

TEK5010/9010 - Multiagent systems 2021 Lecture 5 Swarm robotics 2

Jonas Moen

Highlights lecture 5 – Swarm robotics 2*

- Swarm collective decision-making
 - Terminology and notation
 - The decision-making process
 - Different models (voting, urn, Hegselmann-Krause, etc)
- Swarm case study: Adaptive aggregation, BEECLUST

*Hamann, 2018: chapter 6 and 7

Swarm collective decision-making

Terminology and notation [Hamann, 2018]:

Swarm has to decide over a set of options $O = \{O_1, O_2, ..., O_m\}$ with m > 1 options. Task is to achieve consensus on one option O_j .

- $q(O_j)$ is quality of option
- A robot *i* has a defined option *o_i* at any time
- \mathcal{N}_i defines the neighbourhood of robot *i* without robot *i*
- G_i defines the neighbourhood of robot *i* including robot *i*

Swarm collective decision-making

Decision-making process:

Image: Figure 6.5, Hamann, 2018

Swarm collective decision-making

Decision-making process:

- 1. Exploration phase: robots explore local area in search of information on quality of options.
- 2. Dissemination phase: robots signal its opinion to neighbours. Typically signal is correlated with quality of opinion, e.g. duration and/or intensity.
- 3. Opinion switch: robots follow a decision-making rule to switch their opinion, e.g. voter rules.

Swarm collective decision-making

Decision-making process:

- Robots do not have to follow all 3 phases
- Process need not be synchronized among robots
- Signalling needs to be agreed upon
- How to connect micro-rule with global behaviour?

Swarm collective decision-making

The voter model [Clifford & Sudbury, 1973]:

A robot *i* considers its neighbours' opinions o_j with $j \in \mathcal{N}_i$ and picks a neighbour *j* at random and switches to its opinion.

- Very simple model
- High accuracy
- Slow convergence

Swarm collective decision-making

The majority rule:

A robot *i* considers its neighbourhood group G_i and counts the occurrence w_j of each option in O. The robot them switches its opinion to the most frequent option O_k with $k = \operatorname{argmax} w_j$, that is, the majority within its group.

- Fast convergence
- · Less accurate than the voter model

Swarm collective decision-making

Urn models:

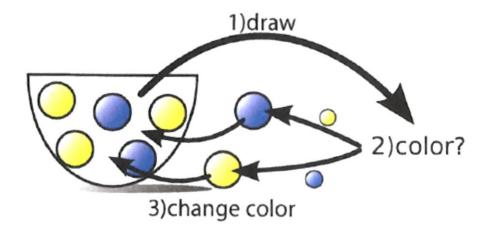


Image: Figure 6.6, Hamann, 2018

Swarm collective decision-making

Urn models:

No spatial information, i.e. a well-mixed density is assumed

- The Ehrenfest model an introduction to urn models (originally diffusion processes in thermodynamics)
- The Eigen model self-organization through positive feedback gives perfect consensus
- The swarm urn model self-organization through positive and negative feedback to avoid perfect consensus

Swarm collective decision-making

Ehrenfest urn model [Ehrenfest & Ehrenfest, 1907]:

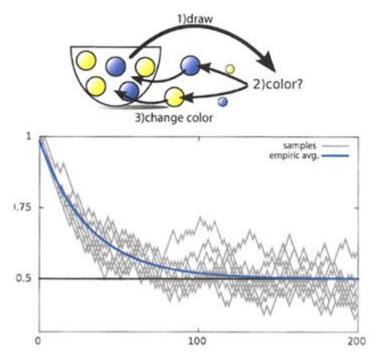


Image: Figure 6.6, Hamann, 2018

Swarm collective decision-making

Ehrenfest urn model [Ehrenfest & Ehrenfest, 1907]:

$$B(t+1) = B(t) + \Delta B(B(t))$$

where B(t) is number of balls of colour *C* at time *t* $\Delta B(B(t))$ is expected change in balls of colour *C*

 \Rightarrow An exponential convergence is expected

Swarm collective decision-making

Ehrenfest urn model [Ehrenfest & Ehrenfest, 1907]:

Assume 64 balls in urn, 16 Blue and 48 Red:

$$P_{Blue} = \frac{16}{64} = 0.25$$
 and $P_{Red} = \frac{48}{64} = 0.75$

$$\implies \Delta B\left(\frac{16}{64}\right) = (-1)P_{Blue} + (+1)P_{Red} = 0.5$$

Swarm collective decision-making

Ehrenfest urn model [Ehrenfest & Ehrenfest, 1907]:

$$\Delta B(B(t)) = -2\frac{B}{N} + 1$$

where N is total number of balls

The recurrence $B(t + 1) = B(t) + \Delta B(B(t))$ can be solved by a generating function assuming B(t = 0) is given.

