Lecture 8.3

Triangulation by minimizing reprojection error

Trym Vegard Haavardsholm

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Nonlinear state estimation

We have seen how we can find the MAP estimate of our unknown states given measurements

$$
X^{\text {MAP }}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

by representing it as a nonlinear least squares problem

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|h_{i}\left(X_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

Choose a suitable inital estimate X^{0}

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

$$
\mathbf{x}_{j}^{w^{*}}=\underset{\mathbf{x}_{j}^{w^{*}}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{c w_{i}} \tilde{\mathbf{x}}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Objective function

Minimize error over the state variables $X=\left\{\mathbf{x}_{j}^{w}\right\}$ with the measurements $Z=\left\{\mathbf{u}_{j}^{i}\right\}=\left\{\mathbf{x}_{n_{j}}^{i}\right\}$

The optimization problem is

$$
X^{*}=\underset{x}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi\left(g\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)\right)-\mathbf{x}_{n_{j}}^{i}\right\|_{\Sigma_{i j}}^{2}
$$

For simpler notation, we assume that the measurements are pre-calibrated to normalized image coordinates

$$
\mathbf{x}_{n}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \mathbf{K}^{-1}\left[\begin{array}{l}
\mathbf{u} \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{u-c_{u}}{f_{u}} \\
\frac{v-c_{v}}{f_{v}}
\end{array}\right]
$$

Objective function

Minimize error over the state variables $X=\left\{\mathbf{x}_{j}^{w}\right\}$ with the measurements $Z=\left\{\mathbf{u}_{j}^{i}\right\}=\left\{\mathbf{x}_{n_{j}}^{i}\right\}$
i : Camera index j : World point index

The optimization problem is

$$
X^{*}=\underset{x}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi\left(g\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)\right)-\mathbf{x}_{n_{j}}^{i}\right\|_{\Sigma_{i j}}^{2}
$$

For simpler notation, we assume that the measurements are pre-calibrated to normalized image coordinates

$$
\mathbf{x}_{n}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \mathbf{K}^{-1}\left[\begin{array}{l}
\mathbf{u} \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{u-c_{u}}{f_{u}} \\
\frac{v-c_{v}}{f_{v}}
\end{array}\right]
$$

Measurement prediction

This gives us the measurement prediction function

$$
\hat{\mathbf{x}}_{n}=h\left(\mathbf{x}^{w} ; \mathbf{T}_{w c}\right)=\pi\left(g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}\right)\right)
$$

where

$$
\begin{aligned}
& g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}\right)=\mathbf{R}_{w c}^{T}\left(\mathbf{x}^{w}-\mathbf{t}_{w c}^{w}\right)=\left[\begin{array}{c}
x^{c} \\
y^{c} \\
z^{c}
\end{array}\right]=\mathbf{x}^{c} \\
& \pi\left(\mathbf{x}^{c}\right)=\frac{1}{z^{c}}\left[\begin{array}{l}
x^{c} \\
y^{c}
\end{array}\right]=\left[\begin{array}{l}
\hat{x}_{n} \\
\hat{y}_{n}
\end{array}\right]=\hat{\mathbf{x}}_{n}
\end{aligned}
$$

(Coordinate transformation)
(Camera model)

Linearization

We can linearize the measurement prediction function with a local first order Taylor expansion

$$
h\left(\mathbf{x}^{w}+\boldsymbol{\delta}_{\Delta} ; \mathbf{T}_{w c}\right) \approx h\left(\mathbf{x}^{w} ; \mathbf{T}_{w c}\right)+\mathbf{G} \boldsymbol{\delta}_{\Delta}
$$

where $\boldsymbol{\delta}_{\Delta}$ is a small perturbation in on the point in the world frame. The measurement Jacobian is now given by

$$
\mathbf{G}=\left.\frac{\partial h\left(\mathbf{x}^{w}+\boldsymbol{\delta} ; \mathbf{T}_{w c}\right)}{\partial \boldsymbol{\delta}}\right|_{\delta=0}=\left.\left.\frac{\partial \pi\left(\mathbf{x}^{c}\right)}{\partial \mathbf{x}^{c}}\right|_{\mathbf{x}^{c}=g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}\right)} \frac{\partial g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\delta=0}
$$

Jacobians

$$
\begin{aligned}
& \left.\frac{\partial g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\delta=\mathbf{0}} \\
& g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}\right)=\mathbf{R}_{w c}^{T}\left(\mathbf{x}^{w}-\mathbf{t}_{w c}^{w}\right)=\mathbf{x}^{c}
\end{aligned}
$$

Jacobians

$$
\left.\frac{\partial g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}}=\left.\frac{\partial\left(\mathbf{T}_{w c} \exp \left(\xi^{\wedge}\right)\right)^{-1} \oplus\left(\mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}}
$$

