
Extensions to Recurrent Neural Network

Eilif Solberg

September 20, 2018

Contents

1 Introduction 1

2 Composing RNNs 2

2.1 Bidirectional RNNs . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Encoder-decoder framework . . . . . . . . . . . . . . . . . . . 3

3 Memory extensions 4

3.1 External memory . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.1 Addressing . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Example: External memory with content-based ad-

dressing . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Location vs content-based addressing . . . . . . . . . . 10
3.1.4 Limited-bandwidth assumption . . . . . . . . . . . . . 11

3.2 Attending to previous states . . . . . . . . . . . . . . . . . . . 12

4 Recursive neural networks 14

5 Problems 17

5.1 Content-based addressing for computers . . . . . . . . . . . . 17
5.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Bibliography 17

1 Introduction

We will in this note look at some extensions to the RNN model. We will
see how we can make more complex models by combining several RNNs
(Section 2) and how we can extend the memory capabilities of RNNs (Section

1



3). Lastly we will brifely look at Recursive Neural Networks, which do not
adhere to the strict serial processing model of RNNs but allows for more
general structured procecessing of its input.

2 Composing RNNs

Like most neural network models, recurrent neural networks can be used as
building blocks in larger models. We shall here look at some models that are
build out of several RNNs. Although stacked RNNs are also a composition
of RNNs, they may unlike the examples presented here, naturally be viewed
as RNNs themselves (see problem of those lecture notes).

2.1 Bidirectional RNNs

So far we have only been able to make decisions about our output Y t based
on the input values up to time t, i.e. X1, . . . , Xt. In a lot of scenarios where
time is involved this is the only way, we can't possibly make decisions based
on information that is not yet available to us. However no one has told us yet
that we can't delay our output. With this we mean that we at time t may
choose to take the action of not taking an action. We might expect the future
to shed more light on the situation, and would like to wait with our response
to incorporate this information. Speech-to-text is an example where this
could come in handy. The speech may contain ambiguities, and we would
like to gather more context to narrow down our choice. Taking this to its
extreme we could actually delay our output until we have �nished processing
the entire input sequence. Thus we would basically split our tasks into two
phases, an information gathering phase followed by a response phase. In this
way we are able to condition all our outputs on the entire input sequence.

An alternative approach was proposed in [1]. Imagine that the entire
sequence is presented to us at once, or that we have a bu�ering mechanism
that allows us to store the incoming sequence. The idea they then proposed
was to have two RNNs, one processing the sequence from start to end, and an
additional RNN processing the sequence from end to start. After both RNNs
have �nished processing the sequence we may at each time step take the
output to be the concatenated output of the RNNs. We may then e.g. feed
this output as input to a new bidirectional layer in a stacked architecture.
In this way we can extract a features for each element in the sequence, that
also depends on the rest of the sequence. Depending on the application we
may at the end apply an output function which now can make decision based
on both information from the past and that of the �future�.

2



2.2 Encoder-decoder framework

Sequence-to-sequence problems comes in many forms. In some cases, like e.g.
speech-to-text there is a very tight coupling between the sequences. Context
can be quite useful, but a lot of the information is still very local. Only
considering a small time window at the time it would still be possible to
get meaningul, though suboptimal, results. Machine translation is another
sequence-to-sequence problem. Here the coupling is much more loose. Look-
ing at local time-windows only and translating them separately would give
very odd results. Taking it to an extreme, word-for-word translations from
one language to another usually results in absurd, but often funny, sentences
that are hard to understand. This will of course depend on the particular
languages at hand though. For machine translation then there is little con-
nection between the order of the �rst sequence and the order of the second.
The meaning of the �rst and second sequence are supposed to represent the

same information, but there is not usually a direct relation between the third
element in the �rst sequence and the third element in the second sequence.
Thus we can look at machine translation as two steps. First we encode the
meaning of the source language into an intermediate representation, then
we decode this into a sentence which represents this meaning in the target
language.

It is possible to use a single RNN to do both tasks. First it encodes
the sentence producing no output, then it starts the decoding process for
which no new input is presented, but the output is fed back in. This is
illustrated in Figure [�g:create-�gure]. The encoder and decoder though
have two quite di�erent tasks, and it may be more appropriate to have
a separate RNN for the encoder and decoder. This also has the bene�t
of a very �exible system where we can potentially use the same encoder
when translating from norwegian to english, that we would use to translate
norwegian to german. Similarily we could share decoder when we want to
translate di�erent source languages to the same target language. This of
course depends on training the di�erent encoders and decoders jointly, so
that they share the same intermediate representation. Assume we have N
languages and want to be able to translate between any one of them to any
other. Having a separate RNN between each of the languages we would need
N(N − 1) = O(N2) RNNs, while we only need 2N = O(N) RNNs in the
encoder-decoder framework with shared encoders and decoders.

