Practical Deep Reinforcement Learning

Eilif Solberg

TEK5040/TEK9040
Outline

Introduction

Deep Q-Networks (DQN)

Proximal Policy Optimization (PPO)

Bibliography
Section 1

Introduction
Sample efficiency

• May be expensive to generate data
• Can we use data more than once?
Sample efficiency

- May be expensive to generate data
Sample efficiency

• May be expensive to generate data
• Can we use data more than once?
Stability

Problem:

- Bad updates impact the data we see
- Stability is difficult due to changes in distribution of observations and rewards
- Targets often depend on the output of the network
- Targets may be changing even if distribution is not, e.g. with TD-learning.
- State aliasing may lead prediction updates to also update targets

Goal:

- Would like algorithms that work most of the time
- Would like algorithms that work across environments with minimal adjustment of hyperparameters
- Will not look at: "Normalizing environments"
Stability

Problem:

- Bad updates impact the data we see
Stability

Problem:

• Bad updates impact the data we see

• Stability is difficult due to changes in distribution of observations and rewards
Stability

Problem:

- Bad updates impact the data we see
- Stability is difficult due to changes in distribution of observations and rewards
- Targets often depend on the output of the network
 - Targets may be changing even if distribution is not, e.g. with TD-learning.
 - State aliasing may lead prediction updates to also update target
Stability

Problem:

- Bad updates impact the data we see
- Stability is difficult due to changes in distribution of observations and rewards
- Targets often depend on the output of the network
 - Targets may be changing even if distribution is not, e.g. with TD-learning.
 - State aliasing may lead prediction updates to also update target

Goal:

- Would like algorithms that work most of the time
- Would like algorithms that work across environments with minimal adjustment of hyperparameters
- Will not look at: "Normalizing environments"
Stability

Problem:

- Bad updates impact the data we see
- Stability is difficult due to changes in distribution of observations and rewards
- Targets often depend on the output of the network
 - Targets may be changing even if distribution is not, e.g. with TD-learning.
 - State aliasing may lead prediction updates to also update target

Goal:

- Would like algorithms that *works most of the time*
Stability

Problem:

- Bad updates impact the data we see
- Stability is difficult due to changes in distribution of observations and rewards
- Targets often depend on the output of the network
 - Targets may be changing even if distribution is not, e.g. with TD-learning.
 - State aliasing may lead prediction updates to also update target

Goal:

- Would like algorithms that *work most of the time*
- Would like algorithms that work across environments with minimal adjustment of hyperparameters
Stability

Problem:

- Bad updates impact the data we see
- Stability is difficult due to changes in distribution of observations and rewards
- Targets often depend on the output of the network
 - Targets may be changing even if distribution is not, e.g. with TD-learning.
 - State aliasing may lead prediction updates to also update target

Goal:

- Would like algorithms that *work most of the time*
- Would like algorithms that work across environments with minimal adjustment of hyperparameters

Will not look at: “Normalizing environments”
Section 2

Deep Q-Networks (DQN)
• Playing atari with deep reinforcement learning [1].
• Human-level control through deep reinforcement learning [2].
• Deep reinforcement learning with double q-learning [3].
Atari 2600

Figure: Atari 2600
DQN is a q-learning algorithm. We will start with our basic q-learning update and introduce the proposed additions one at a time.

Let q_η be our current estimate of the optimal action-value function q_*. Our base update is given by

$$\eta \leftarrow \eta + \alpha \left((r_{t+1} + \gamma \max_{a'} q_\eta(s_{t+1}, a')) - q_\eta(s_t, a_t) \right) \nabla_\eta q_\eta(s_t, a_t)$$

where we call $(s_t, a_t, r_{t+1}, s_{t+1})$ a transition.
Batch updates

Store several transitions and make batch update

\[\eta \leftarrow \eta + \alpha \frac{1}{N} \sum_{i=1}^{N} \left((r^{(i)} + \gamma \max_{a'} q_{\eta}(s'^{(i)}, a')) - q_{\eta}(s^{(i)}, a^{(i)}) \right) \nabla_{\eta} q_{\eta}(s^{(i)}, a^{(i)}) \]

