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In which we take stock of where we are and where we are going, this being a good
thing to do before continuing.

In Chapter 2, we suggested that it would be helpful to view the Al task as H_.:.: of mmmwmizm
rational agents—that is, agents whose actions maximize their expected utility given H.:m:
percept histories. We showed that the design problem depends on the wmqnmva. and actions
available to the agent, the utility function that the agent’s behavior should mmsm@,. and the
nature of the environment. A variety of different agent designs are possible, ranging from
reflex agents to fully deliberative, knowledge-based, amnmmmoz-ﬁ.rmoan.n .mmoam. Moreover,
the components of these designs can have a number of different _:mazgm:osml.moq example,
logical or probabilistic reasoning, and atomic, factored, or structured representations of states.
The intervening chapters presented the principles by which these components operate. .

For all the agent designs and components, there has been tremendous progress both in
our scientific understanding and in our technological capabilities. In this chapter, we stand
back from the details and ask, “Will all this progress lead to a general-purpose intelligent
agent that can perform well in a wide variety of environments?” an:nw: .N,: _oo_mm at the
components of an intelligent agent to assess what’s known and what’s missing. m.mn:o:.wq.m
does the same for the overall agent architecture. Section 27.3 asks whether designing rational
agents is the right goal in the first place. (The answer is, :2.2 really, but it’s OK for now.”)
Finally, Section 27.4 examines the consequences of success in our endeavors.

AGENT COMPONENTS

Chapter 2 presented several agent designs and their components. To focus our discussion
here, we will look at the utility-based agent, which we show again in Figure 27.1. <<_§.~ en-
dowed with a learning component (Figure 2.15), this is the most general of our agent designs.
Let’s see where the state of the art stands for each of the components.

Interaction with the environment through sensors and actuators: For much of the
history of Al, this has been a glaring weak point. With a few honorable exceptions, Al sys-
tems were built in such a way that humans had to supply the inputs and interpret the outputs,
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Figure 27.1 A model-based, utility-based agent, as first presented in Figure 2.14.
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while robotic systems focused on low-level tasks in which high-level reasoning and plan-
ning were largely absent. This was due in part to the great expense and engineering effort
required to get real robots to work at all. The situation has changed rapidly in recent years
with the availability of ready-made programmable robots. These, in turn, have benefited
from small, cheap, high-resolution CCD cameras and compact, reliable motor drives. MEMS
(micro-electromechanical systems) technology has supplied miniaturized accelerometers, gy-
roscopes, and actuators for an artificial flying insect (Floreano er al., 2009). It may also be
possible to combine millions of MEMS devices to produce powerful macroscopic actuators.

Thus, we see that Al systems are at the cusp of moving from primarily software-only
systems to embedded robotic systems. The state of robotics today is roughly comparable to
the state of personal computers in about 1980: at that time researchers and hobbyists could
experiment with PCs, but it would take another decade before they became commonplace.

Keeping track of the state of the world: This is one of the core capabilities required
for an intelligent agent. It requires both perception and updating of internal representations.
Chapter 4 showed how to keep track of atomic state representations; Chapter 7 described
how to do it for factored (propositional) state representations; Chapter 12 extended this to
first-order logic; and Chapter 15 described filtering algorithms for probabilistic reasoning in
uncertain environments. Current filtering and perception algorithms can be combined to do a
reasonable job of reporting low-level predicates such as “the cup is on the table.” Detecting
higher-level actions, such as “Dr. Russell is having a cup of tea with Dr. Norvig while dis-
cussing plans for next week,” is more difficult. Currently it can be done (see Figure 24.25 on
page 961) only with the help of annotated examples.

Another problem is that, although the approximate filtering algorithms from Chapter 15
can handle quite large environments, they are still dealing with a factored representation—
they have random variables, but do not represent objects and relations explicitly. Section 14.6
explained how probability and first-order logic can be combined to solve this problem, and
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Section 14.6.3 showed how we can handle uncertainty about the identity of objects. We expect
that the application of these ideas for tracking complex environments will yield huge benefits.
However, we are still faced with a daunting task of defining general, reusable representation
schemes for complex domains. As discussed in Chapter 12, we don’t yet know how to do that
in general; only for isolated, simple domains. It is possible that a new focus on probabilistic
rather than logical representation coupled with aggressive machine learning (rather than hand-
encoding of knowledge) will allow for progress.