There are two common variants of the encoder-decoder framework. One
approach is two use the �rst RNN to create a �xed-sized vector to use as
input to the second RNN. This has the potential disadvantage that the rep-

3



resentation of the meaning of the sentence is of �xed length and could po-
tentially be a bottleneck, especially for long sentences. The second approach
avoids this problem by producing a variable-length representation, typically
of the same length as the input-sequence. This can e.g. be taken to be the
sequence of states of the �rst RNN. The second RNN then typically uses
some attention mechanism to attend to di�erent parts of the intermediate
representation during the generation of the sentence in the target language.
(Note that �rst processing the whole sequence, as is how RNNs commonly
work, and then create the appropriate representation in the target language
would have the same issue as what we were trying to get around.)

3 Memory extensions

� want to change the order of next to. . .

3.1 External memory

We can think of the state vector of the neural network as the memory of the
model. When describing the LSTM model we introduced gates to control
both read and write access to the memory. There is however a huge limitation
of this memory model, in that it is inherently tied to the computational
model.

We will illustrate the limitation of this through an example. Assume we
have an RNN capable of the task of reversing input sequences of �nte length.
The RNN needs to store all the elements in the input sequences before it
can start outputting the sequence in reverse1. Any particular RNN has �nite
memory, and will thus not be able to reverse all sequences of arbitrary length.

It would be nice though if we could extend the RNN to handle longer
sequences if more more memory were available to us. Within the basic RNN
framework however this is not easily accomplished. We can't simply just
add neurons to the state vector; for the neurons to be able to do anything
useful we also need to set all the parameters associated with a state neuron.
The problem is thus that if we want to introduce more memory, we also
have to specify how to do computations with them. Is it possible to decouple

memory from the computational model?

1The RNN could try to compress the input sequences. However it will not be able to
compress all sequcences while still being able to reconstruct them without errors (see e.g.
https://en.wikipedia.org/wiki/Lossless_compression#Limitations). As long as we
don't restrict ourselves to a �nite number of possible sequences it will not be possible to
give an upper bound for the length of the encoding.

4

https://en.wikipedia.org/wiki/Lossless_compression##Limitations


We will have to look no further than the digital computer for inspiration.
On a computer we can install more memory without the need for altering
or upgrading our CPU2. This separation is accomplished by making the
memory cells simpler, not having specialized logic associated with them.
While RNN memory cells may specialize themselves to store particular type
of information, the memory cells on the computer is treated as a just an
array of bytes. It is up to the program to decide where and what to store in
the memory cells.

In this spirit we will now extend our RNN model with external memory.
This memory will not be an integral part of our computational model, but
a separate module which we may interact with through some interface3. We
shall assume that the connection to the memory is of limited bandwidth. This
means that, unlike for the RNN state cells, we will not be able to read from,
or write to, the whole memory in one operation. Not to stray away from our
main thread, a discussion of the resonableness of this model can be found
later in Section 3.1.4.

3.1.1 Addressing

Given that we move on with a bandwidth-limited connection, the question
to ask is then: how do we choose what part of memory to read from our write
to? And even more fundamentally, how do we even refer to part a speci�c
part of memory? We will use the term addressing to refer to this process.

In a computer program we have to indicate which parts of the memory
we want to operate on by specifying the location of the memory cell. It is
up to the program to keep track of where information is stored, though it
could use the memory to store this information as well, creating a network
of links. We call this location-based addresing. We shall interchangeably
use the term direct addressing, as we are directly specifying the location of
where to get the data. Another property that distinguishes one memory cell
from another is it's content. With pure content-based addressing we don't
care about the location of the memory cell, only what it contains. With
content-based addressing the information in each memory cell needs to be
self-contained. Assume that we would like to retrieve from our memory the

2Usually a particular CPU can only handle up to a certain amount of memory. This is
not a fundamental constraint, however, just a consequence of the fact that adding more
circuits on a chip adds to the complexity and cost of the chip.