- \(N \) is our minibatch size and \((s, a, r, s')\) is a transition in an episode
Batch updates

Store several transitions and make batch update

\[\eta \leftarrow \eta + \alpha \frac{1}{N} \sum_{i=1}^{N} \left((r^{(i)} + \gamma \max_{a'} q_{\eta}(s'^{(i)}, a')) - q_{\eta}(s^{(i)}, a^{(i)}) \right) \nabla_{\eta} q_{\eta}(s^{(i)}, a^{(i)}) \]

- \(N \) is our minibatch size and \((s, a, r, s')\) is a transition in an episode

Motivation:
- Batches often improve stability
Batch updates

Store several transitions and make batch update

\[\eta \leftarrow \eta + \alpha \frac{1}{N} \sum_{i=1}^{N} \left((r^{(i)} + \gamma \max_{a'} q_\eta(s'^{(i)}, a')) - q_\eta(s^{(i)}, a^{(i)}) \right) \nabla_\eta q_\eta(s^{(i)}, a^{(i)}) \]

- \(N \) is our minibatch size and \((s, a, r, s')\) is a transition in an episode

Motivation:
- Batches often improve stability
- Better utilization of GPU
Replay buffer

- Store transitions \((s_t, a_t, r_{t+1}, s_{t+1})\) in \textit{replay buffer} \(\mathcal{D}\).
- At each iteration we sample a minibatch from \(\mathcal{D}\) which we make updates based on.
- Discard older experience as it becomes out-of-date.

\[
\eta \leftarrow \eta + \alpha \frac{1}{N} \sum_{i=1}^{N} \left((r^{(i)} + \gamma \max_{a'} q_{\eta}(s'^{(i)}, a')) - q_{\eta}(s^{(i)}, a^{(i)}) \right) \nabla_{\eta} q_{\eta}(s^{(i)}, a^{(i)})
\]

Now \((s^{(i)}, a^{(i)}, r^{(i)}, s'^{(i)})\) \(\sim \mathcal{D}\), no longer consecutive experience.
Replay buffer

- Store transitions \((s_t, a_t, r_{t+1}, s_{t+1})\) in replay buffer \(\mathcal{D}\).
- At each iteration we sample a minibatch from \(\mathcal{D}\) which we make updates based on.
- Discard older experience as it becomes out-of-date.

\[
\eta \leftarrow \eta + \alpha \frac{1}{N} \sum_{i=1}^{N} \left((r^{(i)} + \gamma \max_{a'} q_\eta(s'^{(i)}, a')) - q_\eta(s^{(i)}, a^{(i)}) \right) \nabla_\eta q_\eta(s^{(i)}, a^{(i)})
\]

Now \((s^{(i)}, a^{(i)}, r^{(i)}, s'^{(i)}) \sim \mathcal{D}\), no longer consecutive experience.
Serves two purposes:
- Sample efficiency: Several updates from the same experience
- Stability: Get less correlated data sampling from a larger dataset
“Fixed” target Q-network

Problem: Risk of state aliasing when using function approximators.

- Features q_η extracts from consecutive states s and s' may be almost identical.
“Fixed” target Q-network

Problem: Risk of state aliasing when using function approximators.

- Features q_η extracts from consecutive states s and s' may be almost identical.
- Recall prediction and targets are of the form
 \[q_\eta(s, a), \quad r + \gamma \max_{a'} q_\eta(s', a') \]
 Updating $q(s, a)$ may affect $q(s', a')$ for different actions a'.
- Targets are moving - may end up chasing our own tail.
“Fixed” target Q-network

Problem: Risk of state aliasing when using function approximators.

