Lecture 5.3
Camera calibration

Thomas Opsahl
Introduction

For finite projective cameras, the correspondence between points in the world and points in the image can be described by the simple model

\[P = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} [R \ t] \]

This camera model is typically not good enough for accurate geometrical computations based on images.
Introduction

• Since light enters the camera through a lens instead of a pinhole, most cameras suffer from some kind of distortion

• This kind of distortion can be modeled and compensated for

• A radial distortion model can look like this
 \[\tilde{x} = x(1 + \kappa_1 (x^2 + y^2) + \kappa_2 (x^2 + y^2)^2)\]
 \[\tilde{y} = y(1 + \kappa_1 (x^2 + y^2) + \kappa_2 (x^2 + y^2)^2)\]

 where \(\kappa_1\) and \(\kappa_2\) are the radial distortion parameters
Introduction

• When we calibrate a camera we typically estimate the camera calibration matrix K together with distortion parameters.

• A model $K[R \ t]$, using such an estimated K, does not in general describe the correspondence between points in the world and points in the image.

• Instead it describes the correspondence between points in the world and points in a undistorted image – an image where the distortion effects have been removed.

Images: http://www.robots.ox.ac.uk/~vgg/hzbook/
Undistortion

• So earlier when we estimated homographies between overlapping images, we should really have been working with undistorted images!

• How to undistort?
 – Matlab

```
[undist_img, newOrigin] = undistortImage(img, cameraParams);
undistortedPoints = undistortPoints(points, cameraParams);
```

 – OpenCV
```
cv::undistort(img, undist_img, P, distCoeffs);
cv::undistortPoints(pts, undist_pts, P, distCoeffs);
```

• The effect of undistortion is that we get an image or a set of points that satisfy the perspective camera model \(\tilde{u} = P \tilde{X} \) much better than the original image or points
 – So we can continue working with the simple model
Camera calibration

• Camera calibration is the process of estimating the matrix K together with any distortion parameter that we use to describe radial/tangential distortion

• We have seen how K can be found directly from the camera matrix P

• The estimation of distortion parameters can be baked into this

• One of the most common calibration algorithms was proposed by Zhegyou Zhang in the paper ”A Flexible New Technique for Camera Calibration” in 2000
 – OpenCV: `calibrateCamera`
 – Matlab: Camera calibration app

• This calibration algorithm makes use of multiple images of an asymmetric chessboard
Zhang’s method in short

- Zhang’s method requires that the calibration object is planar

- Then the 3D-2D relationship is described by a homography

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} = K \begin{bmatrix}
 r_1 & r_2 & r_3 & t
\end{bmatrix} \begin{bmatrix}
 X \\
 Y \\
 0 \\
 1
\end{bmatrix} = K \begin{bmatrix}
 r_1 & r_2 & t
\end{bmatrix} \begin{bmatrix}
 X \\
 Y \\
 1
\end{bmatrix} = H \begin{bmatrix}
 X \\
 Y \\
 1
\end{bmatrix}
\]
Zhang’s method in short

- This observation puts 2 constraints on the intrinsic parameters due to the fact that R is orthonormal

\[
\begin{align*}
 r_1^T r_2 &= 0 \\
 r_1^T r_1 &= r_2^T r_2
\end{align*}
\]

\[
\Rightarrow \begin{cases}
 h_1^T K^{-T} K^{-1} h_2 = 0 \\
 h_1^T K^{-T} K^{-1} h_1 = h_2^T K^{-T} K^{-1} h_2
\end{cases}
\]

- Where $H = \begin{bmatrix} h_1^T & h_2^T & h_3^T \end{bmatrix}$ and $K^{-T} = (K^T)^{-1} = (K^{-1})^T$

- So for each 3D-2D correspondence we get 2 constraints on the matrix $B = K^{-T} K^{-1}$

- Next step is to isolate the unknown parameters in order to compute B
Zhang’s method in short