3Taking this a step further we can imagine attaching all sorts of external devices to
our program, just as for a computer. We refer the interested reader to [2] for further
discussions and explorations of this idea.

5



year the french revolution started. Having a memory cell storing the number
�1789� would in most cases not be very helpful. What if we had a di�erent
memory cell storing the number �1799�, how would we know which, if any,
of these years were the correct one? Thus we see that with content-based
addressing we will need to store contextual information so that we are able to
interpret the information in a way that reveals its meaning: e.g. �The french
revolution started in 1789� and �The french revolution ended in 1799�. Notice
that this is not needed for location-based addressing. With location-based
addressing we could in our program (our somewhere else in memory) keep
the information that a particular memory cell refers to the year the french
revolution started. Retrieving this information could then simply be done
by looking up the information in that memory cell. We discuss a few other
di�erences between location-based and content-based addressing in Section
3.1.3.

Content-based addressing. Let's look into content-based addressing
in more detail. The goal is to design a mechanism so that we can retrieve
the content of a memory cell which contains some particular information of
interest. At �rst it might seem like this kind of addressing is logically �awed.
If we don't know the desired content, how can we know which memory cell
to address? On the other hand, if we knew exactly what content we wanted
to retrieve, there would be no need to retrieve it.

We will however see that we can resolve this apparent contradiction.
Instead of trying to address a memory cell by its exact content, we shall
introduce the concepts query, key and matching function. The query shall
pose a question we would like answered. A natural language query could e.g.
be �When did the french revolution start?�. In most cases, however, we will
encode the query into a vector of real-valued numbers.

For each memory cell we will associate with it a key, which we for now
may think of as a concise description of the memory cell content. We will
allow for the special case where the key function is just the identity function.
Though not a requirement, the key function will usually map the memory
cells into the same space as the key function is in (i.e. a vector space of the
same dimension). Based on the query and a particular key, we now need to
�gure out how relevant the memory cell is in answering the query. This is
implemented with a matching function g, such that for a given a query q and
a key k, g returns a score indicating the match between the query and key.
In the simplest case g can be taken to be the inner product function (that
is one reason we often like the query and key to be of same dimensions).
After we have applied the matching function to all query, key pairs we may

6



use the obtained scores to either return a particular memory cell, e.g. the
one with the highest matching score, or a weighted average over the memory
cells, where the weigth for a memory cell is based on its associated score.

We will now formulate the above in equations. Let M be our memory
and Mj denote memory cell number j, and let J denote the total number
of memory cells. Let K be a function that for a given memory cell returns
a key for that cell. For a given query we then calculate the matching scores
memory cell Mj by

αj = g(q,K(Mj)) (1)

After this has been done for all memory cells we may then apply e.g. a
softmax function to the scores to get a probability distribution over the
memory cells. If p1, . . . , pJ is the obtained probabilities, let π denote the
probability distribution they induce over {M1, . . . ,MJ}, i.e. if X ∼ π then
P (X =Mj) = pj . We shall now look at two ways we can use this distribution
to get obtain our query result v(q,M). With hard addressing the returned
value v is sampled from the distribution

v(q,M) ∼ π (2)

With soft addressing we instead take the expectation over the distribution.
This corresponds to a weighted average over the memory cells, i.e.

v(q,M) =
J∑
j=1

pjMj (3)

It might seem strange to take a weighted average over the memory cells,
and is unclear how the network should be able to decode such a signal.
One bene�t of the soft addressing however is that our memory system then
becomes fully di�erentiable (as long as K and g are di�erentiable, and the
queries are produced in a di�erentiable manner). This allows for end-to-end
training of the system using stochastic gradient descent. With hard attention
we will have to borrow optimization techniques from e.g. reinforcement
learning, which may make training more challenging.

The quality of our addressing system will of course depend on all parts of
our system. How good we are at asking questions q, how precise our function
K for generating descriptions is and the ability of g to judge the relevance of
a key in answering a query. In general we shall try to learn this system. In
most cases we don't really have targets for our memory model, i.e. we know

7



what the most relevant information is4. In many cases we may still be able
to train it with indirect supervision from the error signals of a downstream

task.
We shall use the term indirect addressing interchangeably with content-

based addressing. This comes from the fact that our addressing mechanism
doesn't really specify where to retrieve the data from, it does it only in-
directly by saying that we want to �get the data which best matches the
query�.