- Features q_η extracts from consecutive states s and s' may be almost identical.
- Recall prediction and targets are of the form
 \[q_\eta(s, a), \quad r + \gamma \max_{a'} q_\eta(s', a') \]

Updating $q(s, a)$ may affect $q(s', a')$ for different actions a'.
- Targets are moving - may end up chasing our own tail.

Solution:
- Keep a separate target network q_η
“Fixed” target Q-network

Problem: Risk of state *aliasing* when using function approximators.

- Features q_η extracts from consecutive states s and s' may be almost identical.
- Recall prediction and targets are of the form

$$q_\eta(s, a), \quad r + \gamma \max_{a'} q_\eta(s', a')$$

Updating $q(s, a)$ may affect $q(s', a')$ for different actions a'.
- Targets are moving - may end up chasing our own tail.

Solution:

- Keep a separate target network q_{η^-}
- Only occasionally update η^- to match η
“Fixed” target Q-network

Problem: Risk of state *aliasing* when using function approximators.

- Features q_η extracts from consecutive states s and s' may be almost identical.
- Recall prediction and targets are of the form
 \[q_\eta(s, a), \quad r + \gamma \max_{a'} q_\eta(s', a') \]
 Updating $q(s, a)$ may affect $q(s', a')$ for different actions a'.
- Targets are moving - may end up chasing our own tail.

Solution:
- Keep a separate target network q_{η^-}
- Only occasionally update η^- to match η

\[
\eta \leftarrow \eta + \alpha \frac{1}{N} \sum_{i=1}^{N} \left((r^{(i)} + \gamma \max_{a'} q_{\eta^-}(s'^{(i)}, a')) - q_\eta(s^{(i)}, a^{(i)}) \right) \nabla_{\eta} q_\eta(s^{(i)}, a^{(i)})
\]
Bias-reduction of Q

Problem: Targets are too optimistic

- Value estimate is $\max_a q_\eta(s, a) = q_\eta(s, \text{argmax}_a q_\eta(s, a))$.

 - The reason that an action is chosen, is often because it is too optimistic! (Winner's curse)
 - For a state s assume $q_\pi(s, a)$ are zero for all a, and assume we have an equal number of values $q_\eta(s, a)$ that are positive and negative. Then $q_\eta(s, \text{argmax}_a q_\eta(s, a)) > 0$.
 - So if $a' = \text{argmax}_a q_\eta(s, a)$. Often $q_\eta(s, a') > q_\pi(s, a')$, even $q_\eta(s, a') > q_\pi(s, \text{argmax}_a q_\pi(s, a))$.
 - Note: Happens even though $q_\eta(s, a)$ is not too optimistic in general.
 - This is not just a problem to function approximation, but q-learning in general.
Bias-reduction of Q

Problem: Targets are too optimistic

- Value estimate is $\max_a q_\eta(s, a) = q_\eta(s, \arg\max_a q_\eta(s, a))$.
- The reason that an action is chosen, is often because it is too optimistic! (Winner’s curse)
- For a state s assume $q_\pi(s, a)$ are zero for all a, and assume we have an equal number of values $q_\eta(s, a)$ that are positive and negative. Then $q_\eta(s, \arg\max_a q_\eta(s, a)) > 0$.
- So if $a' = \arg\max_a q_\eta(s, a)$. Often
 - $q_\eta(s, a') > q_\pi(s, a')$, even
 - $q_\eta(s, a') > q_\pi(s, \arg\max_a q_\pi(s, a))$
Bias-reduction of Q

Problem: Targets are too optimistic

- Value estimate is $\max_a q_{\eta}(s, a) = q_{\eta}(s, \arg\max_a q_{\eta}(s, a))$.

- The reason that an action is chosen, is often because it is too optimistic! (Winner’s curse)

- For a state s assume $q_{\pi}(s, a)$ are zero for all a, and assume we have an equal number of values $q_{\eta}(s, a)$ that are positive and negative. Then $q_{\eta}(s, \arg\max_a q_{\eta}(s, a)) > 0$.