Jacobians

$$
\begin{aligned}
\left.\frac{\partial g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}} & =\left.\frac{\partial\left(\mathbf{T}_{w c} \exp \left(\xi^{\wedge}\right)\right)^{-1} \oplus\left(\mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}} \\
& =\left.\frac{\partial\left(\mathbf{T}_{w c}\right)^{-1} \oplus\left(\mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}}
\end{aligned}
$$

Jacobians

$$
\begin{aligned}
\left.\frac{\partial g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\delta=\mathbf{0}} & =\left.\frac{\partial\left(\mathbf{T}_{w c} \exp \left(\xi^{\wedge}\right)\right)^{-1} \oplus\left(\mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}} \\
& =\left.\frac{\partial\left(\mathbf{T}_{w c}\right)^{-1} \oplus\left(\mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}} \\
& =\mathbf{R}_{w c}^{T}
\end{aligned}
$$

Jacobians

$$
\begin{aligned}
\mathbf{G}=\left.\frac{\partial h\left(\mathbf{x}^{w}+\boldsymbol{\delta} ; \mathbf{T}_{w c}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}} & =\left.\left.\frac{\partial \pi\left(\mathbf{x}^{c}\right)}{\partial \mathbf{x}^{c}}\right|_{\mathbf{x}^{c}=g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}\right)} \frac{\partial g\left(\mathbf{T}_{w c}, \mathbf{x}^{w}+\boldsymbol{\delta}\right)}{\partial \boldsymbol{\delta}}\right|_{\boldsymbol{\delta}=\mathbf{0}} \\
& =d\left[\begin{array}{ccc}
1 & 0 & -x_{n} \\
0 & 1 & -y_{n}
\end{array}\right] \mathbf{R}_{w c}^{T}
\end{aligned}
$$

Linear least-squares

We can then obtain a linear least-squares problem

$$
\begin{aligned}
\boldsymbol{\delta}_{\Delta}^{*} & =\underset{\boldsymbol{\delta}_{\Delta}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|h\left(\mathbf{x}_{j}^{w} ; \mathbf{T}_{w c_{i}}\right)+\mathbf{G}_{i j} \boldsymbol{\delta}_{j}-\mathbf{x}_{n_{j}}^{i}\right\|_{\Sigma_{i j}}^{2} \\
& =\underset{\delta_{\Delta}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\mathbf{G}_{i j} \boldsymbol{\delta}_{j}-\left\{\mathbf{x}_{n_{j}}^{i}-h\left(\mathbf{x}_{j}^{w} ; \mathbf{T}_{w c_{i}}\right)\right\}\right\|_{\Sigma_{i j}}^{2} \\
& =\underset{\delta_{\Delta}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\mathbf{A}_{i j} \boldsymbol{\delta}_{j}-\mathbf{b}_{i j}\right\|^{2} \\
& =\underset{\boldsymbol{\delta}_{\boldsymbol{u}}}{\operatorname{argmin}}\left\|\mathbf{A} \boldsymbol{\delta}_{\Delta}-\mathbf{b}\right\|^{2}
\end{aligned}
$$

Linear least-squares

The measurement Jacobian \mathbf{A} is now a block sparse matrix.
For an example with two cameras and three points we have

Solution to the linearized problem

The solution can be found by solving the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \boldsymbol{\delta}_{\Delta}^{*}=\mathbf{A}^{T} \mathbf{b}
$$

Since A is sparse, a sparse solver should be used.

Choose a suitable inital estimate X^{0}

Gauss-Newton optimization

Given a good initial estimate $X^{0}=\left\{\mathbf{x}_{j}^{w, 0}\right\}$.
For $t=0,1, \ldots, t^{\max }$
$\mathbf{A}, \mathbf{b} \leftarrow$ Linearize at X^{t}
$\boldsymbol{\delta}_{\Delta}^{*} \leftarrow$ Solve the linearized problem with $\left(\mathbf{A}^{T} \mathbf{A}\right) \boldsymbol{\delta}_{\Delta}^{*}=\mathbf{A}^{T} \mathbf{b}$
$\mathbf{x}_{j}^{w, t+1} \leftarrow \mathbf{x}_{j}^{w, t}+\boldsymbol{\delta}_{j}^{*}$

Example

TEK5030

Example

TEK5030

Example

TEK5030

Summary

Triangulation by minimizing reprojection error

- Obtain 2D-2D point correspondences between at least two images
- Find an initial estimate, for example based on the linear method from lecture 8.3

$$
\begin{aligned}
& \widetilde{\mathbf{u}}^{a}=\mathbf{P}_{a} \tilde{\mathbf{x}}^{w} \\
& \widetilde{\mathbf{u}}^{b}=\mathbf{P}_{b} \tilde{\mathbf{x}}^{w}
\end{aligned} \longrightarrow \mathbf{A} \tilde{\mathbf{x}}=0 \xrightarrow{\text { SVD }} \mathbf{x}
$$

- Minimize reprojection error iteratively using nonlinear least squares

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi\left(g\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)\right)-\mathbf{x}_{n_{j}}^{i}\right\|_{\Sigma_{i j}}^{2}
$$

