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Lecture 8.3 
Triangulation by minimizing reprojection error 

Trym Vegard Haavardsholm 
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Pose estimation by minimizing reprojection error 
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Minimize geometric error over the camera pose 
This is also sometimes called Motion-Only Bundle Adjustment 
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Nonlinear state estimation 

We have seen how we can find the MAP estimate 
of our unknown states given measurements 
 
 
 
by representing it as  
a nonlinear least squares problem 
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Pose estimation by minimizing reprojection error 
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Triangulation by minimizing reprojection error 
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Minimize geometric error over the world points 
This is also sometimes called Structure-Only Bundle Adjustment 
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Minimize error over the state variables  
with the measurements  
 
The optimization problem is 
 
 
 
For simpler notation,  
we assume that the measurements are pre-calibrated to normalized image coordinates 
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i: Camera index 
j: World point index 
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Measurement prediction 

This gives us the measurement prediction function 
 
 
 
where 
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(Coordinate transformation) 

(Camera model) 
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Linearization 

We can linearize the measurement prediction function  
with a local first order Taylor expansion 
 
 
 
 
 
where     is a small perturbation in on the point in the world frame. 
The measurement Jacobian is now given by 
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Jacobians 
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Jacobians 
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Jacobians 
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Jacobians 
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Linear least-squares 

We can then obtain a linear least-squares problem 
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Linear least-squares 

The measurement Jacobian A is now a block sparse matrix. 
For an example with two cameras and three points we have 
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Solution to the linearized problem 

The solution can be found by solving the normal equations 
 
 
 
Since 𝐀𝐀 is sparse,  
a sparse solver should be used. 
 
 
 
  

( )T T∗ =ΔA A δ A b

2olve argminS∗ ← −
Δ

Δ AΔ b

, Linearize at tX←A b

1t tX X+ ∗← +Δ
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Gauss-Newton optimization 

Given a good initial estimate                  . 
 

For 𝑡𝑡 = 0, 1, … , 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 
 𝐀𝐀,𝐛𝐛 ← Linearize at 
      ← Solve the linearized problem with 
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Example 
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Summary 

25 

Triangulation by minimizing reprojection error 
• Obtain 2D-2D point correspondences between at least two images 

 
• Find an initial estimate, for example based on the linear method from lecture 8.3 

 
 
 

• Minimize reprojection error iteratively  
using nonlinear least squares 

𝐮𝐮�𝑚𝑚 = 𝐏𝐏𝑚𝑚𝐱𝐱�𝑤𝑤 
𝐮𝐮�𝑏𝑏 = 𝐏𝐏𝑏𝑏𝐱𝐱�𝑤𝑤 𝐀𝐀𝐱𝐱� = 0 𝐱𝐱 
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