- So if $a' = \arg\max_a q_{\eta}(s, a)$. Often
 - $q_{\eta}(s, a') > q_{\pi}(s, a')$, even
 - $q_{\eta}(s, a') > q_{\pi}(s, \arg\max_a q_{\pi}(s, a))$

- Note: Happens even though $q_{\eta}(s, a)$ is not too optimistic in general.

- This is not just a problem to function approximation, but q-learning in general.
Bias-reduction of Q II

Solution:
Bias-reduction of Q II

Solution:

• Choose the action from our current policy network q_{η}
Bias-reduction of Q II

Solution:

- Choose the action from our current policy network q_η
- Still get value from evaluating target network q_{η^-}
Bias-reduction of Q II

Solution:

- Choose the action from our current policy network q_η
- Still get value from evaluating target network q_η^-.

$$a'^(i) = \arg\max_a q_\eta(s'^(i), a)$$

$$\eta \leftarrow \eta + \alpha \frac{1}{N} \sum_{i=1}^{N} \left((r(i) + \gamma q_\eta^-(s'^(i), a'^(i))) - q_\eta(s(i), a(i)) \right) \nabla_\eta q_\eta(s(i), a(i))$$
Pseudocode

Algorithm 1 Deep Q-learning with Experience Replay

1: Initialize (round-robin) replay memory \mathcal{D} (partially) up to capacity N
2: Initialize action-value function q_η with random weights.
3: Initialize target action-value function q_{η^-} with weights $\eta^- = \eta$.
4: Let h_t denote the history so far $(o_0, a_0, r_1, o_1, \ldots, r_t, o_t)$.
5: for episode $= 1, M$ do
6: Initialize sequence with $s_0 = f(o_0)$
7: for $t = 1, T$ do
8: With probability ϵ select a random action a_t
9: otherwise select $a_t = \max_a q_\eta(s_t, a)$
10: Execute action a_t in emulator and observe reward r_{t+1} and observation o_{t+1}
11: Set $s_{t+1} = f(h_{t+1})$
12: Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in \mathcal{D}.
13: Sample random minibatch of transitions $(s_j, a_j, r_{j+1}, s_{j+1})$ from \mathcal{D}
14: Set $y_j = \begin{cases} r_{j+1} & \text{for terminal } s_{j+1} \\ r_{j+1} + \gamma q_{\eta^-}(s_{j+1}, \arg \max_{a'} q_\eta(s_{j+1}, a')) & \text{for non-terminal } s_{j+1} \end{cases}$
15: Perform a gradient descent step on $(y_j - q_\eta(s_j, a_j))^2$ with respect to the network parameters η.
16: Every C steps, set $\eta^- = \eta$.
17: end for
18: end for
Section 3

Proximal Policy Optimization (PPO)
Papers

- Trust region policy optimization [4].
- Proximal policy optimization algorithms [5].
Advantage

We define the advantage function d_{π} as

$$d_{\pi}(s, a) := q_{\pi}(s, a) - v_{\pi}(s)$$

Note that for a given state s the expected advantage is always 0

$$E_{A \sim \pi(s)}[d_{\pi}(s, A)] = E_{A \sim \pi(s)}[q_{\pi}(s, A) - v_{\pi}(s)]$$

$$= E_{A \sim \pi(s)}[q_{\pi}(s, A)] - v_{\pi}(s)$$

$$= \sum_a \pi(a|s)q_{\pi}(s, a) - v_{\pi}(s)$$

$$= v_{\pi}(s) - v_{\pi}(s) = 0$$

Possible approximations are e.g.

