
TEK5010/9010 - Multiagent systems 2021

Lecture 6

Task allocation and self-assembly in swarms

Jonas Moen



Highlights lecture 6 -

Task allocation and self-assembly in swarms*

• Task allocation and division of labour

– Models using response thresholds

• Nest building and self-assembly

– Discrete stigmergy

26.09.2021 3

*Bonabeau et al., 1999: chapter 3 and 6



26.09.2021 4

Task allocation and division of labour

Introduction:

Many species of social insects have divison of labour, 

i.e. specialization of workers in order to perform coordinated 

tasks efficiently.

The behavioural repertoire of workers can be stretched back 

and forth in response to perturbations.
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Task allocation and division of labour

Basic idea:

A model based on response thresholds of individual agents 

that connects individual-level placticity with colony-level 

resilience.
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Task allocation and division of labour

Response thresholds:

Response thresholds refer to the likelihood of individuals 

reacting to task-associated stimuli. If stimuli is above a 

threshold the agent will most likely perform that task:

1. Low threshold individuals perform task at a lower level of 

stimuli than,

2. Higher threshold individuals.
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Task allocation and division of labour

Extentions of model:

Extenstions of this threshold model using a simple form of 

learning. Within individual workers, performing a task induces 

a decrease in corresponding threshold, and not performing 

task induce an increase of the same threshold. 

This double reinforcement leads to specialization of workers 

from a group of intially homogenous workers.
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Task allocation and division of labour

Comparison of models:

The fixed response threshold model for task-allocation is 

similar to market-based models, i.e. auctions and bargaining.

Models with learning are more robust to perturbations 

compared to fixed threshold systems.
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Division of labour in social insects

Definition [Oster & Wilson, 1978; Robinson; 1994]:

Different activities performed simultaneously by specialized 

individuals.

1. Believed to be more efficient than sequential tasks 

performed by unspecialized workers [Jeanne, 1986; 

Oster & Wilson, 1978].

2. Parallelism avoids task-switching.

3. Specialization is efficient due to individuals «know» the 

task at hand.
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Division of labour in social insects

All social insects exhibit reproductive division of labour. 

Other forms of division of labour may take 3, possibly 

coexisting, basic forms.
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Division of labour in social insects

1. Temporal polyethism

Age cast, individuals of same age do identical sets of 

tasks.

2. Worker polymorphism

Workers belong to different morphological or physical 

castes that do different tasks.

3. Individual variability 

Behavioural cast (among age and morphological cast) 

describes groups of individuals that perform the same set 

of tasks within a given periode.
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Division of labour in social insects

Division of labour is rarely rigid but rather characterized by its 

plasticity in relation to internal and external perturbations 

[Robinson, 1992].
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Division of labour in social insects

Wilson [Wilson, 1984] 

experimented with Pheidole

ants. When ratios of minor 

ants became small, major 

ants (e.g. soldiers) engaged 

in tasks usually performed 

by minors.

Image: Figure 3.1, Bonabeau et al., 1999
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Division of labour in social insects

Response thresholds:

Example of larva feeding. Stimuli above threshold makes 

individuals engage in task. Removal of low threshold 

individuals highten the stimulus, e.g. increase in pheromones 

stimulating larva feeding, until it reaches the high threshold 

individuals. Feeding the larvae reduces the larval demand.

This process can be modelled by a simple response threshold 

model [Bonabeau et al., 1996]. 
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Response thresholds

Response threshold I:

𝑇𝜃 𝑠 =
𝑆𝑛

𝑆𝑛+𝜃𝑛

where 𝑠 is stimulus

𝑇 is probability of doing task 𝑇 in response to 𝑠

𝜃 is threshold

𝑛 is steepness of threshold (𝑛 > 1)
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Response thresholds

Response threshold I:

If 𝑠 ≪ 𝜃 the probability of 

engaging in task 𝑇 is 

close to zero.

If 𝑠 ≫ 𝜃 the probability of 

engaging in task 𝑇 is 

close to 1.
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Response thresholds

Response threshold I:

If 𝑠 = 𝜃 then 𝑇 = 0.5.

