UiO : Department of Technology Systems
University of Oslo

Lecture 6.3
 Optimizing over poses

Trym Vegard Haavardsholm

Nonlinear state estimation

We have seen how we can find the MAP estimate of our unknown states given measurements

$$
X^{\text {MAP }}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

by representing it as a nonlinear least squares problem

Choose a suitable inital estimate X^{0}

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|h_{i}\left(X_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

The indirect tracking method

Minimize geometric error over the camera pose

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Rotations and poses are Lie groups

Rotations in 3D:

$$
S O(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R R}^{T}=\mathbf{1}, \operatorname{det} \mathbf{R}=1\right\}
$$

Poses in 3D:

$$
S E(3)=\left\{\left.\mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \mathbf{R}=S O(3), \mathbf{t} \in \mathbb{R}^{3}\right\}
$$

Rotations and poses are Lie groups

Rotations in 3D:

$$
S O(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R R}^{T}=\mathbf{1}, \operatorname{det} \mathbf{R}=1\right\}
$$

Rotations and poses are not vector spaces!
(They lie on manifolds)

Poses in 3D:

$$
S E(3)=\left\{\left.\mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \mathbf{R}=S O(3), \mathbf{t} \in \mathbb{R}^{3}\right\}
$$

Nonlinear state estimation

We have seen how we can find the MAP estimate of our unknown states give measurements

$$
X^{M A P}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

Rotations and poses are not vector spaces!
(They lie on manifolds)
How do we optimize?
by representing it as a nonlinear least squares problem

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|h_{i}\left(X_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

Choose a suitable inital estimate X^{0}

The corresponding Lie algebra

Rotations in 3D:

$$
\begin{aligned}
& \mathfrak{s o}(3)=\left\{\boldsymbol{\Omega}=\boldsymbol{\omega}^{\wedge} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\omega} \in \mathbb{R}^{3}\right\} \\
& \boldsymbol{\omega}^{\wedge}=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]^{\wedge}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

The corresponding Lie algebra

Rotations in 3D:

$$
\begin{aligned}
& \mathfrak{s o}(3)=\left\{\boldsymbol{\Omega}=\boldsymbol{\omega}^{\wedge} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\omega} \in \mathbb{R}^{3}\right\} \\
& \boldsymbol{\omega}^{\wedge}=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]^{\wedge}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

Remember the axis-angle representation:

$$
\mathbf{R}_{a b}=\cos \phi \mathbf{I}+(1-\cos \phi) \mathbf{\mathbf { v } ^ { T }}+\sin \phi \mathbf{v}^{\wedge}
$$

The corresponding Lie algebra

Rotations in 3D:

$$
\begin{aligned}
& \mathfrak{s o}(3)=\left\{\boldsymbol{\Omega}=\boldsymbol{\omega}^{\wedge} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\omega} \in \mathbb{R}^{3}\right\} \\
& \boldsymbol{\omega}^{\wedge}=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]^{\wedge}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

Remember the axis-angle representation:

$$
\mathbf{R}_{a b}=\cos \phi \mathbf{I}+(1-\cos \phi) \mathbf{v} \mathbf{v}^{T}+\sin \phi \mathbf{v}^{\wedge}
$$

$$
\begin{aligned}
& \text { When } \phi \text { is small: } \\
& \cos (\phi) \approx 1 \\
& \sin (\phi) \approx \phi
\end{aligned}
$$

The corresponding Lie algebra

Rotations in 3D:

$$
\begin{aligned}
& \mathfrak{s o}(3)=\left\{\boldsymbol{\Omega}=\boldsymbol{\omega}^{\wedge} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\omega} \in \mathbb{R}^{3}\right\} \\
& \boldsymbol{\omega}^{\wedge}=\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]^{\wedge}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

Remember the axis-angle representation:

$$
\begin{aligned}
\mathbf{R}_{a b} & =\cos \phi \mathbf{I}+(1-\cos \phi) \mathbf{v}^{T}+\sin \phi \mathbf{v}^{\wedge} \\
& \approx \mathbf{I}+\phi \mathbf{v}^{\wedge}=\mathbf{I}+\boldsymbol{\omega}^{\wedge}
\end{aligned}
$$

$$
\begin{aligned}
& \text { When } \phi \text { is small: } \\
& \cos (\phi) \approx 1 \\
& \sin (\phi) \approx \phi
\end{aligned}
$$