- $G_t - v_{\eta}(s_t)$
- $R_{t+1} + \gamma v_{\eta}(S_{t+1}) - v_{\eta}(s_t)$
- $q_{\nu}(s_t, a_t) - v_{\eta}(s_t)$
Actor-critic

Policy-gradient update:

$$\theta \leftarrow \theta + \alpha \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau^{(i)}-1} g_t^{(i)} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$
Actor-critic

Policy-gradient update:

$$\theta \leftarrow \theta + \alpha \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau^{(i)}-1} g_{t}^{(i)} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)})$$

Actor-critic update:

$$\theta \leftarrow \theta + \alpha \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau^{(i)}-1} \hat{d}_{t}^{(i)} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)})$$

• \(\hat{d}_{t}^{(i)} \approx q_{\pi_{\theta}}(s_{t}, a_{t}) - v_{\pi_{\theta}}(s_{t})\), i.e. estimation of advantage of taking action \(a_{t}^{(i)}\) from state \(s_{t}^{(i)}\).
Actor-critic

Policy-gradient update:

$$\theta \leftarrow \theta + \alpha \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau(i)-1} g_t^{(i)} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

Actor-critic update:

$$\theta \leftarrow \theta + \alpha \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau(i)-1} \hat{d}_t^{(i)} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- $\hat{d}_t \approx q_{\pi_{\theta}}(s_t, a_t) - v_{\pi_{\theta}}(s_t)$, i.e. estimation of advantage of taking action a_t from state s_t.
Returns of a policy in terms of another

For two policies π and $\tilde{\pi}$

$$E_{\tilde{\pi}}[G_0] = E_{\pi}[G_0] + E_{\tilde{\pi}}\left[\sum_{t=0}^{\infty} \gamma^t d_{\pi}(S_t, A_t)\right]$$
For two policies π and $\tilde{\pi}$

$$E_{\tilde{\pi}}[G_0] = E_{\pi}[G_0] + E_{\tilde{\pi}}[\sum_{t=0}^{\infty} \gamma^t d_\pi(S_t, A_t)]$$

- G_0: return of the episode, i.e. $G_0 = \sum_{t=0}^{\infty} \gamma^t R_{t+1}$.

• Optimize left-hand side by optimizing $E_{\tilde{\pi}}[\sum_{t=0}^{\infty} \gamma^t d_\pi(S_t, A_t)]$ with respect to $\tilde{\pi}$.
For two policies π and $\tilde{\pi}$

$$E_{\tilde{\pi}}[G_0] = E_{\pi}[G_0] + E_{\tilde{\pi}}[\sum_{t=0}^{\infty} \gamma^t d_\pi(S_t, A_t)]$$

- G_0: return of the episode, i.e. $G_0 = \sum_{t=0}^{\infty} \gamma^t R_{t+1}$.
- Optimize left-hand side by optimizing $E_{\tilde{\pi}}[\sum_{t=0}^{\infty} \gamma^t d_\pi(S_t, A_t)]$ with respect to $\tilde{\pi}$.
Returns of a policy in terms of another

For two policies π and $\tilde{\pi}$

$$E_{\tilde{\pi}}[G_0] = E_{\pi}[G_0] + E_{\tilde{\pi}}\left[\sum_{t=0}^{\infty} \gamma^t d_\pi(S_t, A_t)\right]$$

- G_0: return of the episode, i.e. $G_0 = \sum_{t=0}^{\infty} \gamma^t R_{t+1}$.
- Optimize left-hand side by optimizing $E_{\tilde{\pi}}[\sum_{t=0}^{\infty} \gamma^t d_\pi(S_t, A_t)]$ with respect to $\tilde{\pi}$.
- Or? We will rewrite and simplify problem.
Visitation frequencies

- Assume discrete state and action spaces
Visitation frequencies

- Assume discrete state and action spaces
- Let ρ_π be the unnormalized discounted visitation frequencies

$$\rho_\pi(s) = P_\pi(S_0 = s) + \gamma P_\pi(S_1 = s) + \gamma^2 P_\pi(S_2 = s) + \ldots$$
Visitation frequencies

• Assume discrete state and action spaces

Let ρ_π be the unnormalized discounted visitation frequencies

$$\rho_\pi(s) = P_\pi(S_0 = s) + \gamma P_\pi(S_1 = s) + \gamma^2 P_\pi(S_2 = s) + \ldots$$