Projecting, evaluating, and selecting future courses of action: The basic knowledge-
representation requirements here are the same as for keeping track of the world; the primary
difficulty is coping with courses of action—such as having a conversation or a cup of tea—
that consist eventually of thousands or millions of primitive steps for a real agent. It is only
by imposing hierarchical structure on behavior that we humans cope at all. We saw in
Section 11.2 how to use hierarchical representations to handle problems of this scale; fur-
thermore, work in hierarchical reinforcement learning has succeeded in combining some
of these ideas with the techniques for decision making under uncertainty described in Chap-
ter 17. As yet, algorithms for the partially observable case (POMDPs) are using the same
atomic state representation we used for the search algorithms of Chapter 3. There is clearly a
great deal of work to do here, but the technical foundations are largely in place. Section 27.2
discusses the question of how the search for effective long-range plans might be controlled.

Utility as an expression of preferences: In principle, basing rational decisions on the
maximization of expected utility is completely general and avoids many of the problems of
purely goal-based approaches, such as conflicting goals and uncertain attainment. As yet,
however, there has been very little work on constructing realistic utility functions—imagine,
for example, the complex web of interacting preferences that must be understood by an agent
operating as an office assistant for a human being. It has proven very difficult to decompose
preferences over complex states in the same way that Bayes nets decompose beliefs over
complex states. One reason may be that preferences over states are really compiled from
preferences over state histories, which are described by reward functions (see Chapter 17).
Even if the reward function is simple, the corresponding utility function may be very complex.
This suggests that we take seriously the task of knowledge engineering for reward functions
as a way of conveying to our agents what it is that we want them to do.

Learning: Chapters 18 to 21 described how learning in an agent can be formulated as
inductive learning (supervised, unsupervised, or reinforcement-based) of the functions that
constitute the various components of the agent. Very powerful logical and statistical tech-
niques have been developed that can cope with quite large problems, reaching or exceeding
human capabilities in many tasks—as long as we are dealing with a predefined vocabulary
of features and concepts. On the other hand, machine learning has made very little progress
on the important problem of constructing new representations at levels of abstraction higher
than the input vocabulary. In computer vision, for example, learning complex concepts such
as Classroom and Cafeteria would be made unnecessarily difficult if the agent were forced
to work from pixels as the input representation; instead, the agent needs to be able to form
intermediate concepts first, such as Desk and Tray, without explicit human supervision.
Similar considerations apply to learning behavior: HavingA CupOfTea is a very important
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high-level step in many plans, but how does it get into an action library that initially contains
much simpler actions such as RaiseArm and Swallow? Perhaps this will incorporate some
of H.rn ideas of deep belief networks—Bayesian networks that have multiple layers of E,aan:
variables, as in the work of Hinton et al. (2006), Hawkins and Blakeslee (2004), and Bengio
and LeCun (2007). .

. The .<F£ majority of machine learning research today assumes a factored representa-
tion, _.ﬂ:.:_:m a function & : R™ — R for regression and h : R" — {0, 1} for classification.
rmEd.Sm researchers will need to adapt their very successful techniques for factored repre-
mn:.E:ozm to structured representations, particularly hierarchical representations. The work
on Ea:oaé logic programming in Chapter 19 is a first step in this direction; the logical next
step is to combine these ideas with the probabilistic languages of Section 14.6.

Unless we understand such issues, we are faced with the daunting task of constructing
large commonsense knowledge bases by hand, an approach that has not fared well to date.
,_,.:nnm Is great promise in using the Web as a source of natural language text, images, and
Samnm to serve as a comprehensive knowledge base, but so far machine learning algorithms
are limited in the amount of organized knowledge they can extract from these sources.

27.2 AGENT ARCHITECTURES

HYBRID
ARCHITECTURE

REAL-TIME Al

It is natural .8 ask, “Which of the agent architectures in Chapter 2 should an agent use?”
H:n mmminn is, “All of them!” We have seen that reflex responses are needed for situations
in which time is of the essence, whereas knowledge-based deliberation allows the agent to
w_u: ahead. A complete agent must be able to do both, using a hybrid architecture. One
important property of hybrid architectures is that the boundaries between different decision
no_:no.zm:a are not fixed. For example, compilation continually converts declarative in-
formation at the deliberative level into more efficient representations, eventually reaching the
.Rnnx level—see Figure 27.2. (This is the purpose of explanation-based learning, as discussed
in Chapter 19.) Agent architectures such as SOAR (Laird et al., 1987) and H:mo (Mitchell
1990) have exactly this structure. Every time they solve a problem by explicit amzcoaaos,
they save away a generalized version of the solution for use by the reflex component >.
less studied problem is the reversal of this process: when the environment changes, _nm_“:na
reflexes may no longer be appropriate and the agent must return to the deliberative level to
produce new behaviors.

