4

6 1

8

7 3 2

5 4

6 1

8

7 3

2

INF5390-03 Solving Problems by Searching

… or partially or in different order

Search tree State space!

10

5 4

6 1 8

7 3 2

5 4

6 1 8

7 3 2

5 4

6 1

8

7 3 2

5 4

6

1

8

7 3 2

5 4

6 1 8

7 3 2

INF5390-03 Solving Problems by Searching

Searching for solutions

 The search starts in an initial state

 Thereafter, it iteratively explores the state space
by selecting a state node and applying operators
to generate successor nodes

 The choice of which node to expand at each
level is determined by the search strategy

 The part of the state space that is explored is
called the search tree

11

State space vs. search tree

INF5390-03 Solving Problems by Searching 12

State space

Search
tree

Node in a search
tree points to a

state in state space

Tree search vs. graph search

 The state space may contain loops (path back
to earlier state) or redundant paths (more
than one path between two states)

 Simple tree expansion will run infinitely or
“explode” in such search spaces

 To avoid the problem, tree search can be
replaced by generalized graph search

 In graph search, the algorithm keeps track
and avoids expanding already visited nodes

 In the lecture, we will only study tree search

INF5390-03 Solving Problems by Searching 13

Tree search – General idea

INF5390-03 Solving Problems by Searching 14

 Start in initial state

 Expand possible
nodes

 Keep a frontier of
unexpanded nodes

 Select next node to
expand according
to strategy

 Continue until goal
(or give up)

INF5390-03 Solving Problems by Searching

Uninformed search strategies

 Uninformed

 No information on path cost from current to goal
states

 Six uninformed strategies

 Breadth-first

 Uniform-cost

 Depth-first

 Depth-limited

 Iterative deepening

 Bidirectional

 Differ by order in which nodes are expanded

15

INF5390-03 Solving Problems by Searching

Evaluation of search strategies

 Completeness

 Guaranteed to find a solution when there is one?

 Optimality

 Finds the best solution when there are several
different possible solutions?

 Time complexity

 How long does it take to find a solution?

 Space complexity

 How much memory is needed?

16

INF5390-03 Solving Problems by Searching

Data structures for search trees

 Datatype node with components:
 STATE - search space state corresponding to the node

 PARENT-NODE - node that generated this node

 ACTION - action that was applied to generate this node

 PATH-COST - cost of path from initial node (called g)

 DEPTH - number of nodes on path from initial node

 Search tree nodes kept in a queue with operators:
 MAKE-QUEUE(Elements) - create queue with given elements

 EMPTY?(Queue) - true if no more elements in queue

 FIRST(Queue) – returns first element of the queue

 REMOVE-FIRST(Queue) - removes and returns first element

 INSERT(Element, Queue) - inserts an element into queue

 INSERT-ALL(Elements, Queue) - inserts set of elements into
queue

17

INF5390-03 Solving Problems by Searching

General tree-search algorithm

function TREE-SEARCH(problem, frontier) returns a solution, or failure

frontier <= INSERT(MAKE-NODE(problem.INITIAL-STATE), frontier)

loop do

 if EMPTY?(frontier) then return failure

 node <= REMOVE-FIRST(frontier)

 if problem.GOAL-TEST applied to node.STATE succeeds

then return SOLUTION(node)

 frontier <= INSERT-ALL(EXPAND(node,problem), frontier)

function EXPAND(node, problem) returns a set of nodes

-frontier is an initially empty queue of a certain type (FIFO, etc.)

-SOLUTION returns sequence of actions back to root

-EXPAND generates all successors of a node

18

INF5390-03 Solving Problems by Searching

Breadth-first search

 FIFO – First In First Out (add nodes as last)

 Expands all nodes at a certain depth of search
tree before expanding any node at next depth

 Exhaustive method - if there is a solution,
breadth-first will find it (completeness)

 Will find the shortest solution first (optimal)

function BREADTH-FIRST-SEARCH(problem)

 returns a solution or failure

 return TREE-SEARCH(problem, FIFO-QUEUE())

19

Breadth-first search illustrated

 All nodes on one level are explored before
moving to next level

INF5390-03 Solving Problems by Searching 20

INF5390-03 Solving Problems by Searching

Complexity of breadth-first search

 Branching factor (b) - number of successors of
each node (average)

 If solution is found at depth d, then max.
number of nodes expanded is
 1 + b + b2 + b3 + .. + bd

 Exponential complexity (O(bd))
 For b=10, 1000 nodes/sec, 100 bytes/node problem,

time/memory increases from 1ms/100 bytes at
depth 0 to 35 years/10 petabytes at depth 12 (1013
nodes)

 In general, we wish to avoid exponential
search

21

Uniform-cost search

 Breadth-first is optimal because it always
expands the shallowest unexpanded node

 Uniform-cost search expands the node n with
lowest path cost g(n)

 This is done by storing the frontier as a priority
queue ordered by g

 Uniform-cost search is optimal since it always
expands the node with the lowest cost so far

 Completeness is guaranteed if all path costs>0

INF5390-03 Solving Problems by Searching 22

INF5390-03 Solving Problems by Searching

Depth-first search

 LIFO – Last In First Out (add nodes as first)

 Always expands a node at deepest level of the
tree, backtracks if it finds node with no successor

 May never terminate if it goes down an infinite
branch, even if there is a solution (not complete)

 May return an early found solution even if a better
one exists (not optimal)

function DEPTH-FIRST-SEARCH(problem)

 returns a solution or failure

 return TREE-SEARCH(problem, LIFO-QUEUE())