The corresponding Lie algebra

Rotations in 3D:

$$
\begin{aligned}
& \mathfrak{s o}(3)=\left\{\boldsymbol{\Omega}=\boldsymbol{\omega}^{\wedge} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\omega} \in \mathbb{R}^{3}\right\} \\
& \boldsymbol{\omega}^{\wedge}=\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]^{\wedge}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

Poses in 3D:

$$
\begin{aligned}
& \mathfrak{s e}(3)=\left\{\boldsymbol{\Xi}=\boldsymbol{\xi}^{\wedge} \in \mathbb{R}^{4 \times 4} \mid \boldsymbol{\xi} \in \mathbb{R}^{6}\right\} \\
& \boldsymbol{\xi}^{\wedge}=\left[\begin{array}{c}
\mathbf{v} \\
\boldsymbol{\omega}
\end{array}\right]^{\wedge}=\left[\begin{array}{cc}
\boldsymbol{\omega}^{\wedge} & \mathbf{v} \\
\mathbf{0}^{T} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4}, \mathbf{v}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

The corresponding Lie algebra

The corresponding Lie algebras are vector spaces!

Rotations in 3D:

$$
\begin{aligned}
& \mathfrak{s o}(3)=\left\{\boldsymbol{\Omega}=\boldsymbol{\omega}^{\wedge} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\omega} \in \mathbb{R}^{3}\right\} \\
& \boldsymbol{\omega}^{\wedge}=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]^{\wedge}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

Poses in 3D:

$$
\begin{aligned}
& \mathfrak{s e}(3)=\left\{\boldsymbol{\Xi}=\boldsymbol{\xi}^{\wedge} \in \mathbb{R}^{4 \times 4} \mid \boldsymbol{\xi} \in \mathbb{R}^{6}\right\} \\
& \boldsymbol{\xi}^{\wedge}=\left[\begin{array}{c}
\mathbf{v} \\
\boldsymbol{\omega}
\end{array}\right]^{\wedge}=\left[\begin{array}{cc}
\boldsymbol{\omega}^{\wedge} & \mathbf{v} \\
\mathbf{0}^{T} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4}, \mathbf{v}, \boldsymbol{\omega} \in \mathbb{R}^{3}
\end{aligned}
$$

Relation between group and algebra

We can relate the group and algebra through the matrix exponential and matrix logarithm

$$
\begin{aligned}
\exp : \mathfrak{s o}(3) & \mapsto S O(3) \\
\boldsymbol{\omega} & \mapsto \mathbf{R}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{R} & =\exp \left(\boldsymbol{\omega}^{\wedge}\right)=\mathbf{I}+\frac{1-\cos \phi}{\phi^{2}}\left(\boldsymbol{\omega}^{\wedge}\right)^{2}+\frac{\sin \phi}{\phi} \boldsymbol{\omega}^{\wedge} \\
\phi & =|\boldsymbol{\omega}|
\end{aligned}
$$

$$
\begin{aligned}
\log : S O(3) & \mapsto \mathfrak{s o}(3) \\
\mathbf{R} & \mapsto \boldsymbol{\omega}
\end{aligned}
$$

$$
\begin{aligned}
\log (\mathbf{R}) & =\frac{\phi}{2 \sin \phi}\left(\mathbf{R}-\mathbf{R}^{T}\right) \\
\phi & =\arccos \frac{\operatorname{tr}(\mathbf{R})-1}{2} \\
\boldsymbol{\omega} & =\log (\mathbf{R})^{\vee}
\end{aligned}
$$