. Agents also need ways to control their own deliberations. They must be able to cease
an_wcn&a:m when action is demanded, and they must be able to use the time available for
deliberation to execute the most profitable computations. For example, a taxi-driving agent
:_m.ﬁ sees an accident ahead must decide in a split second either to brake or to take evasive
action. It should also spend that split second thinking about the most important questions
such as whether the lanes to the left and right are clear and whether there is a large :.:o,w.
close behind, rather than worrying about wear and tear on the tires or where to pick up the
next passenger. These issues are usually studied under the heading of real-time AL As Al
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Figure 27.2  Compilation serves to convert deliberative decision muking into more efti-
cient, reflexive mechanisms.

systems move into more complex domains, all problems will become real-time, because the
agent will never have long enough to solve the decision problem oxmow_v\. . .

Clearly, there is a pressing need for general methods of controlling ao:cmE:o.:. rather
than specific recipes for what to think about in each situation. The first :mo?_ idea ;..8 em-
ploy anytime algorithms (Dean and Boddy, 1988; Horvitz, _.omd. An m:.v;_ao algorithm 1s
an algorithm whose output quality improves graduaily over time, so that it has a reasonable
decision ready whenever it is interrupted. Such algorithms are controlied by a Bmﬂu._mé_ de-
cision procedure that assesses whether further computation is worthwhile. Ammo m@o:o:.u.m.a
for a brief description of metalevel decision making.) Example of an anytime algorithms
include iterative deepening in game-tree search and MCMC in Bayesian networks. .

The second technique for controlling deliberation is decision-theoretic Eo?...gmo:_:m
(Russell and Wefald, 1989, 1991; Horvitz, 1989; Horvitz and wwoomo..moo.@.. This method
applies the theory of information value (Chapter 16) to the selection of _=a_<ma:m_ ow_:?:m-
tions. The value of a computation depends on both its cost (in terms of delaying action) and
its benefits (in terms of improved decision quality). Metareasoning techniques can _.uo used to
design better search algorithms and to guarantee that the algorithms have the E_v;.::o prop-
erty. Metareasoning is expensive, of course, and compilation methods can be applied so that
the overhead is small compared to the costs of the computations being controlled. ZmS_m.<o_
reinforcement learning may provide another way to acquire effective policies for controlling
deliberation: in essence, computations that lead to better decisions are reinforced, while those
that turn out to have no effect are penalized. This approach avoids the myopia problems of
the simple value-of-information calculation. . .

Metareasoning is one specific example of a reflective architecture—that is, an mwo:._-
tecture that enables deliberation about the computational entities and actions occurring within
the architecture itself. A theoretical foundation for reflective architectures can _u.o built by
defining a joint state space composed from the environment state and the owaccgsozm_ state
of the agent itself. Decision-making and learning algorithms can be designed :..ws operate
over this joint state space and thereby serve to implement and improve the agent’s compu-
tational activities. Eventually, we expect task-specific algorithms such as alpha-beta search
and backward chaining to disappear from Al systems, to be replaced by general Ewanm that
direct the agent’s computations toward the efficient generation of high-quality decisions.
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27.3  ARE WE GOING IN THE RIGHT DIRECTION?

PERFECT
RATIONALITY

CALCULATIVE
RATIONALITY

BOUNDED
RATIONALITY

The preceding section listed many advances and many opportunities for further progress. But
where is this all leading? Dreyfus (1992) gives the analogy of trying to get to the moon by
climbing a tree; one can report steady progress, all the way to the top of the tree. In this
section, we consider whether AI’s current path is more like a tree climb or a rocket trip.

In Chapter 1, we said that our goal was to build agents that acr rationally. However, we
also said that

... achieving perfect rationality—always doing the right thing—is not feasible in compli-

cated environments. The computational demands are just too high. For most of the book,

however, we will adopt the working hypothesis that perfect rationality is a good starting

point for analysis.

Now it is time to consider again what exactly the goal of Al is. We want to build agents, but
with what specification in mind? Here are four possibilities:

Perfect rationality. A perfectly rational agent acts at every instant in such a way as to
maximize its expected utility, given the information it has acquired from the environment. We
have seen that the calculations necessary to achieve perfect rationality in most environments
are too time consuming, so perfect rationality is not a realistic goal.