23

Depth-first search illustrated

INF5390-03 Solving Problems by Searching 24

INF5390-03 Solving Problems by Searching

Complexity of depth-first search

 Depth-first has very low memory
requirements, only needs to store one path
from the root

 With branching factor b and depth m, space
requirement is only bm.
 For b=10, 100 bytes/node problem, memory

increases from 100 bytes at depth 0 to 12 Kilobytes
at depth 12

 Worst case time complexity is O(bm), but
depth-first may find solution much quicker if
there are many solutions (m may be much
larger than d – the depth of the shallowest
solution)

25

INF5390-03 Solving Problems by Searching

Depth-limited search

 Modifies depth-first search by imposing a
cutoff on the maximum depth of a path

 Avoids risk of non-terminating search down an
infinite path

 Finds a solution if it exists within cutoff limit
(not generally complete)

 Not guaranteed to find shortest solution (not
optimal)

 Time and space complexity as for depth-first

26

INF5390-03 Solving Problems by Searching

Iterative deepening search

 Modifies depth-limited search by iteratively
trying all possible depths as the cutoff limit

 Combines benefits of depth-first and breadth-
first

function ITERATIVE-DEEPENING-SEARCH(problem)

 returns a solution or failure

 for depth <= 0 to do

 result <= DEPTH-LIMITED-SEARCH(problem, depth)

 if result cutoff then return result

27

Iterative deepening search illustrated

INF5390-03 Solving Problems by Searching 28

INF5390-03 Solving Problems by Searching

Complexity of iterative deepening search

 May seem wasteful, since many states are
expanded multiple times (for each cutoff limit)

 In exponential search trees most nodes are at
lowest level, so multiple expansions at shallow
depths do not matter much

 Time complexity is O(bd), space complexity
O(bd)

Iterative deepening is the preferred (uninformed)

search strategy when there is a large search space

and the solution depth is unknown

29

INF5390-03 Solving Problems by Searching

Bidirectional search

 Searches simultaneously both forward from initial
state and backward from goal state

 Time complexity reduced from O(bd) to O(bd/2)

 E.g. for b=10, d=6, reduction from 1.1 mill nodes to
2.200

 But …

 Does the node predecessor function exist?

 What if there are many possible goals?

 Must check a new node if it exists in other tree

 Must keep at least one tree, space complexity
O(bd/2)

30

Bidirectional search illustrated

INF5390-03 Solving Problems by Searching 31

INF5390-03 Solving Problems by Searching

Comparing uninformed search strategies

Criterion Breadth-

first

Uniform-

cost

Depth-

first

Depth-

limited

Iterative

deepening

Bi-

directional

Complete Yes Yes No No Yes Yes

Time bd b1+c/e bm bl bd bd/2

Space bd b1+c/e bm bl bd bd/2

Optimal Yes Yes No No Yes Yes

 b - branching factor m - maximum depth of tree

d - depth of solution l - depth limit

c – cost of solution e – cost of action

32

INF5390-03 Solving Problems by Searching

Informed search methods

 Search can be improved by applying
knowledge to better select which node to
expand (best-first)

 An function to estimate the cost to reach a
solution is called a search heuristic (h)

 Greedy search: Minimizes h(n) - the estimated
cost of the cheapest path from n to the goal

 Greedy search reduces search time compared
to uninformed search, but is neither optimal
nor complete

33

INF5390-03 Solving Problems by Searching

A* search

 A* - most widely known informed search method

 Identical to Uniform-Cost except that it
minimizes f(n) instead of g(n):

 g(n) - the cost of the path so far

 h(n) - the estimated cost of the remaining path to goal

 f(n) = g(n) + h(n)

 Restriction: h must never overestimate the actual
cost – i.e. h is “optimistic” (admissible)

 Properties of A*

 Optimal (and optimally efficient)

 Complete

 Time/space exponential (space most severe problem)

34

Heuristic functions

 Some admissible h for 8-puzzle

 h1 – number of misplaced tiles

 h2 – sum of distances of tiles from
their goal positions

 Neither overestimate true cost

 Branching factor b of 8-puzzle approx. 3

 Effective branching factor b* using A*
depends on chosen heuristic function h

 h1 – effective b* 1.79-1.48 (depending on d)

 h2 – effective b* 1.79-1.26 (always better than h1)

 Dramatic reduction of search time/space
compared to uninformed search

INF5390-03 Solving Problems by Searching

5 4

6 1 8

7 3 2

35

INF5390-03 Solving Problems by Searching

Summary

 An agent can use search when it is not clear
which action to take

 The problem environment is represented by a
state space

 A search problem consists of an initial state, a
set of actions, a goal test, and a path cost

 A path from the initial to the goal state is a
solution

 Search algorithms treat states and actions as
atomic – do not consider internal structure

 General tree search considers all possible paths,
while graph search avoids redundant paths

36

INF5390-03 Solving Problems by Searching

Summary (cont.)

 Properties of search algorithms

 completeness – finds a solution if there is one

 optimality – finds the best solution

 time complexity

 space complexity

 Uninformed search strategies have no
information on cost to reach goal and include

 breadth-first search

 uniform-cost search

 depth-first search

 depth-limited search

 iterative-deepening search

 bidirectional search
37

Summary (cont.)

 Informed search uses knowledge on remaining
cost to goal (search heuristics) to improve
performance

 A* is a complete and optimal informed search
algorithm that uses search heuristics

 Heuristic function h in A* must be admissible,
and can greatly improve search performance

INF5390-03 Solving Problems by Searching 38