• $S_0 \sim \rho_0$

• Actions are chosen according to π.
Visitation frequencies

- Assume discrete state and action spaces
- Let ρ_{π} be the unnormalized discounted visitation frequencies

$$\rho_{\pi}(s) = P_{\pi}(S_0 = s) + \gamma P_{\pi}(S_1 = s) + \gamma^2 P_{\pi}(S_2 = s) + \ldots$$

- $S_0 \sim \rho_0$
- Actions are chosen according to π.
- This function often also called (discounted) occupancy measure.
Rewrite objective

\[
E_{\tilde{\pi}}\left[\sum_{t=0}^{\infty} \gamma^t d_\pi(S_t, A_t) \right] = \sum_{t=0}^{\infty} \sum_s \sum_a P_{\tilde{\pi}}(S_t = s, A_t = a) \gamma^t d_\pi(s, a)
\]

\[
= \sum_{t=0}^{\infty} \sum_s \sum_a P_{\tilde{\pi}}(S_t = s) \tilde{\pi}(a|s) \gamma^t d_\pi(s, a)
\]

\[
= \sum_s \sum_{t=0}^{\infty} \gamma^t P_{\tilde{\pi}}(S_t = s) \sum_a \tilde{\pi}(a|s) d_\pi(s, a)
\]

\[
= \sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s) d_\pi(s, a)
\]
Rewrite objective

\[E_{\tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t d_{\pi}(S_t, A_t) \right] = \sum_{t=0}^{\infty} \sum_s \sum_a P_{\tilde{\pi}}(S_t = s, A_t = a) \gamma^t d_{\pi}(s, a) \]

\[= \sum_{t=0}^{\infty} \sum_s \sum_a P_{\tilde{\pi}}(S_t = s) \tilde{\pi}(a|s) \gamma^t d_{\pi}(s, a) \]

\[= \sum_s \sum_{t=0}^{\infty} \gamma^t P_{\tilde{\pi}}(S_t = s) \sum_a \tilde{\pi}(a|s) d_{\pi}(s, a) \]

\[= \sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s) d_{\pi}(s, a) \]

Increasing \(\tilde{\pi}(a|s) \) for positive advantages \(d_{\pi}(s, a) \) leads to improvement?
Policy iteration revisited

If for all states s

$$\sum_a \tilde{\pi}(a|s)d_\pi(s, a) \geq 0$$

we are indeed guaranteed that $\tilde{\pi} \geq \pi$.
Policy iteration revisited

If for all states s

$$\sum_a \tilde{\pi}(a|s)d_{\pi}(s, a) \geq 0$$

we are indeed guaranteed that $\tilde{\pi} \geq \pi$. Note that our derivations imply the policy iteration theorem, where we defined our new policy as

$$\tilde{\pi}(s) := \arg\max_a q_{\pi}(s, a) = \arg\max_a d_{\pi}(s, a)$$
If for all states s

$$\sum_a \tilde{\pi}(a|s)d_\pi(s, a) \geq 0$$

we are indeed guaranteed that $\tilde{\pi} \geq \pi$. Note that our derivations imply the policy iteration theorem, where we defined our new policy as

$$\tilde{\pi}(s) := \arg\max_a q_\pi(s, a) = \arg\max_a d_\pi(s, a)$$

We will here look at stochastic parametrized families of policies $\pi_\theta, \theta \in \Theta$.
Ignoring change in state-visitation frequencies

Optimizing

$$\sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s) d_{\pi}(s, a)$$

is too difficult due to complex effect of change in state-visitation frequencies.
Ignoring change in state-visitation frequencies