Calculative rationality. This is the notion of rationality that we have used implicitly in de-
signing logical and decision-theoretic agents, and most of theoretical Al research has focused
on this property. A calculatively rational agent eventually returns what would have been the
rational choice at the beginning of its deliberation. This is an interesting property for a system
to exhibit, but in most environments, the right answer at the wrong time is of no value. In
practice, Al system designers are forced to compromise on decision quality to obtain reason-
able overall performance; unfortunately, the theoretical basis of calculative rationality does
not provide a well-founded way to make such compromises.

Bounded rationality. Herbert Simon (1957) rejected the notion of perfect (or even approx-
imately perfect) rationality and replaced it with bounded rationality, a descriptive theory of
decision making by real agents. He wrote,

The capacity of the human mind for formulating and solving complex problems is very
small compared with the size of the problems whose solution is required for objectively
rational behavior in the real world—or even for a reasonable approximation to such ob-
jective rationality.
He suggested that bounded rationality works primarily by satisficing—that is, deliberating
only long enough to come up with an answer that is “good enough.” Simon won the Nobel
Prize in economics for this work and has written about it in depth (Simon, 1982). It appears
to be a useful model of human behaviors in many cases. It is not a formal specification
for intelligent agents, however, because the definition of “good enough” is not given by the

theory. Furthermore, satisficing seems to be just one of a large range of methods used to cope
with bounded resources.
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BOUNDED
OPTIMALITY

ASYMPTOTIC
BOUNDED
OPTIMALITY

Bounded optimality (BO). A bounded optimal agent behaves as well as possible, given its
computational resources. That is, the expected utility of the agent program for a co.::ana
optimal agent is at least as high as the expected utility of any other agent program running on
the same machine.

Of these four possibilities, bounded optimality seems to offer the best hope for a strong
theoretical foundation for AL It has the advantage of being possible to achieve: there is always
at least one best program—something that perfect rationality lacks. Bounded optimal agents
are actually useful in the real world, whereas calculatively rational agents usually are not, and
satisficing agents might or might not be, depending on how ambitious they are. .

The traditional approach in AI has been to start with calculative rationality and Eos
make compromises to meet resource constraints. If the problems imposed by the constraints
are minor, one would expect the final design to be similar to a BO agent design. But as the
resource constraints become more critical—for example, as the environment becomes more
complex—one would expect the two designs to diverge. In the theory of bounded optimality,
these constraints can be handled in a principled fashion.

As yet, little is known about bounded optimality. It is _uo%mc_w to no.zmq:oﬂ cocqana
optimal programs for very simple machines and for somewhat restricted kinds of environ-
ments (Etzioni, 1989; Russell et al., 1993), but as yet we have no idea what BO .EomBBm
are like for large, general-purpose computers in complex environments. If there is to be a
constructive theory of bounded optimality, we have to hope that the design of woczana op-
timal programs does not depend too strongly on the details of the computer being :moa.. It
would make scientific research very difficult if adding a few kilobytes of memory to a giga-
byte machine made a significant difference to the design of the BO program. One way to
make sure this cannot happen is to be slightly more relaxed about the criteria for bounded
optimality. By analogy with the notion of asymptotic complexity (Appendix A), we can de-
fine asymptotic bounded optimality (ABO) as follows (Russell and mccBBN.S_mF 1995).
Suppose a program P is bounded optimal for a machine M in a class of n\=.<_8=_sn=8 E,
where the complexity of environments in E is unbounded. Then program P’ is ABO for M
in E if it can outperform P by running on a machine kM that is k times faster (or larger)
than M. Unless k were enormous, we would be happy with a program that was ABO for
a nontrivial environment on a nontrivial architecture. There would be little point in putting
enormous effort into finding BO rather than ABO programs, because the size and speed of
available machines tends to increase by a constant factor in a fixed amount of time anyway.

We can hazard a guess that BO or ABO programs for powerful computers in complex
environments will not necessarily have a simple, elegant structure. We have already seen that
general-purpose intelligence requires some reflex capability and some ao:.cﬂ.ﬁ?n omva.:QW
a variety of forms of knowledge and decision making; learning and compilation Bworm:.mim
for all of those forms; methods for controlling reasoning; and a large store of ao_sm_z-mvwn_:o
knowledge. A bounded optimal agent must adapt to the environment in which it m.:.am itself,
so that eventually its internal organization will reflect optimizations that are mvno&n to wra
particular environment. This is only to be expected, and it is similar to the way in which
racing cars restricted by engine capacity have evolved into extremely complex designs. We
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suspect that a science of artificial intelligence based on bounded optimality will involve a
good deal of study of the processes that allow an agent program to converge to bounded
optimality and perhaps less concentration on the details of the messy programs that result.

