INF5390-2014 - Kunstig intelligens Exercise 1 Solution

Roar Fjellheim

Exercise 1.1: Intelligent Agents (INF5390-02)

For every sentence below, state whether it is true or false, and support your reply with an example or counter-example:
a. An agent that only receives partial information on the environment cannot be rational.
False. Perfect rationality refers to the ability to make good decisions given the sensor information received.
b. There exist environments where no pure reflex agent can be rational.
True. A pure reflex agent ignores previous percepts and cannot obtain an optimal state estimate in a partially observable environment.

Exercise 1.1: Intelligent Agents (INF5390-02)

c. There is an environment where every agent is rational.
True. For example, in an environment with a single state, such that all actions have the same reward, it does not matter which action is taken.
d. Input to the agent program is identical to input to the agent function.
False. The agent function, notionally speaking, takes as input the entire percept up to that point, while the agent program takes the current percept only.

Exercise 1.1: Intelligent Agents (INF5390-02)

e. Assume that an agent selects actions at random. There exists an environment where this agent is rational.
True. This is a special case of c). If it does not matter which action is taken, selecting randomly is rational.
f. Every agent is rational in an unobservable environment.
False. Some actions are stupid (and the agent may know this if it has a model) even if it has no environment input.
g. A perfectly rational poker-playing agent will never lose.
False. Unless it draws the perfect hand, the agent can lose if an opponent has better cards.

Exercise 1.2: Solving Problems by Searching (INF5390-03)

The four colors problem can be defined as follows: With as few as possible and at most four colors*, color a map so that no neighboring regions have the same color.

The example shows 6 Australian (mainland) regions colored with 3 colors.

* That four colors are enough for any map was proven in 1976 as the first major theorem to be proved using a computer.

Exercise 1.2: Solving Problems by Searching (INF5390-03)

a. Give a precise specification of the task as a search problem.
b. Draw an in-principle diagram (not complete) of a search tree to find a solution.
c. Choose and justify an uninformed search algorithm for finding an optimal solution.
d. How would you characterize the efficiency of uninformed search to solve this problem?

Formulation of a problem

- Initial state
\checkmark Initial state of environment
- Actions

Defines the
state space
\checkmark Set of actions available to agent

- Path
\checkmark Sequence of actions leading from one state to another
- Goal test
\checkmark Test to check if a state is a goal state
- Path cost
\checkmark Function that assigns cost to a path
- Solution
\checkmark Path from initial state to a state that satisfies goal test

States and actions

- Regions: R1, ..., R6
- Colors: R (red), B (blue), G (green), Y (yellow), U (unassigned)
- State: [R1=c1, ..., R6=c6] where ci is in Colors
- Initial state: $[\mathrm{R} 1=\mathrm{U}, \ldots, \mathrm{R} 6=\mathrm{U}]$
- Actions: $[\ldots \mathrm{Rj}=\mathrm{U} . ..] \Rightarrow[\ldots \mathrm{Rj}=\mathrm{ci} . .$.$] where \mathrm{ci} \neq \mathrm{U}$
- Goal test (target state): [R1=c1, ..., R6=c6]
where each ci $\neq \mathrm{U}$ and
no neighboring regions have the same color
- Cost function: +1 per assignment (but all goal paths have equal length, see later)

Uninformed search tree

Properties of the search tree

- Complexity

$$
(n \times c) \times((n-1) \times c) \times \ldots(1 \times c)=\mathbf{n}!\times \mathbf{c}^{\mathbf{n}}
$$

- But, there can only be c^{n} unique complete color assignments
- Many paths are equivalent (order of assignment is irrelevant)

n		$\mathrm{c}=4$
1		4
2		32
3		384
4		6144
5		122880
6		2949120
7		82575360
8		642411520
9		126814720
10	805072	072588800

- Many inconsistent partial assignments, cannot be corrected further down in tree
- All solutions at level n (here 6)
- Many consistent solutions (e.g. systematic exchange of colors)

Uninformed search algorithm

- Search path is limited to $\mathrm{n}=$ number of regions
\checkmark Depth first search can be used
\checkmark Could use breadth first, but high branching factor will lead to large memory requirement
- Depth first search recommended
\checkmark Iterative deepening depth first could be considered, but in absence of checking for partial inconsistency, all goal paths will have length n

Recap: Complexity of depth-first search

- Depth-first has very low memory requirements, only needs to store one path from the root
- With branching factor b and depth m, space requirement is only $b m$.
\checkmark For $b=10,100$ bytes/node problem, memory increases from 100 bytes at depth 0 to 12 Kilobytes at depth 12
- Worst case time complexity is $O\left(b^{m}\right)$, but depth-first may find solution much quicker if there are many solutions (m may be much larger than d - the depth of the shallowest solution)

Properties and efficiency of selected algorithm

- Complete: If there as a solution, it will be found (finite size of tree and exhaustive search)
- Optimal: Any consistent solution found on level n is as good as any other, including the first found
- Memory: Low requirements
- Time: Goes as search tree complexity: n ! x c^{n}
\checkmark Search generates many equivalent subtrees
\checkmark Search generates many inconsistent subtrees
\checkmark Unfeasible for large n
- Points to inadequacy of uninformed search for realistic problems

Constraint Satisfaction Problems (CSP)

- Represents states as variable=value pairs and conditions for solutions as variable constraints
- Starts out as classical search, but propagates constraints to eliminate entire subspaces
- Builds solution incrementally - Think of solving Sudoku, crosswords, etc.
- Many specialized techniques make CSP an efficient method for large combinatorial problems
- CSP solvers are widely applied to domains like scheduling, planning, configuring, timetabling, ...
- For more on CSP: See AIMA Chapter 6