Optimizing

\[\sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s)d_{\pi}(s, a) \]

is too difficult due to complex effect of change in state-visitation frequencies. Thus we define the simpler function

\[L(\tilde{\pi}) = \sum_s \rho_{\pi}(s) \sum_a \tilde{\pi}(a|s)d_{\pi}(s, a) \]
Optimizable II

\[L(\tilde{\pi}) := \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s)d_{\pi}(s, a) \]

\[= \sum_{t=0}^{\infty} \sum_{s} P_{\pi}(S_t = s) \sum_{a} \tilde{\pi}(a|s) \gamma^t d_{\pi}(s, a) \]

\[= \sum_{t=0}^{\infty} \sum_{s} P_{\pi}(S_t = s) \sum_{a} \pi(a|s) \frac{\tilde{\pi}(a|s)}{\pi(a|s)} \gamma^t d_{\pi}(s, a) \]

\[= \sum_{t=0}^{\infty} \sum_{s} \sum_{a} P_{\pi}(S_t = s) \pi(a|s) \frac{\tilde{\pi}(a|s)}{\pi(a|s)} \gamma^t d_{\pi}(s, a) \]

\[= \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \frac{\tilde{\pi}(A_t|S_t)}{\pi(A_t|S_t)} \gamma^t d_{\pi}(S_t, A_t) \right] \]
Approximation

Can we optimize $L(\tilde{\pi})$?
Approximation

Can we optimize $L(\tilde{\pi})$?

Approximate with sample

$$L(\tilde{\pi}) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau^{(i)}-1} \frac{\tilde{\pi}(a_{t}^{(i)}|s_{t}^{(i)})}{\pi(a_{t}^{(i)}|s_{t}^{(i)})} \gamma^{t} \hat{d}_{t}^{(i)}$$
Approximation

Can we optimize $L(\tilde{\pi})$?

Approximate with sample

$$L(\tilde{\pi}) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau^{(i)}-1} \frac{\tilde{\pi}(a_{t}^{(i)} | s_{t}^{(i)})}{\pi(a_{t}^{(i)} | s_{t}^{(i)})} \gamma^{t} \hat{d}_{t}^{(i)}$$

- Let \hat{E} denote the empirical distribution, then the problem may be restated as

$$\max_{\tilde{\pi}} \hat{E} \left[\frac{\tilde{\pi}(a_{t} | s_{t})}{\pi(a_{t} | s_{t})} \gamma^{t} \hat{d}_{t} \right]$$
Approximation

Can we optimize $L(\tilde{\pi})$?

Approximate with sample

$$L(\tilde{\pi}) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\tau(i)-1} \tilde{\pi}(a_t(i) \mid s_t(i)) \pi(a_t(i) \mid s_t(i))^{t} \hat{d}_t(i)$$

• Let \hat{E} denote the empirical distribution, then the problem may be restated as

$$\max_{\tilde{\pi}} \hat{E} \left[\frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} \gamma^t \hat{d}_t \right]$$

• Note: We have ignored the factor $\sum_{i=1}^{N} \tau(i) / N$, as it does not affect solution.

• Note: Going forward we will ignore the factor γ^t as well. Might argue that we care equally about $E_{\tilde{\pi}}[G_t]$ for any t rather than just $E_{\tilde{\pi}}[G_0]$. γ still influences solution through the return.
Conservative policy updates

- Don’t change policy too much as we are only approximating.
- Sample new “dataset” regularly
 - Policy iteration algorithm
PPO - objective

\[\pi_\theta, \theta \in \Theta. \] Let \(\theta_{\text{old}} \) be the parameters of the policy we have sampled from. Define

\[u_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \]
PPO - objective

\(\pi_{\theta}, \theta \in \Theta \). Let \(\theta_{\text{old}} \) be the parameters of the policy we have sampled from. Define

\[
 u_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}
\]