3.1.2 Example: External memory with content-based addressing

So far we have only discussed external memory and content-based addressing
in general terms. We will now present an example of one possible way of
extending an RNN with external memory using content-based addressing.
We will present a very simpli�ed version of the model introduced in [4] which
uses a much more sophisticated hybrid content-location based addressing
scheme. There are two operations which may be performed with respect to
the memory, a read operation to extract information from memory and a
write operation to alter the memory content.

Let's start with the read mechanism. For now we assume a single read
operation per time step. We �rst de�ne a query for the the read operation
as

qt = Q(r)(st) (4)

For each memory cell M t−1
i we calculate a key

ktj = K(r)(M t−1
j ) (5)

and then we calculate the scores for each memory cell by

αtj = g(qt, ktj) (6)

To be concrete, assume that the state-vector and memory-cells to be vectors
of dimension m and n resepectively. We might take Q(r) to be a d × m
matrix, K(r) and d × n matrix and g to be the inner-product function.
The rest follows as described in the introduction for general content-based

4See [3] for an exception. Here they train a question answering system where they store
unprocessed sentences in the memory, and during training they give the model supversion
on which sentences are most relevant

8



addressing. We apply the softmax function over the the scores to obtain
probabilities p1, . . . , pJ . If we use hard attention we draw a memory cell
from the distribution implied by the probabilities, with soft attention we
acquire a weighted average. In either case we obtain a vector rt, which is
the result of our query.

The addressing mechanism for the write operation can be taken to be
the same as the one for the read operation, except that we may use di�erent
query and key functions Q(w) and K(w). For writing there is a couple of
additional considerations as well. For one thing, we can't just decide where

to write something, we also need to decide what to write. We de�ne a write
function W to be a function of the current state.

wt =W (st) (7)

Given wt and given a distribution over memory cells de�ned by pw1 , . . . , p
w
J ,

there are several ways we could proceed to update the memoryM . Let's �rst
assume we are using hard attention, and have drawn a memory cellMj . One
possible update rule could simply be to overwrite the content of the memory
cell, i.e.

M t
j = wt (8)

Another possibility would be to make updates instead by adding the vector
to the memory cell

M t
j =M t−1

j + wt (9)

With soft addressing the same choices apply. If we decide upon taking the
expected update the choices then translates to the update rule

M t
j = (1− pwj )M t−1

j + pjw
t (10)

or

M t
j =M t−1

j + pwj w
t (11)

where this update rule is applied to all memory cells M1, . . .MJ .
We have now seen how we can read from and write to memory in such

an RNN architecture. We haven't seen how to use the retrieved memory to
something useful yet however! One way to take advantage of the memory is
to include the read vector into our update equation, i.e.

st = h(xt, st−1, yt−1, rt−1) (12)

9



In this way we can write things we believe to be useful to memory, and then
tap into this knowledge base later by making queries to it. We may also use
the retrieved vector from memory as extra input to the output function

yt = f(st, rt) (13)

Having only one read and write operation per time step might be a severe
bottleneck for our models, and limit the usability of our external memory5.
We will now brie�y discuss how we can overcome this limitation. Extending
the model to have several read heads is straightforward. Instead of having
single query and key functions Q(r) and K(r) (see equations (4) and (5)), we

de�ne N query, key function pairs (Q
(r)
1 ,K

(r)
1 ), . . . ,(Q

(r)
N ,K

(r)
N ). Each pair

give rise to a read vector rti , we concatenate all of them into a vector rt.
We may use the same matching function for all pairs, though in theory one
could also use several di�erent ones. To extend to several write heads is not
quite as straightforward, as we may have con�icts when di�erent heads try
to update the same memory cells. One possible solution to this is to average
the updates that each write head makes. Another solution is presented in
[4].

Although appealing, we would like to point out some limitations to the
simple external memory module presented here. Even though we can scale
to arbitrarily large memory sizes without having to retrain the model, we
still have to specify the size for the memory pool. We would have preferred
if the model were able to keep track of what memory is used, dynamically
expand the memory when needed and free up memory that is no longer used.
Another undesirable property is that for each query we also try to match it
against every memory slot, which makes the memory lookup scale linearly
with the memory size. This might be �ne if our memory is not too large,
but may become an issue as we try to scale up.

3.1.3 Location vs content-based addressing

Let's look at some special cases to get some further intuition about the
di�erences between content and location-based addressing:

� With location-based addressing we could in principle have memory cells
that stores a single bit, while this would be meaningless for content-
based addressing.

