
INF5390-2014 Exercise 1 Solution 1

INF5390-2014 – Kunstig intelligens

Exercise 1 Solution

Roar Fjellheim

Exercise 1.1: Intelligent Agents
(INF5390-02)

For every sentence below, state whether it is true or
false, and support your reply with an example or
counter-example:

a. An agent that only receives partial information on
the environment cannot be rational.
False. Perfect rationality refers to the ability to make good
decisions given the sensor information received.

b. There exist environments where no pure reflex
agent can be rational.
True. A pure reflex agent ignores previous percepts and
cannot obtain an optimal state estimate in a partially
observable environment.

INF5390-2014 Exercise 1 Solution 2

Exercise 1.1: Intelligent Agents
(INF5390-02)

c. There is an environment where every agent is
rational.
True. For example, in an environment with a single state,
such that all actions have the same reward, it does not
matter which action is taken.

d. Input to the agent program is identical to input to
the agent function.
False. The agent function, notionally speaking, takes as
input the entire percept up to that point, while the agent
program takes the current percept only.

INF5390-2014 Exercise 1 Solution 3

Exercise 1.1: Intelligent Agents
(INF5390-02)

e. Assume that an agent selects actions at random.
There exists an environment where this agent is
rational.
True. This is a special case of c). If it does not matter
which action is taken, selecting randomly is rational.

f. Every agent is rational in an unobservable
environment.
False. Some actions are stupid (and the agent may know
this if it has a model) even if it has no environment input.

g. A perfectly rational poker-playing agent will never
lose.
False. Unless it draws the perfect hand, the agent can lose
if an opponent has better cards.

INF5390-2014 Exercise 1 Solution 4

Exercise 1.2: Solving Problems by
Searching (INF5390-03)

The four colors problem can be defined as
follows: With as few as possible and at most four
colors*, color a map so that no neighboring
regions have the same color.

The example shows 6
Australian (mainland)
regions colored with
3 colors.

* That four colors are enough for any map was
proven in 1976 as the first major theorem to
be proved using a computer.

INF5390-2014 Exercise 1 Solution 5

Exercise 1.2: Solving Problems by
Searching (INF5390-03)

a. Give a precise specification of the task as a
search problem.

b. Draw an in-principle diagram (not complete)
of a search tree to find a solution.

c. Choose and justify an uninformed search
algorithm for finding an optimal solution.

d. How would you characterize the efficiency of
uninformed search to solve this problem?

INF5390-2014 Exercise 1 Solution 6

INF5390-2014 Exercise 1 Solution

Formulation of a problem

 Initial state
 Initial state of environment

 Actions
 Set of actions available to agent

 Path
 Sequence of actions leading from one state to another

 Goal test
 Test to check if a state is a goal state

 Path cost
 Function that assigns cost to a path

 Solution
 Path from initial state to a state that satisfies goal test

Defines the

state space

7

States and actions

 Regions: R1, …, R6

 Colors: R (red), B (blue), G (green), Y (yellow),
 U (unassigned)

 State: [R1=c1, …, R6=c6] where ci is in Colors

 Initial state: [R1=U, … , R6=U]

 Actions: [… Rj=U …] [… Rj=ci …] where ci ≠ U

 Goal test (target state): [R1=c1, …, R6=c6]
 where each ci ≠ U and
 no neighboring regions have the same color

 Cost function: +1 per assignment (but all goal paths
have equal length, see later)

INF5390-2014 Exercise 1 Solution 8

Uninformed search tree

INF5390-2014 Exercise 1 Solution 9

[R1=U, … , R6=U]
Select 1 of
n (6) regions
Select 1 of c
(4) colors for
each region

[R1=R, …] [R1=Y, …] … […, R2=R, …] […, R2=Y, …] … … […, R6=Y]

Select 1 of n-1 (5) regions
Select 1 of c (4) colors for each region

…

[R1=R, R2=B , R3=G,

R4=R, R5=B , R6=R] R1
R3

R6

R4

R5

R2

n c=4

1 4

2 32

3 384

4 6 144

5 122 880

6 2 949 120

7 82 575 360

8 2 642 411 520

9 95 126 814 720

10 3 805 072 588 800

Properties of the search tree

 Complexity

(n x c) x ((n-1) x c) x … (1 x c) = n! x cn

 But, there can only be cn unique
complete color assignments

 Many paths are equivalent (order of
assignment is irrelevant)

 Many inconsistent partial assignments,
cannot be corrected further down in tree

 All solutions at level n (here 6)

 Many consistent solutions (e.g.
systematic exchange of colors)

INF5390-2014 Exercise 1 Solution 10

Uninformed search algorithm

 Search path is limited to n = number of regions

 Depth first search can be used

 Could use breadth first, but high branching factor will
lead to large memory requirement

 Depth first search recommended

 Iterative deepening depth first could be considered, but
in absence of checking for partial inconsistency, all goal
paths will have length n

INF5390-2014 Exercise 1 Solution 11

INF5390-03 Solving Problems by Searching

Recap: Complexity of depth-first search

 Depth-first has very low memory
requirements, only needs to store one path
from the root

 With branching factor b and depth m, space
requirement is only bm.
 For b=10, 100 bytes/node problem, memory

increases from 100 bytes at depth 0 to 12 Kilobytes
at depth 12

 Worst case time complexity is O(bm), but
depth-first may find solution much quicker if
there are many solutions (m may be much
larger than d – the depth of the shallowest
solution)

12

INF5390-2014 Exercise 1 Solution

Properties and efficiency of
selected algorithm

 Complete: If there as a solution, it will be found
(finite size of tree and exhaustive search)

 Optimal: Any consistent solution found on level n
is as good as any other, including the first found

 Memory: Low requirements

 Time: Goes as search tree complexity: n! x cn

 Search generates many equivalent subtrees

 Search generates many inconsistent subtrees

 Unfeasible for large n

 Points to inadequacy of uninformed search for
realistic problems

13

Constraint Satisfaction Problems (CSP)

 Represents states as variable=value pairs and
conditions for solutions as variable constraints

 Starts out as classical search, but propagates
constraints to eliminate entire subspaces

 Builds solution incrementally - Think of solving
Sudoku, crosswords, etc.

 Many specialized techniques make CSP an efficient
method for large combinatorial problems

 CSP solvers are widely applied to domains like
scheduling, planning, configuring, timetabling, …

 For more on CSP: See AIMA Chapter 6

INF5390-2014 Exercise 1 Solution 14