- B can be computed directly from K

\[
B = K^{-T} K^{-1} = \begin{bmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{f_u^2} & -\frac{s}{f_u^2 f_v} & \frac{v_0 s - u_0 f_v}{f_u^2 f_v} \\
 -\frac{s}{f_u^2 f_v} & \frac{s^2}{f_u^2 f_v^2} + \frac{1}{f_v^2} & \frac{s (v_0 s - u_0 f_v)}{f_u^2 f_v^2} - \frac{v_0}{f_v^2} \\
 \frac{v_0 s - u_0 f_v}{f_u^2 f_v} & \frac{s (v_0 s - u_0 f_v)}{f_u^2 f_v^2} - \frac{v_0}{f_v^2} & \frac{(v_0 s - u_0 f_v)^2}{f_u^2 f_v^2} + \frac{v_0^2}{f_v^2} + 1
\end{bmatrix}
\]

- We see that B is symmetric, so that we can represent it by the parameter vector

\[
b = [b_{11} \quad b_{12} \quad b_{22} \quad b_{13} \quad b_{23} \quad b_{33}]^T
\]
Zhang’s method in short

• If we denote

\[
v_{ij} = \begin{bmatrix}
 h_{i1}h_{j1} \\
 h_{i1}h_{j2} + h_{i2}h_{j1} \\
 h_{i2}h_{j2} \\
 h_{i3}h_{j1} + h_{i1}h_{j3} \\
 h_{i3}h_{j2} + h_{i2}h_{j3} \\
 h_{i3}h_{j3}
\end{bmatrix}
\]

then \(h_i^T B h_j = v_{ij}^T b \)

• Thus we have

\[
\begin{align*}
r_1^T r_2 &= 0 \\
r_1^T r_1 &= r_2^T r_2
\end{align*}
\Rightarrow
\begin{align*}
h_1^T B h_2 &= 0 \\
h_1^T B h_1 &= h_2^T B h_2
\end{align*}
\Leftrightarrow
\begin{bmatrix}
v_{12}^T \\
v_{11}^T - v_{22}^T
\end{bmatrix} b = \begin{bmatrix} 0 \\
0
\end{bmatrix}
\]
Zhang’s method in short

- Given N images of the planar calibration object we stack the equations to get a homogeneous system of linear equations which can be solved by SVD when $N \geq 3$

- From the estimated b we can recover all the intrinsic parameters

- The distortion coefficients are then estimated solving a linear least-squares problem

- Finally all parameters are refined iteratively

- More details in Zhang’s paper
Camera calibration in practice

- **OpenCV**
 - Camera calibration tutorial
 - We'll test it out in the lab

- **Matlab**
 - App: Camera Calibrator
 - This opens a new window
Camera calibration in practice

• Add Images and specify the size of the chessboard squares
 – Chessboard detection starts
Camera calibration in practice

• Add Images and specify the size of the chessboard squares
 – Chessboard detection starts

• Inspect the correctness of detection and choose what to estimate
 – 2/3 radial distortion coeffs?
 – Tangential distortion?
 – Skew?

• Calibrate
Camera calibration in practice

- Add Images and specify the size of the chessboard squares
 - Chessboard detection starts
- Inspect the correctness of detection and choose what to estimate
 - 2/3 radial distortion coeffs?
 - Tangential distortion?
 - Skew?
- Calibrate
- Export to a Matlab variable
Camera calibration in practice

- Add Images and specify the size of the chessboard squares
 - Chessboard detection starts
- Inspect the correctness of detection and choose what to estimate
 - 2/3 radial distortion coeffs?
 - Tangential distortion?
 - Skew?
- Calibrate
- Export to a Matlab variable
Summary

• Calibration
 – Zhang's method using planar 3D-points
 – Matlab app
 – DLT method: Est P, decompose into $K[R \quad t]$

• Undistortion
 – For geometrical computations we work on undistorted images/feature points

• Additional reading
 – Szeliski: 6.3

• Optional reading
 – *A flexible new technique for camera calibration*, by Z. Zhang