Often 𝑛 = 2 which in many 

cases give analytical 

solutions.
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Response thresholds

Response threshold II:

𝑇𝜃 𝑠 = 1 − 𝑒− Τ𝑠 𝜃

where 𝑠 is stimulus

𝑇 is probability of doing task 𝑇 in response to 𝑠

𝜃 is threshold
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Response thresholds

Response threshold II:

This model II encompass a 

exponential response 

function, which is essential 

in modelling real biological

systems.
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Response thresholds

Response threshold II:

The probability of assigning 

a task 𝑇 after 𝑁 encounters:

𝑃 𝑁 = 1 − 1 − 𝜚 𝑁

where 𝜚 is probability of an 

individual doing task 𝑇 at 

each encounter. 0
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Response thresholds

Response threshold II:

𝑃 𝑁 = 1 − 1 − 𝜚 𝑁

= 1 − 𝑒𝑁𝑙𝑛 1−𝜚

= 1 − 𝑒− Τ𝑠 𝜃

If 𝑠 = 𝑁 and θ = − ൗ1 𝑙𝑛 1−𝜚
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Response thresholds

Response threshold II:

Experiments verify the 

exponential threshold 

function in honey bees, ant 

cemeteries, etc.

[Chretien, 1996; Page & 

Robinson, 1991; Robinson &

Page, 1988; Seeley, 1992]
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Response thresholds

Comparison:

The two functions are quite 

similar.

Model II is hard to 

manipulate analytically.

Thus, model I is used in the 

text with 𝑛 = 2. 
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Response thresholds with one task

The transition probabilities (discrete-time dynamics):

𝑃 𝑋𝑖 = 0 → 𝑋𝑖 = 1 = 𝑇𝜃𝑖 𝑠

𝑃 𝑋𝑖 = 1 → 𝑋𝑖 = 0 = 𝑝

where 𝑖 is worker type 

𝑋𝑖 = 0 means that agent of type 𝑖 is inactive in task 𝑇

𝑋𝑖 = 1 means that agent of type 𝑖 is active in task 𝑇

𝑝 is probability of an agent of type 𝑖 gives up task 𝑇

1/𝑝 is average time spent on task 𝑇, independent of 𝑠
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Response thresholds with one task

Stimulus of task (discrete-time dynamics)

𝑠 𝑡 + 1 = 𝑠 𝑡 + 𝛿 − 𝛼
𝑁𝑎𝑐𝑡

𝑁

where s is stimulus of task 𝑇 at time 𝑡

𝛿 is the increase in stimulus intensity per unit time

𝛼 is a scale factor measuring the efficiency of task

performance

𝑁𝑎𝑐𝑡 is number of active individuals
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Response thresholds with one task

Image: Figure 3.9, Bonabeau et al., 1999

Good fit for Wilson when 𝜃1 = 8, 𝜃2 = 1, α = 3, 𝛿 = 1 and p = 0.2
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Response thresholds with one task

Transition dynamics (continuous-time):

𝛿𝑡𝑥𝑖 = 𝑇𝜃𝑖 𝑠 1 − 𝑥𝑖 − 𝑝𝑥𝑖

where 𝑛𝑖 is number of workers of type 𝑖, i.e. 𝑁 = σ𝑛𝑖
𝑁𝑖 is number of workes of type 𝑖 engaged in task 𝑇

𝑥𝑖 =
𝑁𝑖

𝑛𝑖
is fraction of workers type 𝑖 doing task 𝑇

𝑓 =
𝑛𝑖

𝑁
is fraction of workers type 𝑖 in colony

Inactive workers

recruited

Retired

workers

Change in

active workers
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Response thresholds with one task

Stimulus dynamics (continuous-time):

𝛿𝑡𝑠 = 𝛿 − 𝛼
𝑁1+𝑁2

𝑁
= 𝛿 − 𝛼𝑓𝑥1 − 𝛼 1 − 𝑓 𝑥2

since 𝑁1 +𝑁2 /𝑁 = 𝑓𝑥1 + 1 − 𝑓 𝑥2.

Using 𝑧 = 𝜃1
2/𝜃2

2 it can be shown analytically that the solution 

to this set of differential equations is given by:
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Response thresholds with one task

Continuous-time model of one task allocation:

𝑥1
𝑠 =

𝜒+ 𝜒2+4𝑓 𝑝+1 𝑧−1 𝛿/𝛼
1/2

4𝑓 𝑝+1 𝑧−1

where 𝜒 = 𝑧 − 1 𝑓 + 𝑝 + 1 𝛿/𝛼 − 𝑧

𝑥1
𝑠 is the fraction of majors (𝜃1 > 𝜃2) involved in task T

per time unit a function of 𝑓 with 𝛿/𝛼, 𝑝 and 𝑧 as

parameters.
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Response thresholds for several tasks

Transition dynamics of several tasks (continuous-time):

𝛿𝑡𝑥𝑖𝑗 =
𝑠𝑗
2

𝑠𝑗
2+𝜃𝑖𝑗

2 1 − σ𝑘=1
𝑚 𝑥𝑖𝑘 − 𝑝𝑥𝑖𝑗

where 𝑗 is one out of 𝑚 possible tasks

𝑛𝑖 is number of workers of type 𝑖, i.e. 𝑁 = σ𝑛𝑖
𝑁𝑖𝑗 is number of workes of type 𝑖 engaged in task 𝑇𝑗

𝑥𝑖𝑗 =
𝑁𝑖𝑗

𝑛𝑖
is fraction of workers type 𝑖 doing task 𝑇𝑗
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Response thresholds for several tasks

Stimulus dynamics of two tasks (continuous-time):

𝛿𝑡𝑠𝑗 = 𝛿 − 𝛼𝑓𝑥1𝑗 − 𝛼 1 − 𝑓 𝑥2𝑗

Numerical integration is necessary to find stationary values of 

𝑥𝑖𝑗 as a function of the fraction 𝑓 of type-1 workers, e.g. figure 

3.15 and 3.16 in [Bonabeu et al., 1999].
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Response thresholds for several tasks

Image: Figure 3.15, Bonabeau et al., 1999

Good fit for Wilson when 𝜃11 = 8, 𝜃12 = 5, 𝜃21 = 1, 𝜃22 = 1, α = 3, 𝛿 = 1 and p = 0.2
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Response thresholds for several tasks

Image: Figure 3.16, Bonabeau et al., 1999

Good fit for Wilson when 𝜃11 = 8, 𝜃12 = 1, 𝜃21 = 1, 𝜃22 = 8, α = 3, 𝛿 = 1 and p = 0.2
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Response thresholds for specialization

The fixed response threshold model cannot:

1. Account for genesis of task allocation, must assume 

preassigned castes.

2. Account for strong specialization within physical or 

temporal castes.

3. Valid only for as long as threshold are constants.

4. Not consistent with experiments on honey bees [Calderon 

& Page, 1996; Robinson et al., 1994] which indicate that 

learning is important in task allocation.
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Response thresholds for specialization

Reinforcement of response threshold:

𝜃𝑖𝑗 ← 𝜃𝑖𝑗 − 𝑥𝑖𝑗𝜉∆𝑡 + 1 − 𝑥𝑖𝑗 𝜑∆𝑡

where ∆𝑡 is time interval of evaluation

𝜉 (ksi) is constant decreasing 𝜃𝑖𝑗 if task 𝑗 is performed

𝜑 is constant increasing 𝜃𝑖𝑗 if task 𝑗 is not performed

𝑥𝑖𝑗 is fraction of time spent on performing task 𝑗

Performing

task 𝑗

Not performing

task 𝑗
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Response thresholds for specialization

Reinforcement of response threshold:

𝛿𝑡𝜃𝑖𝑗 = 1 − 𝑥𝑖𝑗 𝜑 − 𝑥𝑖𝑗𝜉 Θ 𝜃𝑖𝑗 − 𝜃𝑚𝑖𝑛 Θ 𝜃𝑚𝑎𝑥 − 𝜃𝑖𝑗

where Θ is a step function for maintaining 𝜃 within bounds
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Response thresholds for specialization

Transition dynamics of specialization (continuous-time):

𝛿𝑡𝑥𝑖𝑗 =
𝑠𝑗
2

𝑠𝑗
2+𝜃𝑖𝑗

2 1 − σ𝑘=1
𝑚 𝑥𝑖𝑘 − 𝑝𝑥𝑖𝑗 + 𝜓 𝑖, 𝑗, 𝑡

where 𝜓 𝑖, 𝑗, 𝑡 is a 𝑁 0, 𝜎 stochastic process simulating that

individuals are in different environments.
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Response thresholds for specialization

Stimulus dynamics for specialization (continuous-time):

𝛿𝑡𝑠𝑗 = 𝛿 −
𝛼𝑗

𝑁
σ𝑖=1
𝑁 𝑥𝑖𝑗

The dynamics described here can lead to specialization out of 

a homogenous population.
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Connection with «bidding» algorithms

«A high bid is similar to a low threshold.» 

[Morley, 1996; Morley & Ekberg, 1998] describe examples 

exposing this connection.
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Nest building and 

self-assembly

Hive of paper wasp* Termite hive**

Image: *en.wikipedia.org and **inhabitat.com
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Nest building and self-assembly

Social insect’s nest architecture can be complex and intricate 

structures. Stigmergy is an important mechanism in nest 

construction in social insects. Stigmergy is the coordination of 

activities through the environment.
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Nest building and self-assembly

Stigmergy

1. Qualitative or continuous

The different stimuli that trigger behaviours are 

quantitatively different, e.g. emergence of pilars in termite 

hives are regulated by pheromone concentration.

2. Quantitative or discrete

Stimuli can be classified into different classes that differ 

quantitatively, e.g. building behaviours of paper wasps 

depend on elementary building blocks and their 

configuration.
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Nest building in social insects

Nest building demonstrate the greatest difference between 

individual and collective levels.

How can insects in a colony coordinate their behaviours in 

order to build these highly complex architectures?
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Nest building in social insects

There is no evidence that the behaviour of an individual in a 

social species is more sophisticated than that of an individual 

of a solitary species.

The anthropomorphic model assumes that individual insects 

possesses a representation of the global structure to be 

produced and make decisions on the basis of that 

representation. Nest complexity would then result from the 

complexity of the insects individual behaviour.
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Swarm model assumes that social insect colonies are 

decentralized systems composed of cooperative, autonomous 

units that are distributed in the environment, that exhibits 

simple probabilistic stimulus-response behaviour and have 

access to local information only [Deneubourg and Goss, 1989; 

Bonabeau et al., 1997].

Sensory system that singnals attractive or repulsive 

behaviours that varies in intensity and according to 

environmental context.

Nest building in social insects
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Basic model:

1. The stimuli that initially trigger building behaviour may be 

quite simple and limited in number.

2. But as construction proceeds, these stimuli become more 

complex and numerous, inducing new types of behaviours.

3. A morphogenetic process follows where previous 

construction sets the stage for new building actions.

4. The larger the nest, the greater the variety of signals and 

cues it can encompass.

Nest building in social insects
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Nest building in social insects

Discrete stigmergy:

Image: Figure 6.1, Bonabeau et al., 1999
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Nest building in social insects

Discrete stigmergy:

Stimuli are qualitatively different; stimulus of type-1 triggers an 

action A, which again transforms the type-1 stimulus into a 

type-2 stimulus that triggers an action B.

1. No positive feedback effect can amplify a stimulus to 

transform into a more intense version of the same stimulus

2. No such thing, in principle, as the intesity of a stimulus.

3. Continuous and discrete stigmergy are likely to coexist.

4. Parallelism must not destroy coordination.
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Self-assembly

Discrete stigmergy model:

Agents move in a 3D grid, drop elementary building blocks 

depending on the configuration of blocks in their 

neighbourhood.

The fitness of the construction is then reviewed and used for 

exploring the space of possible architectures.
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Self-assembly

Discrete stigmergy pseudocode [Bonabeau et al., 2006]

Construct lookup table of rules and initialize all agents

for t=1 to tmax do //loop over all iterations

for k=1 to m do //loop over all agents

Sense local configuration

if (local configuration is in lookup table)

Deposit brick specified by lookup table

Move randomly to unselected neighbour site

end

end
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Self-assembly

Image: Figure 6.7, Bonabeau et al., 1999
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Self-assembly

Exploring the space of architecture:

The goal is to evolve microrules that produce interesting 

structures. A Genetic Algorithm (GA) [Forrest, 1993; Goldberg, 

1989] is applied where microrules are genes and fitness is 

based on the following observations [Bonabeau et al., 1998]:
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Self-assembly

Exploring the space of architecture:

1. Coherent architectures are the result of many microrules.

2. Building compactly requires collections of complementary 

correlated microrules.

3. Complex architectures are characterized by large patterns 

that repeat themselves.
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Self-assembly

Image: Figure 6.13, Bonabeau et al., 1999
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