In sum, the concept of bounded optimality is proposed as a formal task for Al research
that is both well defined and feasible. Bounded optimality specifies optimal programs rather
than optimal actions. Actions are, after all, generated by programs, and it is over programs
that designers have control.

27.4 WHATIF AI DOES SUCCEED?

In David Lodge’s Small World (1984), a novel about the academic world of literary criticism,
the protagonist causes consternation by asking a panel of eminent but contradictory literary
theorists the following question: “What if you were right?” None of the theorists seems to
have considered this question before, perhaps because debating unfalsifiable theories is an end
in itself. Similar confusion can be evoked by asking Al researchers, “What if you succeed?”

As Section 26.3 relates, there are ethical issues to consider. Intelligent computers are
more powerful than dumb ones, but will that power be used for good or ill? Those who strive
to develop Al have a responsibility to see that the impact of their work is a positive one. The
scope of the impact will depend on the degree of success of Al. Even modest successes in Al
have already changed the ways in which computer science is taught (Stein, 2002) and software
development is practiced. Al has made possible new applications such as speech recognition
systems, inventory control systems, surveillance systems, robots, and search engines.

We can expect that medium-level successes in AI would affect all Kinds of people in
their daily lives. So far, computerized communication networks, such as cell phones and the
Internet, have had this kind of pervasive effect on society, but Al has not. Al has been at work
behind the scenes—for example, in automatically approving or denying credit card transac-
tions for every purchase made on the Web—but has not been visible to the average consumer.
We can imagine that truly useful personal assistants for the office or the home would have a
large positive impact on people’s lives, although they might cause some economic disloca-
tion in the short term. Automated assistants for driving could prevent accidents, saving tens
of thousands of lives per year. A technological capability at this level might also be applied
to the development of autonomous weapons, which many view as undesirable. Some of the
biggest societal problems we face today—such as the hamessing of genomic information for
treating disease, the efficient management of energy resources, and the verification of treaties
concerning nuclear weapons—are being addressed with the help of Al technologies.

Finally, it seems likely that a large-scale success in Al—the creation of human-level in-
telligence and beyond—would change the lives of a majority of humankind. The very nature
of our work and play would be altered, as would our view of intelligence, consciousness, and
the future destiny of the human race. Al systems at this level of capability could threaten hu-
man autonomy, freedom, and even survival. For these reasons, we cannot divorce Al research
from its ethical consequences (see Section 26.3).
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Which way will the future go? Science fiction authors seem to favor dystopian futures
over utopian ones, probably because they make for more interesting plots. But so far, Al
seems to fit in with other revolutionary technologies (printing, plumbing, air travel, telephony)
whose negative repercussions are outweighed by their positive aspects. .

In conclusion, we see that AI has made great progress in its short history, but the final
sentence of Alan Turing’s (1950) essay on Computing Machinery and Intelligence is still

valid today:

We can see only a short distance ahead,
but we can see that much remains to be done.

MATHEMATICAL
BACKGROUND

A.1 COMPLEXITY ANALYSIS AND O() NOTATION

BENCHMARKING

ANALYSIS OF
ALGORITHMS

Computer scientists are often faced with the task of comparing algorithms to see how fast
they run or how much memory they require. There are two approaches to this task. The first
is benchmarking—running the algorithms on a computer and measuring speed in seconds
and memory consumption in bytes. Ultimately, this is what really matters, but a benchmark
can be unsatisfactory because it is so specific: it measures the performance of a particular
program written in a particular language, running on a particular computer, with a particular
compiler and particular input data. From the single result that the benchmark provides, it
can be difficult to predict how well the algorithm would do on a different compiler, com-
puter, or data set. The second approach relies on a mathematical analysis of algorithms,
independently of the particular implementation and input, as discussed below.

A.1.1 Asymptotic analysis

We will consider algorithm analysis through the following example, a program to compute
the sum of a sequence of numbers:

function SUMMATION(sequence) returns a number
sum «— 0
for i = 1 to LENGTH(sequence) do
sum — sum + sequence[t]
return sum

The first step in the analysis is to abstract over the input, in order to find some parameter or
parameters that characterize the size of the input. In this example, the input can be charac-
terized by the length of the sequence, which we will call n. The second step is to abstract
over the implementation, to find some measure that reflects the running time of the algorithm
but is not tied to a particular compiler or computer. For the SUMMATION program, this could
be just the number of lines of code executed, or it could be more detailed, measuring the
number of additions, assignments, array references, and branches executed by the algorithm.
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