5Of course we could increase the size of each memory cell. This is not very �exible,
however, as we might want to retrieve pieces of information stored in di�erent places.

10



� With content-based addressing, having two memory cells with the same
content, the second memory cell does not add to the total information
content. E.g. storing the information �The french revolution started
in 1789� a second time does not provide us with new knowledge. In
a location-based addressing system, having �1789� stored in two dif-
ferent cells can provide us with di�erent information if the context
surrounding them are di�erent. The �rst cell could refer to the start
of the french revolution, while the second referred to the year George
Washington was elected the �rst President of the United States.

� Location-based addressing only makes sense in an iterative (serial) set-
ting. We need to already have acquired knowledge of where di�erent
kinds of information are stored from previous iterations. With content-
based addressing this is not necessary. We can blindly query informa-
tion.

3.1.4 Limited-bandwidth assumption

Computers have a limited bandwidth between the CPU and memory. This
often imposes a bottleneck on programs as they are not able to move data
to the CPU for processing as fast as they would like. This bottleneck is of
course something hardware manufacturers constantly try to reduce, but so
far they have not been able to keep up with the increase processing power
of the CPU. For our logical model, why should we voluntarily impose such
a bottleneck?

Let's take a moment to re�ect upon our own usage of long-term memory.
What percentage of all the knowledge you have do you use at any moment?
Even over the course of a day or week the estimate should probably be only
a tiny fraction. That does not mean that most of what we know is not useful
(though probably some things are!), but that most situations only calls for a
tiny fraction of it. A similar, and probably even more convincing, argument
applies to the writing to, or updating of, memory. We certainly learn new
things and sometimes �nds that some of the things we thought we knew were
wrong. Most of our memories and knowledge are fairly stable however.

Note that the analogy to human long-term memory is far from perfect.
Most machine-learning systems today are specialized to accomplish very nar-
row tasks. They only get limited input data over a short time period, and
the designer of the system has probably carefully chosen to only feed the
system with input that are at least somewhat relevant for the task.

Instead of thinking of it from the bottleneck perspective, we may simply

11



view it as a convenient way to get �xed size results back from our query. If
the query where not completely satisfactory we could perform another query.

3.2 Attending to previous states

We will here discuss another approach for improving the memory capacity
of RNNs. The standard RNN model assumes a strong Markov property,
i.e. that given the state st we have that all future outputs are conditionally
independent of x1, . . . , xt, and thus also of s1, . . . , st−1. In other words, the
model assumes that we are able to capture all relevant information of the
past into the current state. This is a very strong assumption and may be
hard to satisfy in practice, especially for long sequences. If we took ourselves
the liberty to peek into previous states s1, . . . , st−1, we could take some
pressure o� the memory requirements of the state vectors and scale better
with sequence length.

How do we take advantage of the previous states in practice? The pre-
vious states constitutes a sequence, so given what we have learned it seems
natural to use an RNN to process this information! Introducing an RNN,
with an initial state of 0 and processing s1, . . . st−1 sequentially however con-
tains the very same problem which we are trying to get around (why?)! We
want to get information relevant to our current situation and thus need to
make the processing of the past states dependent on our current state. In
the RNN setting we could do this by using st as the initial hidden state, or
perhaps having st as an extra input at each time step. We will however not
pursue this idea further here, we only note that the number of serial steps
required then scales as T 2. Instead we will look into another approach of
processing the past information in a way that depends on our current state.

[5] proposed an attention mechanism over previous states. At each state
update we take all the previous states as input, i.e. we have an update
equation of the form

st = h(xt, (s1, . . . , st−1), yt−1) (14)

The attention mechanism however reduces the sequence s1, . . . , st−1 into
a single vector through a convex combination, where we use the current state
to in�uence the weighting of the past states. We let s̃t−1 denote the convex
combination of s1, . . . , st−1. With the language of mathematics we can write
this as

12



pti = f(xt, (s1, . . . , st−1), yt−1) (15)

s̃t−1 =
t−1∑
i=1

ptis
i (16)

t−1∑
i=1

pti = 1 (17)

In the particular implementation of [5] they determined the weights by

αti = 〈v, tanh(Uαxt + Vαs
t−1 +Wαs

i)〉 (18)

pt = softmax(αt) (19)

for i = 1, . . . , t−1, where 〈·, ·〉 denotes the inner product, αt = (αti, . . . , α
t
t−1),

pt = (pti, . . . , p
t
t−1) and v is a learnable vector. This is however only one of

many possibilities. In fact the attention mechanism above is not really able to
fully take into consideration interactions between the various inputs, which
in many cases will be useful to extract the most relevant information from
previous states. Although equation (18) can be viewed as an example of the
content-based addressing of the previous section (the form is so general that
basically everything can!) we might consider other attention mechanisms of
the form

