UNIK4950/9950 - Multiagent systems
Lecture 1
Introduction

Jonas Moen
My background

• Scientist FFI, leader swarm group, Research in MultiX (Multi-agent systems, multi-function systems, multi-objective optimization)
• Associate professor UiO/ITS, teacher and supervisor
• Formal academic background
 – PhD in evolutionary computation, UiO/Robin 2013
 – Master in economics, NHH Bergen 2002
 – Master in physics, UiB 1999
What are Multi-Agent Systems (MAS)?

Multiagent systems are systems composed of multiple interacting computing elements, known as agents, [Wooldridge, 2009]

1. Agents are capable of *autonomous* actions satisfying design objectives

2. Agents engage in *social activities* like cooperation, coordination, negotiation, competition, and the like.
What are multiagent systems?

1. A natural metaphor for artificial social systems.

2. An appropriate software paradigm for modelling & building massive open distributed systems.
Research goal of multiagent systems

To connect micro scale behaviour with macro scale (often emergent) properties/effects, and vice versa.
Outline of the course

Part I - Agents
Part II - Game theory
Part III - Swarm intelligence

Weekly lecture, 2 hours theory and 1 hour exercises
To pass course, 2 ‘obliger’ + exam
Books in the course

«Multiagent systems», Michael Wooldridge, 2009

«Swarm Intelligence»
Dorigo et al., 1999
Highlights lecture 1 – Introduction*

• What is a multiagent system?
 – Key concepts
 – In relation to trends in computing
 – When to use and apply, and how to avoid pitfalls

• A brief history of multiagent systems

• Some examples of multiagent system research and application

*Wooldridge, 2009: chapter 1, 9, 10, preface and appendix A.
Trends in computing

5 important and continuing trends [Wooldridge, 2009]

1. Ubiquity
2. Interconnection
3. Intelligence
4. Delegation
5. Human-orientation
Trends in computing

1. Ubiquity

The reduced cost of computation (i.e. Moore’s Law) has made it possible to introduce processing power in almost all devices and places.
Trends in computing

2. Interconnection

Computers are networked into large distributed systems (i.e. the Internet)
Trends in computing

3. Intelligence

The increased complexity of tasks that we are able to automate and computerize in terms of research into algorithm design (i.e. AI)
Trends in computing

4. Delegation

Implies that we give control to computer systems (e.g. safety-critical tasks in aerospace and energy)
Trends in computing

5. Human-orientation

Human-machine interface history; from assembler languages, through procedural abstraction, via abstract data types, to object-oriented programming and, now most recently, agent-based systems.
Major challenges in software development

1. With respect to ubiquity, interconnection and AI, how do we develop techniques that exploit this massive processing power without explicitly telling it what to do? (e.g. \(\sim 10^{10} \) processing units)

Can we make an optimal system that is not hard-coded? Do we need an alternative software paradigm in order to tap into this immense computing power?
Major challenges in software development

2. With respect to delegation and human-machine interaction, how do we build computer systems that can act effectively on our behalf? They must be
 – Independent and autonomous
 – Represent our best interests

In a dynamical world of other agents and humans (on the net, in cyber-physical systems, robots, autonomous vehicles, and in the social sciences and biological domain).
Multiagent systems

A relatively new field in computer science trying to answer and these 5 trends in software development

1. An agent is a computer system capable of independent action on behalf of its user or owner.

2. A multiagent system consist of many such agents interacting with each other (through some network or sensor system)

Agents need skills and abilities to cooperate, coordinate and negotiate with each other on behalf of their users.
Key challenges with multiagent systems

1. The agent design problem (the micro level)
 How do we build agents that are capable of independent, autonomous action in order to successfully carry out tasks that we delegate to them?

2. The social design problem (the macro level)
 How do we build agents that are capable of interacting with other agents in order to successfully carry out the tasks that we delegate to them, especially when the agents do not share common goals or intentions?
Key challenges with multiagent systems

A truly successful multiagent system makes an explicit connection between the micro level and the macro level modelling of the complex system.
Social abilities of multiagent systems

1. How can cooperation emerge in societies of self-interested agents?
2. How can self-interested agents recognize when their desires and beliefs (goals and actions) conflict and avoid resorting to conflict?
3. How can autonomous agents coordinate their activities so as to cooperatively achieve goals?
Social abilities of multiagent systems

4. What sort of common language can agents use to communicate their desires and beliefs?

5. How can we support this kind of cooperative system when agents have different software and hardware platforms?

And most importantly, multiagent systems are based on artificial computational entities, that often are conceptually inspired by social human systems and biologic systems.
Some views of the field

Agents as paradigm for software engineering

Some researchers believe that, in the future, computation can be viewed basically as a process of interaction. Agents seems like a strong candidate for this new paradigm.
Some views of the field

Agents as paradigm for software engineering

1. Self-interested computation
 Multiagent systems focus on agents maximizing desires and beliefs, leading to intentions and actions. Previously, structured nodes and data sets.

2. The grid (e.g. the Internet)
 Multiagent systems focus on cooperative problem solving in dynamic environments. Previously, focus was mainly on middleware development.
Some views of the field

Agents as paradigm for software engineering

3. Ubiquitous computing
 Multiagent systems focus on massive cooperative behaviour. Previously, we had mainframes, personal computers and HTML.

4. The Semantic Web
 A language for the meaning of information on web pages, called the semantic markup. Agents would be able to analyse all the data on the net. In contrast to the limiting web language of HTML.
Some views of the field

Agents as paradigm for software engineering

5. Automatic computing
 Systems that heal themselves and adapt autonomously to changing circumstances.
Some views of the field

Agents as tools for understanding social behaviour

Simulating system dynamics from first-principle or collective phenomena, give insight into the micro/macro scale modelling.

1. Societies: EOS models Palaeolithic culture in France, [Doran and Palmer, 1995]
2. Biology: Ants and bees, chemotaxis and Levy flight
3. Economy: Trading stock robots
4. Cooperation: Games of cooperation and competition
The relation between multiagent systems and

1. Distributed/concurrent systems
 – Agents are autonomous decision-makers at run-time
 – Self-interested agents of different desires and beliefs
The relation between multiagent systems and

2. Artificial intelligence
 – Classical AI is mostly concerned with components of type learning, planning, reasoning, etc
 – Multiagent systems are sometimes wrongly said to focus on the integration of all these AI components
 – Multiagent systems do not need very complex agent AI in order to model system behaviour
 – Classical AI has mostly ignored the social aspect of agency
The relation between multiagent systems and

3. Game theory
 - Multiagent systems are the application side of game theory, often with focus on computational aspects and approximate solutions.
 - Multiagent systems do not require (self-interested) rational agents.
The relation between multiagent systems and

4. The social sciences
 - Multiagent systems take inspiration from real human and biological societies.
 - Societies can be modelled and simulated by multiagents systems.
When is an agent-based solution appropriate?

[Bond and Gasser, 1988; Jennings and Wooldridge, 1998]

1. The environment is open, or at least highly dynamic, uncertain or complex. In these settings autonomous agents might be the only solution.

2. Agents are natural metaphors for
 - Societies, organizations, business, etc.
 - Intelligent interface as in ‘expert assistant’.
When is an agent-based solution appropriate?

3. Distribution of data, control or expertise
 When centralized solutions are difficult (like the synchronization of many autonomous databases).

4. Legacy software
 Wrap legacy software in an agent layer.
Some pitfalls of agent-based development

[Wooldridge, 2009]

1. Agents as ‘silver bullets’
 - You oversell agents
 - You get dogmatic about agents
 - You see agents everywhere
 - You can’t justify why you adopt agents
Some pitfalls of agent-based development

2. Agents as ‘software infrastructure’
 – You focus on implementing optimal infrastructure
 – You decide you want your own agent architecture
 – You build a generic solution to a one-off problem
 – Your agents use too much AI
Some pitfalls of agent-based development

3. Multiagent systems as ‘dynamic distributed systems’
 – Your design does not exploit concurrency
 – You forget you are designing multithreaded software
 – You have too few agents
 – Your agents interact too freely for analysis
A brief history of multiagent systems research

A history of agents

The notion of ‘agent’ is evident in early AI literature, e.g. the Turing test and the term AI coined by John McCarthy at the famous Dartmouth workshop in 1956.
A brief history of multiagent systems research

1940-1980: Symbolic AI
Until the mid 1980s the AI community was mainly occupied with formal logic and deductive reasoning systems known as symbolic AI. STRIPS [Fikes and Nilsson, 1971] is a prominent example of this era.

AI researchers were working in subfields like learning, planning, reasoning and so forth, but not really interested in a ‘holistic’ approach to agency.
A brief history of multiagent systems research

1980s: ‘new AI’
In the mid 80s the ‘new AI’, also called ‘behavioural AI’ and ‘reactive AI’ were introduced in opposition to symbolic AI.
1. Inspiration from biology, spawning new research fields like evolutionary computation, Alife, swam intelligence, etc.
2. Realistic scenarios were adopted in research and development.
3. Hybrid agents combining deliberate reasoning and reactive behaviour in same architecture.
A brief history of multiagent systems research

A history of multiagent systems

Multiagent systems, as a research field of its own, did not gain widespread popularity and attention in the AI community until early 1980s.
A brief history of multiagent systems research

1970s: The actor model of computation, [Hewitt, 1977]

- Actors are reactive but not proactive
- Closely connected to the development of object-oriented languages
- The Contract Net [Smith, 1977] introduced the economic metaphor in multiagent systems
A brief history of multiagent systems research

1980-1990: The ‘distributed AI’ paradigm

• Spawned several workshops, conferences and publications
• The concept of self-interested agents introduced game theory to multiagent systems, [Rosenschein and Genesereth, 1985].
• MACE (MultiAgent Computing Environment) pioneered the acquaintance model, [Gasser et al., 1987]
• ARCHON (Architecture for cooperating heterogenous online systems) as first real industrial application of agent systems. Financed by EU in late 1980s, 14 partners in 9 countries.
A brief history of multiagent systems research

1990->: The Internet

• In 1990s interest in multiagent systems grew very rapidly.
• E-commerce represents a natural and lucrative application domain with the introduction of online auctions, shopping agents, personal web robots and now IoT.
• Standardization became a major issue and by 2000 FIPA emerged as the central standard of multiagent systems.
• Multiagent systems are now mainstream computer science.
A brief history of multiagent systems research

2010->: Autonomous mobile robots
In the beginning of the 2010s autonomous robots started to move out of the academic university laboratories and into real world field trials. This was due to reduced cost and increased availability of appropriate hardware (and SatNav).
A brief history of multiagent systems research

2010->: Autonomous mobile robots

• Autonomus systems take inspiration from the like of multiagent system research, evolutionary computation methods, swarm intelligence, etc.

• Produced massive interest in autonomous cars and in novel applications like swarm systems of drones and other vehicles, applied to transport, energy, agriculture, etc.

• Note that mobile agents are also software programs that can transmit themselves over the net and recommence execution at remote site.
Multiagent system research and applications

Some examples:

1. A software perspective on IoT
2. Modelling social behaviour: Hotelling’s beach
3. What is cooperation? Nowak’s spatial game
4. Modern swam robotics: Locust and Kilobots
Applications

Multiagent system applications can be divided into two groups

1. Distributed systems
 Agents are processing nodes in a distributed multiagent system, with emphasis on ‘multi’.

2. Personal software assistants
 Agents as proactive assistants to users, with emphasis on ‘individual’.
A software perspective on IoT

Image: IoT Tech Expo
A software perspective on IoT

Image: IBM Big Data & Analytics Hub
A software perspective on IoT

Image: IBM Big Data & Analytics Hub
A software perspective on IoT

Order washing powder

Image: IBM Big Data & Analytics Hub
A software perspective on IoT
A software perspective on IoT

Optimize electric consumption

Image: IBM Big Data & Analytics Hub
A software perspective on IoT

Images: Aidon Power Grid Management
SmartGrid.gov, DoE
A software perspective on IoT

Images: Aidon Power Grid Management
SmartGrid.gov, DoE
Modelling social behaviour: Clustering of services
Modelling social behaviour: Hotelling’s beach*

Image: TedEd
Modelling social behaviour: Hotelling’s beach

The Socially Optimal Outcome:
Modelling social behaviour: Hotelling’s beach

The Socially Optimal Outcome:

Is this stable?

Image: TedEd
Modelling social behaviour: Hotelling’s beach
Modelling social behaviour: Hotelling’s beach
Modelling social behaviour: Hotelling’s beach

Pareto Optimal Outcome: Nash-equilibrium
Modelling social behaviour: Hotelling’s beach
Modelling social behaviour: Clustering of services

Socially optimal solution:

Sales: 1/2 Customer: 1/4

Pareto optimal solution:

Sales: 1/2 Customer: 1/2
Modelling social behaviour: Clustering of services

Now, based on Hotelling’s analysis, how would a set of mobile autonomous 4G base stations allocate in order to cover an ad-hoc crowd of people addicted to SoMe?

1. Self-interested robots would cluster in Nash-equilibrium
2. Altruistic robots would spread out to the social optimum

The really big question: is it possible to predict a socially optimal solution using rational self-interested agents?
What is cooperation? Nowak’s spatial game*

The cooperation puzzle:

• How can cooperation be maintained when there is a clear advantage in defecting?
• How can cooperation be established when there is a clear advantage in defecting?

Some researchers, among them Nowak, believe that life itself presuppose cooperation (which is always under the threat of opportunism).

*Nowak et al., ”Evolutionary games and spatial chaos”. Nature 1992
What is cooperation? Nowak’s spatial game

Agents 1 and 2 cooperate on task T

\[\Pi(T) = Utility - Cost \]

Agent 1 and 2 cooperate \[\Pi = U/2 - C/2 \] for each
Agent 1 or 2 defect \[\Pi = U/2 \] for defector
\[\Pi = U/2 - k \cdot C \] for cooperator
Agent 1 and 2 defect \[\Pi = 0 \] for each
What is cooperation? Nowak’s spatial game
What is cooperation? Nowak’s spatial game

NetLogo of NWU Framework for MAS

Blue $= C$ (Cooperator)
Red $= D$ (Defector)
What is cooperation? Nowak’s spatial game

Professor Martin Nowak
Harvard University
Modern swam robotics

Some examples:
• FFI Sparrows
• NPS Locust
• Harvard Kilobots

Image: UiO/FFI
Modern swam robotics: FFI Sparrows

Why UAVs?

Image: Thoresen et al., 2014
Multiple UAVs improve geolocation

Uncertainty 22 m

Image: Thoresen et al., 2014

Average over 7 measurements
Modern swam robotics: NPS Locust

Image: New Scientist
Modern swam robotics: Harvard Kilobots

Image: Harvard
From the book - The vision thing

1. Space-probe fixing an unexpected system failure on its own.

2. A nearby autonomous Air-Traffic-Control system backs up a failed local ATC.

3. Web based agents negotiate a good vacation package on behalf of user.

4. EU puts out thousands of contracts for public tender. How much cost could be saved by using autonomous agents instead?
Applications

Agents for:

1. Workflow and business process management – customer request handled by corporate division/department agents
2. Human-computer interface - proactive expert assistents
3. Electronic commerce – best deal on the net
4. Social simulations – EOS project and policy modelling
5. Industrial applications – ATC and ARCHON
6. Virtual environments – believable agents in games, cinemas, etc
Summary of lecture 1

Multiagent systems are about ‘computers’ working together in:

- Pure software systems
- Cyber-physical systems
- Robotics systems

and the research ranges from applied technology to fundamental science.