Relation between group and algebra

We can relate the group and algebra through the matrix exponential and matrix logarithm

$$
\begin{aligned}
\exp : \mathfrak{s e}(3) & \mapsto S E(3) \\
\boldsymbol{\xi} & \mapsto \mathbf{T}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{T} & =\exp \left(\boldsymbol{\xi}^{\wedge}\right)=\mathbf{I}+\boldsymbol{\xi}^{\wedge}+\frac{1-\cos \phi}{\phi^{2}}\left(\boldsymbol{\xi}^{\wedge}\right)^{2}+\frac{\phi-\sin \phi}{\phi^{3}}\left(\boldsymbol{\xi}^{\wedge}\right)^{3} \\
\phi & =|\boldsymbol{\omega}|
\end{aligned}
$$

$$
\log : S E(3) \mapsto \mathfrak{s e}(3)
$$

$$
\mathbf{T} \mapsto \boldsymbol{\xi}
$$

$$
\boldsymbol{\xi}=\log (\mathbf{T})^{\vee}=\left[\begin{array}{c}
\mathbf{V}^{-1} \mathbf{v} \\
\log (\mathbf{R})^{\vee}
\end{array}\right]
$$

$$
\mathbf{V}^{-1}=\mathbf{I}-\frac{1}{2} \boldsymbol{\omega}^{\wedge}+\frac{\left(1-\frac{\phi \cos (\phi / 2)}{2 \sin (\phi / 2)}\right)}{\phi^{2}}\left(\boldsymbol{\omega}^{\wedge}\right)^{2}
$$

Tangent space

The Lie algebra is the tangent space around the identity element of the group

- The tangent space is the "optimal" space in which to represent differential quantities related to the group
- The tangent space is a vector space with the same dimension as the number of degrees of freedom of the group transformations

Perturbations

We can represent steps and uncertainty as perturbations in the tangent space

$$
\begin{aligned}
& \mathbf{R}=\exp \left(\boldsymbol{\omega}^{\wedge}\right) \overline{\mathbf{R}} \\
& \mathbf{T}=\exp \left(\boldsymbol{\xi}^{\wedge}\right) \overline{\mathbf{T}}
\end{aligned}
$$

Jacobians for perturbations on SO(3)

Group action on points: $\quad \mathbf{R} \oplus \mathbf{x}=\mathbf{R x}$

$$
\frac{\partial\left(\exp \left(\boldsymbol{\omega}^{\wedge}\right) \mathbf{R}\right) \oplus \mathbf{x}}{\partial \mathbf{x}}=\frac{\partial \mathbf{R} \oplus \mathbf{x}}{\partial \mathbf{x}}=\mathbf{R}
$$

$$
\left.\frac{\partial\left(\exp \left(\boldsymbol{\omega}^{\wedge}\right) \mathbf{R}\right) \oplus \mathbf{x}}{\partial \boldsymbol{\omega}}\right|_{\boldsymbol{\omega}=\mathbf{0}}=-[\mathbf{R} \oplus \mathbf{x}]^{\wedge}
$$

Jacobians for perturbations on SE(3)

Group action on points: $\quad \mathbf{T} \oplus \mathbf{x}=\mathbf{R x}+\mathbf{t}$

$$
\begin{aligned}
& \frac{\partial\left(\exp \left(\xi^{\wedge}\right) \mathbf{T}\right) \oplus \mathbf{x}}{\partial \mathbf{x}}=\frac{\partial \mathbf{T} \oplus \mathbf{x}}{\partial \mathbf{x}}=\mathbf{R} \\
& \left.\frac{\partial\left(\exp \left(\xi^{\wedge}\right) \mathbf{T}\right) \oplus \mathbf{x}}{\partial \xi}\right|_{\xi=\mathbf{0}}=\left[\begin{array}{ll}
\mathbf{I}_{3 \times 3} & \left.-[\mathbf{T} \oplus \mathbf{x}]^{\wedge}\right]
\end{array}\right.
\end{aligned}
$$

Summary

- Updates on rotations and poses as perturbations using Lie algebra

$$
\begin{aligned}
& \mathbf{R}=\exp \left(\boldsymbol{\omega}^{\wedge}\right) \overline{\mathbf{R}} \\
& \mathbf{T}=\exp \left(\boldsymbol{\xi}^{\wedge}\right) \overline{\mathbf{T}}
\end{aligned}
$$

- Jacobians for these perturbations
- We are ready to solve

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Supplementary material

- Ethan Eade, "Lie Groups for 2D and 3D transformations"
- José Luis Blanco Claraco, "A tutorial on SE(3) transformation parameterizations and on-manifold optimization"