αti = f(Q(st−1, xt),K(si)) (20)

where an example could be

αti = 〈Uαxt + Vαs
t−1,Wαs

i〉 (21)

After we have applied the attention mechanism we can now proceed with a
'normal' RNN update function h that uses the alternative state s̃t−1

st = h(xt, s̃t−1, yt−1) (22)

As a �nal remark we add that the added memory �exibility comes at
a cost; our processing time is no longer constant for each time step, but
increases over time. Thus our total processing time of the sequence does
not scale linearly with sequence length. An alternative, increasing memory
capacity by increasing the dimension of the state vector so that it is large
enough to handle the most demanding cases, has the disadvantage of being
unneccasarily large for less demanding situations.

13



4 Recursive neural networks

In the introduction to this chapter we motivated the RNN model by arguing
that the time dimension naturally induces a sequential processing model.
Both the stimuli from the outside world, and our actions upon it, are spread
out in the linear order of time.

Since then, however, we have been happy to apply RNN models to all
sorts of data that can be viewed as a sequence, were the motivating reasons
for the RNN may no longer apply. It's like the cliche tells us, �If you have a
hammer, everything looks like a nail�. That is not to say we shall not apply
RNNs in situations where we feel like we can't justify the processing model,
but perhaps it shouldn't be the only model we try.

Assume our input is a sequence of real numbers X1, . . . , XT , and we
would like to learn themin function6, i.e. f(X1, . . . , XT ) = min(X1, . . . , XT ).
We could imagine an RNN solving this problem by storing the minimum
value encountered so far, and for each iteration compare this with the new
input value, updating the state if a lower value is encountered. Instead of
this serial approach we could also split the sequence into pairs of two, ap-
plying a binary min function to each of these pairs. We may then put the
resulting minimum values into a new sequence, which is of half the length.
The same procedure may be applied again to this new sequence. Though
both functions in this case solves the problem, the second may in many cases
be preferred as it is more parallelizeable. The �rst approach requires T − 1
sequental steps, while the second can be solved with log2 T sequential steps7.

The example above illustrates a more general problem. Assume we have
a sequenceX1, X2, . . . , XT as input. We would like to learn a function f that
maps the sequence to a �zed size vector8 Y ∈ Rd, i.e. f(X1, X2, . . . , XT ) ∈
Rd for all sequences. In the case X1, X2, . . . , XT is a sentence, where Xi is
word number i, you may think of this as representing an encoder which task is
to interpret the sentence and create a semantically meaningful representation
of it. This representation can be used as input to e.g. a some simple classi�er,
or a decoder in the case of translation.

A recurrent neural network solves this prolem by processing the sequence

6This is for illustrative purposes only, of course we know how to implement a min

function. Also, the algorithm does not really know that it is supposed to learn the min
function, it only gets a sequence of numbers with (what we know happens to be) the min
value of the sequence as input and needs to generalize from there.

7Note however that they both need a total amount of computational operations that is
linear in the sequence length.

8This is not a requirement, but will su�ce for our discussions here

14



sequentially from start to end. The RNN keeps the representation of the
part of the sentence processed so far in an internal state vector st, which it
updates for each word it processes, using the same update function at each
time step. When we have �nished processing the whole secuence, sT is our
desired vector. We will now try to generalize to allow for other structured

processing models, beyond the strictly sequntial one. If our input was a
sentence we could perhaps analyze di�erent parts of the sentence separately,
and then later merge the information. Each part of the sentence could of
course be split again into even smaller pieces, analyzed separately and then
merged. When we move away from the strictly sequential processing scheme,
the concept of state will make less sense. Instead of having an update function

that consumes one of the input data to update its internal state, we shall
now introduce the composite function. The composite function takes two
or more data points as input, and combine them into a vector of the same

form as the input vectors. The output of the composite function replaces
the input data in the data structure, and can be used as input in the next
iteration. We will call models of this form recursive neural networks. We
see that the computational structure will be that of a tree, though with
a few modi�cations we could also have allowed for arbitrary acyclic graph

structures.
Although the RNN model discussed earlier had a quite a few choices with