Let clip(\(x \), lower, upper) := min(max(\(x \), lower), upper), then define the surrogate objective as

\[
 L^{\text{PPO}}(\theta) = \hat{E}[\min(u_t(\theta)\hat{d}_t, \text{clip}(u_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{d}_t)]
\]

where \(\epsilon \) is a hyperparameter, e.g. \(\epsilon = 0.2 \).
PPO - intuition

\[L^{PPO}(\theta) = \hat{E}[\min(u_t(\theta)\hat{d}_t, \text{clip}(u_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{d}_t)] \]

where \(\epsilon \) is a hyperparameter, e.g. \(\epsilon = 0.2 \).
PPO - intuition

\[L^{PPO}(\theta) = \hat{E}[\min(u_t(\theta) \hat{d}_t, \text{clip}(u_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{d}_t)] \]

where \(\epsilon \) is a hyperparameter, e.g. \(\epsilon = 0.2 \).

- The first term is the same as our surrogate objective from above
L^{PPO}(\theta) = \hat{E}[\min(u_t(\theta)\hat{d}_t, \text{clip}(u_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{d}_t)]

where \(\epsilon\) is a hyperparameter, e.g. \(\epsilon = 0.2\).

- The first term is the same as our surrogate objective from above
- The second term removes incentive to move too far away from \(\pi_{\theta_{\text{old}}}\).
PPO - intuition

\[L^{PPO}(\theta) = \hat{E}[\min(u_t(\theta) \hat{d}_t, \text{clip}(u_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{d}_t)] \]

where \(\epsilon \) is a hyperparameter, e.g. \(\epsilon = 0.2 \).

- The first term is the same as our surrogate objective from above
- The second term removes incentive to move too far away from \(\pi_{\theta_{\text{old}}} \).
- Take minimum to get \textit{pessimistic} bound
Policy evaluation

- So far looked at policy *improvement* step. Need policy *evaluation* as well.
Policy evaluation

- So far looked at policy *improvement* step. Need policy *evaluation* as well.
- May use any of the techniques we have learned for estimation of value functions.
Policy evaluation

- So far looked at policy *improvement* step. Need policy *evaluation* as well.
- May use any of the techniques we have learned for estimation of value functions.

As an example may fit value function v_{η} by e.g. minimizing loss

$$l(\eta) = \frac{1}{2} (g_t - v_{\eta}(s_t))^2$$
Simultaneous policy evaluation and improvement

To be able to share parameters between value function and policy function, we may combine policy evaluation and policy improvement steps, at each step optimizing

$$L = \hat{E}[L_t^{PPO}(\theta) - c (g_t - v_\eta(s_t))^2]$$

- L_t^{PPO} is an element in L^{PPO}.
- $c > 0$ is a hyperparameter.
Simultaneous policy evaluation and improvement

To be able to share parameters between value function and policy function, we may combine policy evaluation and policy improvement steps, at each step optimizing

$$L = \hat{E}[L_{t}^{PPO}(\theta) - c (g_t - v_\eta(s_t))^2]$$

- L_t^{PPO} is an element in L^{PPO}.
- $c > 0$ is a hyperparameter.
- Differentiate L both with respect to η and θ.
- η and θ may now actually overlap.
Algorithm 2 PPO, Actor-Critic Style

Initialize value network v_η with random weights.
Initialize policy network π_θ with random weights.
Initialize $\theta_{old} = \theta$.

for iteration $= 1, 2, \ldots$ do
 for $i = 1, N$ do
 Run policy $\pi_{\theta_{old}}$ in environment (possibly limit time steps)
 Compute advantage estimates $\hat{d}_1, \ldots, \hat{d}_{\tau(i)}$
 end for
 Set surrogate objective L based on the sampled data.
 Optimize surrogate L wrt. η and θ, for K epochs and
 minibatch size $M \leq \sum_{i=1}^{N} \tau(i)$.
 $\theta_{old} \leftarrow \theta$.
end for
Section 4

Bibliography
Deep Q-Networks (DQN)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller.

Playing atari with deep reinforcement learning.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning.

Hado Van Hasselt, Arthur Guez, and David Silver.

Deep reinforcement learning with double q-learning.

Trust region policy optimization.
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms.