Exercises from lecture 11 (Auction) TEK5010 Multiagent systems 2021

Question 1

The goods $Z=\{a, b, c\}$ are to be auctioned and the bidders $A g=\{1,2,3\}$ are interested in bidding in this auction. This makes it a combinatorial auction.

The bidders are making XOR bids representing their valuation function:

$$
\begin{aligned}
& \beta_{1}=(\{a\}, 3) \operatorname{XOR}(\{c\}, 1) \operatorname{XOR}(\{a, b\}, 5) \operatorname{XOR}(\{a, b, c\}, 7) \\
& \beta_{2}=(\{c\}, 5) \operatorname{XOR}(\{a, b\}, 6) \operatorname{XOR}(\{a, b, c\}, 14) \\
& \beta_{3}=(\{b\}, 3) \operatorname{XOR}(\{c\}, 4) \operatorname{XOR}(\{a, b\}, 11) \operatorname{XOR}(\{b, c\}, 15)
\end{aligned}
$$

a) What is the valuation function for the bidders in terms of the following bundles:

```
\(v(\{a\}), v(\{b\}), v(\{c\})\)
\(v(\{a, b\}), v(\{a, c\}), v(\{b, c\})\)
\(v(\{a, b, c\})\)
```

b) Determine the winner in this auction assuming the auctioneer is maximizing social welfare. (Hint, since there is a limited number of possible outcomes you could enumerate and evaluate all bundles in a comparative analysis.)
c) What is the price each agent must pay if we use the VCG mechanism instead?