respect to e.g. the update function, the way to implementation was pretty
clear. The general de�nition of recursive neural networks on the other hand
is so abstract that it's not easy to see how we can move forward. A question
you should ask yourself, if you haven't already, is how we decide what order
to perform our merges in? In our motivating example we had a �xed tree
structure - a perfectly balanced binary tree. This worked well for the min

function we wanted to learn there. Of course this was in some sense a very
easy example, as any tree structure could solve the problem given that we
were able to learn a binary min function as a composite function. In fact
the problem did not even depend on the order of the input numbers. This
is certainly not the case in general, and we should assume that some tree
structures works better than others for processing the data. Unfortunately,
the optimal tree structure will probably be di�erent for di�erent applications.
The tree structure may thus be be treated as another hyperparameter for the
model. This will often require some engineering to de�ne a suitable search
space over tree structures, a completely random search may be to ine�cient
for most applications.

The situation is even more complicated. Instead of having a �xed tree
structure we may also have an input-dependent tree structure. If our input

15



data is e.g. a sentence, the best way of processing the words might be
di�erent for di�erent sentences. For natural language processing we might
take advantage of an already existing parser which creates a binary tree
from a sentence. There are however many di�erent such parsers that uses
di�erent grammars as a foundation. One may have some intution on which
ones that may be appropritate, but in general one would have to test this
empirically. Though some other applications also may have such oracles

that can be used to create input-dependent tree structures for processing,
this will certainly not always be the case. Even in cases where we do have
it, the trees they produce need not correspond to the optimal processing tree

for your application. One thing that we have learned from deep learning is
the advantages of end-to-end learning. In this spirit we could try to e.g.
learn a policy that at each iteration decides which nodes to merge next. For
a binary tree structure our policy π could given a set of n nodes return a
probability vector over all possible merge pairs. In general the number of such
pairs are n(n− 1), but through e.g. de�ning a neighbouring function which
restricts the number of pairs that are allowed to merge, this number may be
severely reduced. For the sentence example we could de�ne the neighbour

of a word to be the words preceding and succeeding it. When two nodes are
merged, the neighbour of the new node is the union of the neighbours of
the merged nodes, and all other nodes that had either of the two merged
nodes as neighbour will have the merged node as a new neighbour. As we
will rarely have a direct supervisory signal, we will in general have to learn
such a policy by using e.g. reinforcement learning techniques. Although
input-dependent tree structures allowd for great �exibility, it comes at a
cost: di�culty of parallelization. If we for each iteration needs to decide
what nodes to merge next, the number of serial steps will be linear in the
number of input elements, the same as for RNNs. Even if the tree is given
to us by an oracle, parallelization is hindered as individual tree structures
does not �t well with one of the most useful tricks for high throughput,
minibatching.

As we have seen there are quite a bit of design choices to make when
implementing a recursive neural network model. Some of the design choices
may lead to models that are just as serial as RNNs. The learning process
could also be more challenging if we decide to learn the tree structure. All
of the above may be reasons why recursive neural networks haven't yet had
the same traction as recurrent neural networks. In addition it is hard to see
how similiar ideas to those we had for composing and extending RNNs in
Sections 2 and 3 could be used for generic recursive neural networks. This
is not to dismiss the idea of recursive neural networks, rather a realization

16



that more research may be needed for their general practical applicability.

5 Problems

5.1 Content-based addressing for computers

5.1.1 Problem

We discussed two di�erent types of addressing in Section 3.1, namely location-
based and content-based addressing. Modern digital computers use location-
based addressing. Could they just as well have used content-based addressing
or can you think of any potential issues with this?

6 Bibliography

References

[1] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing, 45(11):2673�2681, 1997.

[2] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural
turing machines-revised. arXiv preprint arXiv:1505.00521, 2015.

[3] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks.
CoRR, abs/1410.3916, 2014.

[4] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
arXiv preprint arXiv:1410.5401, 2014.

[5] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-
networks for machine reading. arXiv preprint arXiv:1601.06733, 2016.

17


	Introduction
	Composing RNNs
	Bidirectional RNNs
	Encoder-decoder framework

	Memory extensions
	External memory
	Addressing
	Example: External memory with content-based addressing
	Location vs content-based addressing
	Limited-bandwidth assumption

	Attending to previous states

	Recursive neural networks
	Problems
	Content-based addressing for computers
	Problem


	Bibliography