Swarm collective decision-making

Eigen urn model [Eigen & Winkler, 1993]:

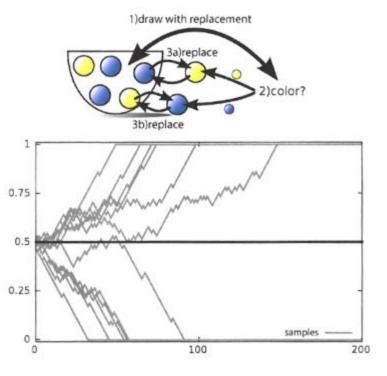


Image: Figure 6.7, Hamann, 2018

Swarm collective decision-making

Eigen urn model [Eigen & Winkler, 1993]:

$$\Delta B(B(t)) = \begin{cases} 2\frac{B}{N} - 1, \text{ for } B \in [1, N - 1] \\ 0, & else \end{cases}$$

The Eigen model is an 'inverted' Ehrenfest model. Special care must be taken for the extreme cases of B=0 and B=N.

Swarm collective decision-making

Swarm urn model [Hamann, 2013]:

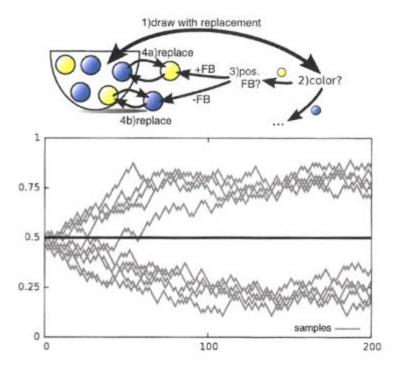


Image: Figure 6.10, Hamann, 2018

Swarm collective decision-making

Swarm urn model [Hamann, 2013]:

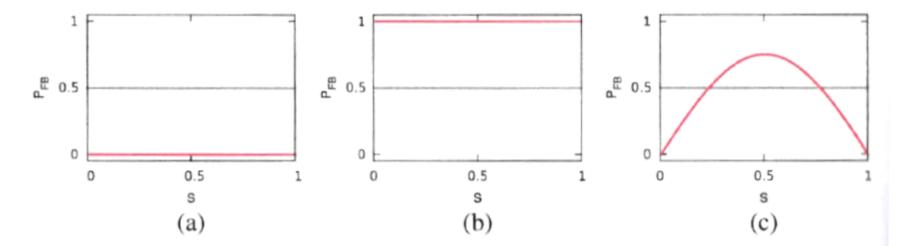


Image: Figure 6.9, Hamann, 2018

Swarm collective decision-making

Swarm urn model [Hamann, 2013]:

$$\Delta s(s) = 4\left(P_{FB}(s) - \frac{1}{2}\right)\left(s - \frac{1}{2}\right)$$

Where Ehrenfest
$$P_{FB}(s) = 0$$
 $\Rightarrow s^* = 0.5$
Eigen $P_{FB}(s) = 1$ $\Rightarrow s^* = 0 \lor 1$
Swarm $P_{FB}(s) = 0.75 \sin \pi s$ $\Rightarrow s^* = 0.23 \lor 0.77$

Swarm collective decision-making

Hegselmann and Krause [Hegselmann-Krause, 2002]:

Clustering of opinions by having robots move to the centre of gravity of their neighbourhood:

$$x_i = \frac{1}{|\mathcal{G}_i|} \sum_{j \in \mathcal{G}_i} x_j + \varepsilon_i$$

where $G_i = \{1 \le j \le N : ||x_i - x_j|| \le 1\}$ and ε_i is a noise term

Swarm collective decision-making

Hegselmann and Krause [Hegselmann-Krause, 2002]:

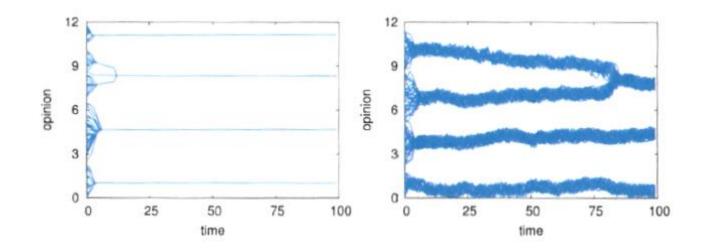


Image: Figure 6.12, Hamann, 2018

Swarm collective decision-making

Various other models:

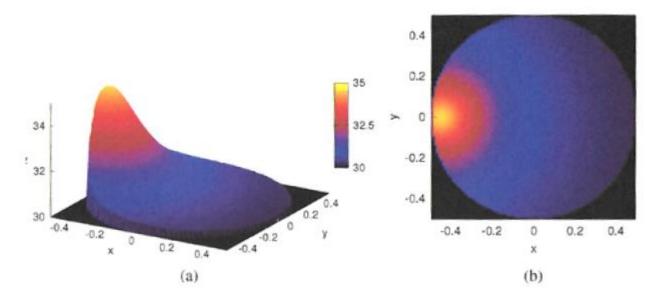
- Kuramoto, inspired by coupled oscillators in physics
- Axelrod, inspired by dissemination of culture in sociology
- Ising, inspired by solid state physics
- Fiber bundle, inspired by texture tensile tests
- Bass diffusion, inspired by how innovative products spread
- Contrarians, inspired by sociology to make a swarm heterogeneous

Use case: Swarm adaptive aggregation

Make a control system that aggregates the robot swarm at a certain spot determined by sensor input but stays flexible to changes in the dynamic environment.

Could be warmest, brightest or most radioactive spot in search area.

Use case: Swarm adaptive aggregation



Possibly multimodal, noisy and/or systematic plateaus

Image: Figure 7.1, Hamann, 2018

Use case: Swarm adaptive aggregation

Alternative modelling approaches:

- 1. Ad-hoc random search, baseline benchmark
 - Must keep track of position to be effective
- 2. Gradient ascent and evolutionary optimization
 - Communication improve performance
 - Problems with multimodality and plateaus
- 3. Positive feedback, inspiration by natural swarm systems
 - The BEECLUST algorithm [Schmickl & Hamann, 2011] inspired by honeybees (bark beetles, ants and cockroaches)

BEECLUST algorithm

Video: Youtube

BEECLUST algorithm

Behavioural model:

- Step 1: move straightforward
- Step 2: obstacle or robots around?
 - a) In case of an obstacle: turn away, return to step 1
 - b) In case of a robot: stop, measure sensor, wait for some time dependent on sensor reading, u-turn, and return to step 1

Positive feedback since robots are more inclined to stop in high density areas correlated with high sensor readings.

BEECLUST algorithm

Modelling objectives:

- 1. Capture the ineffective single robot vs the effective robot swarm
- 2. Explicitly model parameters of the robot control algorithm
- 3. Spatial modelling
- 4. Validate model against experiment

BEECLUST algorithm

Microscopic model: The Langevin equation $\dot{R}(t) = \alpha \nabla P(R(t)) + BF(t)$ Non-stochastic Stochastic drift term random term

where $\mathbf{R}(t)$ is position of an agent in 2D space $\nabla P(\mathbf{R}(t))$ is the gradient of temperature field P $\alpha \in [0,1]$ is intensity of drift $\mathbf{F}(t)$ is random perturbation and B is a scalar

BEECLUST algorithm

Microscopic model: $\alpha = \{0.01, 0.025, 0.05, 0.1\}$ and Brownian *F*

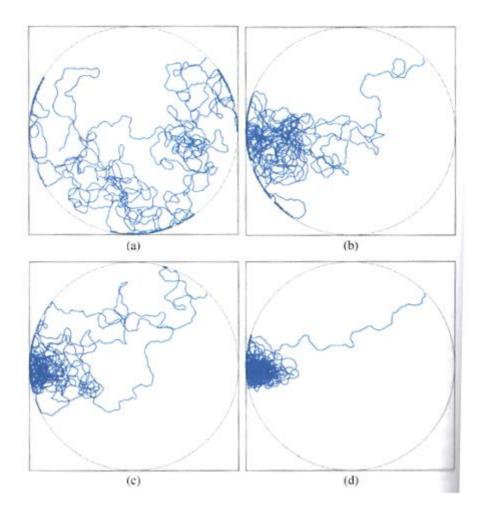


Image: Figure 7.3, Hamann, 2018

BEECLUST algorithm

Microscopic model: The Langevin equation $\dot{R}(t) = \alpha \nabla P(R(t)) + BF(t) = BF(t)$ $\int Only stochastic random term$

where $\alpha = 0$ i.e. no drift and pure random walk F(t) is random perturbation and *B* is a scalar

BEECLUST algorithm

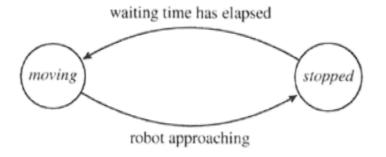
Microscopic model: The waiting time

$$w(\mathbf{R}) = \frac{w_{max}P^2(\mathbf{R})}{P^2(\mathbf{R})+c}$$

where $P(\mathbf{R})$ is temperature at position \mathbf{R} w_{max} is maximal waiting time c is a scaling constant

BEECLUST algorithm

Microscopic model: Finite state machine



Where

moving is: stopped is:

$$\dot{\boldsymbol{R}}_m(t) = B\boldsymbol{F}(t)$$

 $\dot{\boldsymbol{R}}_s(t) = 0$

Image: Figure 7.5, Hamann, 2018

BEECLUST algorithm

Microscopic model: Finite state machine

- Agents modelled by simple Langevin equations of random walk.
- Not a completely analytical model since we have to adminster the state transitions, positions, waiting time, check distances to neighbour robots, etc.

BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

moving:
$$\dot{\mathbf{R}}_m(t) = B\mathbf{F}(t) \Longrightarrow \frac{\partial \rho_m(\mathbf{r},t)}{\partial t} = B^2 \nabla^2 \rho_m(\mathbf{r},t)$$

stopped:
$$\dot{R}_{s}(t) = 0 \implies \frac{\partial \rho_{s}(r,t)}{\partial t} = 0$$

Where $\rho(\mathbf{r}, t)$ is density of moving or stopped agents

BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

We need a way of connecting the state transitions since the Fokker-Planck equation is continous.

We define a stopping rate φ where $\rho_m(\mathbf{r}, t)\varphi$ gives us the correct density flow into stopped robots (this is a rather strong assumption).

BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

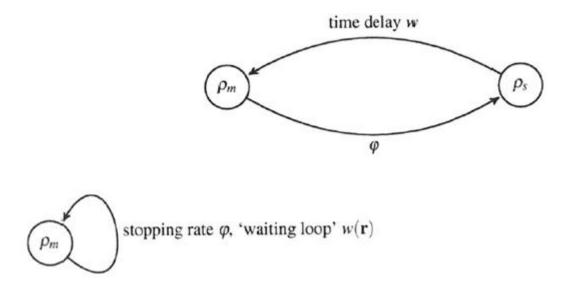
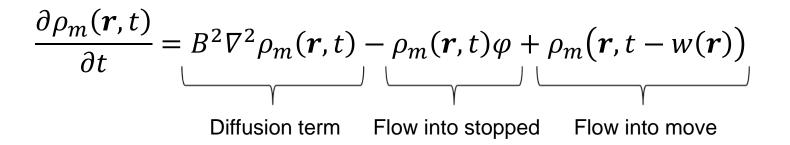


Image: Figure 7.6 and 7.7, Hamann, 2018

BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

moving:



BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

Stopped (not necessary to model explicit):

$$\frac{\partial \rho_{s}(\boldsymbol{r},t)}{\partial t} = \rho_{m}(\boldsymbol{r},t)\varphi - \rho_{m}(\boldsymbol{r},t-\boldsymbol{w}(\boldsymbol{r}))$$
Flow into stopped Flow into move

BEECLUST algorithm

Experimental validation: [Schmickl et al., 2009; Kernbach et al., 2009]

15 Jasmine robots measuring ambient light on a 150×100 cm² rectangular area.

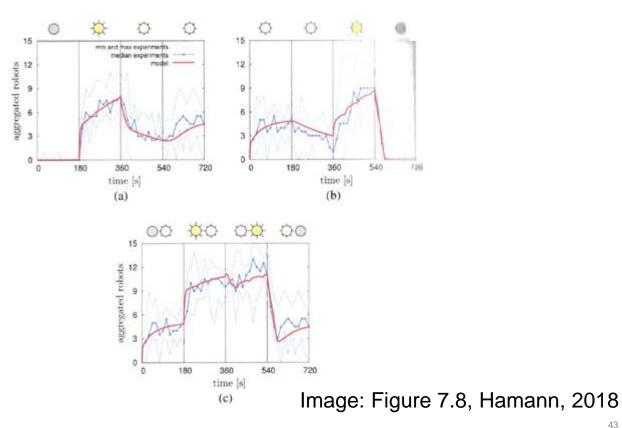
BEECLUST algorithm

Experimental validation: [Schmickl et al., 2009; Kernbach et al., 2009]

Two lamps at both ends are operated in mode ={off, dimmed or bright} and swarm was allowed to converge to steady-state after uniform initial distribution of moving robots. *B* was fitted to data. UiO **Contemport of Technology Systems** University of Oslo

BEECLUST algorithm

Experimental validation:



BEECLUST algorithm

Video: Youtube

Summary lecture 5 – Swarm robotics 2*

- Swarm collective decision-making
 - Terminology and notation
 - The decision-making process
 - Different models (voting, urn, Hegselmann-Kraus, etc)
- Swarm case study: Adaptive aggregation, BEECLUST

*Hamann, 2018: chapter 6 and 7