Lecture 7.2
 Triangulation

Thomas Opsahl

Introduction

- We have seen that two perspective cameras observing the same points must satisfy the epipolar constraint
- The essential matrix $E=[t]_{\times} R$

$$
\widetilde{\boldsymbol{x}}^{\prime T} E \widetilde{\boldsymbol{x}}=0
$$

- The fundamental matrix $F=K^{\prime-T} E K^{-1}$

$$
\widetilde{\boldsymbol{u}}^{\prime T} F \widetilde{\boldsymbol{u}}=0
$$

- Being observed by two perspective cameras also puts a strong geometric constraint on the observed points \boldsymbol{X}_{i}

$$
\begin{aligned}
& P \boldsymbol{X}_{i}=\boldsymbol{u}_{i} \\
& P^{\prime} \boldsymbol{X}_{i}=\boldsymbol{u}_{i}^{\prime}
\end{aligned}
$$

- In the following we will look at how we can estimate 3D points X_{i} from known camera matrices P, P^{\prime} and 2D correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}^{\prime}$

Introduction

- Assume that we know the camera matrices P, P^{\prime} and 2D correspondences $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}^{\prime}$
- In order to determine the 3D point \boldsymbol{X}_{i} it is tempting to back-project the two image points and determine their intersection
- But due to noise, the two rays in 3D will "never" truly intersect, so we need to estimate a best solution to the problem
- Several ways to approach the problem depending on what we choose to optimize over
- Only errors in $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}^{\prime}$?
- Errors in $\boldsymbol{u}_{i} \leftrightarrow \boldsymbol{u}_{i}^{\prime}, P$ and $P^{\prime} ?$

The 3D mid-point
 Minimizing the 3D error

- One natural estimate for X_{i} is the midpoint on the shortest line between to two back-projected rays
- This minimize the 3D error, but typically not the reprojection error

$$
\begin{aligned}
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, P \boldsymbol{X}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, P^{\prime} \boldsymbol{X}_{i}\right)^{2} \\
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, \widehat{\boldsymbol{u}}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, \widehat{\boldsymbol{u}}_{i}^{\prime}\right)^{2}
\end{aligned}
$$

\{C\}

\widehat{u}_{i}
$\hat{u}_{i} \cdot u_{i}$

The 3D mid-point

Minimizing the 3D error

- One natural estimate for \boldsymbol{X}_{i} is the midpoint on the shortest line between to two back-projected rays
- This minimize the 3D error, but typically not the reprojection error

$$
\begin{aligned}
\epsilon_{i} & =d\left(\boldsymbol{u}_{i}, P \boldsymbol{X}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, P^{\prime} \boldsymbol{X}_{i}\right)^{2} \\
\epsilon_{i} & =d\left(\boldsymbol{u}_{i}, \widehat{\boldsymbol{u}}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, \widehat{\boldsymbol{u}}_{i}^{\prime}\right)^{2}
\end{aligned}
$$

- The difference becomes clear when X_{i} is much closer to one of the cameras than the other

```
u
```


The 3D mid-point

Minimizing the 3D error

- One natural estimate for \boldsymbol{X}_{i} is the midpoint on the shortest line between to two back-projected rays
- This minimize the 3D error, but typically not the reprojection error

$$
\begin{aligned}
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, P \boldsymbol{X}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, P^{\prime} \boldsymbol{X}_{i}\right)^{2} \\
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, \widehat{\boldsymbol{u}}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, \widehat{\boldsymbol{u}}_{i}^{\prime}\right)^{2}
\end{aligned}
$$

- The difference becomes clear when X_{i} is much closer to one of the cameras than the other

The 3D mid-point

Minimizing the 3D error

- One natural estimate for \boldsymbol{X}_{i} is the midpoint on the shortest line between to two back-projected rays
- This minimize the 3D error, but typically not the reprojection error

$$
\begin{aligned}
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, P \boldsymbol{X}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, P^{\prime} \boldsymbol{X}_{i}\right)^{2} \\
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, \widehat{\boldsymbol{u}}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, \widehat{\boldsymbol{u}}_{i}^{\prime}\right)^{2}
\end{aligned}
$$

- The difference becomes clear when X_{i} is much closer to one of the cameras than the other

The 3D mid-point

Minimizing the 3D error

- One natural estimate for \boldsymbol{X}_{i} is the midpoint on the shortest line between to two back-projected rays
- This minimize the 3D error, but typically not the reprojection error

$$
\begin{aligned}
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, P \boldsymbol{X}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, P^{\prime} \boldsymbol{X}_{i}\right)^{2} \\
& \epsilon_{i}=d\left(\boldsymbol{u}_{i}, \widehat{\boldsymbol{u}}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, \widehat{\boldsymbol{u}}_{i}^{\prime}\right)^{2}
\end{aligned}
$$

- The difference becomes clear when \boldsymbol{X}_{i} is much closer to one of the cameras than the other
- Another disadvantage of this method is that it does not extend naturally to situations when \boldsymbol{X}_{i} is observed by more than two cameras

Linear triangulation

Minimizing the algebraic error

- This algorithm uses the two equations for perspective projection to solve for the 3D point that are optimal in a least squares sense
- Each perspective camera model gives rise to two equations on the three entries of \boldsymbol{X}_{i}

$$
\begin{aligned}
& \tilde{\boldsymbol{u}}_{i}=P \tilde{\boldsymbol{X}}_{i} \\
& \Downarrow \\
& \tilde{\boldsymbol{u}}_{i}^{\prime}=P^{\prime} \tilde{\boldsymbol{X}}_{i} \\
& \Downarrow \\
& \tilde{\boldsymbol{u}}_{i} \times P \tilde{X}_{i}=0 \\
& {\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \times\left[\begin{array}{c}
\boldsymbol{p}^{1 T} \\
\boldsymbol{p}^{2 T} \\
\boldsymbol{p}^{3 T}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& \tilde{\boldsymbol{u}}_{i}^{\prime} \times P^{\prime} \tilde{\boldsymbol{X}}_{i}=\mathbf{0} \\
& {\left[\begin{array}{l}
u_{i}^{\prime} \\
v_{i}^{\prime} \\
1
\end{array}\right] \times\left[\begin{array}{c}
\boldsymbol{p}^{\prime 1 T} \\
\boldsymbol{p}^{\prime 2 T} \\
\boldsymbol{p}^{\prime 3 T}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& {\left[\begin{array}{c}
v_{i} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{2 T} \\
\boldsymbol{p}^{1 T}-u_{i} \boldsymbol{p}^{3 T} \\
u_{i} \boldsymbol{p}^{2 T}-v_{i} \boldsymbol{p}^{1 T}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& {\left[\begin{array}{c}
v_{i}^{\prime} \boldsymbol{p}^{\prime 3 T}-\boldsymbol{p}^{\prime 2 T} \\
\boldsymbol{p}^{\prime 2 T}-u_{i}^{\prime} \boldsymbol{p}^{\prime 3 T} \\
u_{i}^{\prime} \boldsymbol{p}^{\prime 2 T}-v_{i}^{\prime} \boldsymbol{p}^{\prime \prime T}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& \Uparrow \\
& {\left[\begin{array}{l}
v_{i} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{2 T} \\
u_{i} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{1 T}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& {\left[\begin{array}{l}
v_{i}^{\prime} \boldsymbol{p}^{\prime 3 T}-\boldsymbol{p}^{\prime 2 T} \\
u_{i}^{\prime} \boldsymbol{p}^{\prime 3 T}-\boldsymbol{p}^{\prime T T}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}}
\end{aligned}
$$

Linear triangulation

Minimizing the algebraic error

- This algorithm uses the two equations for perspective projection to solve for the 3D point that are optimal in a least squares sense
- Each perspective camera model gives rise to two equations on the three entries of \boldsymbol{X}_{i}
- Combining these equations we get an over determined homogeneous system of linear equations that we can solve with SVD

$$
\begin{aligned}
& {\left[\begin{array}{c}
v_{i} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{2 T} \\
u_{i} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{1 T} \\
v_{i}^{\prime} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{\prime 2 T} \\
u_{i}^{\prime} \boldsymbol{p}^{\prime 3 T}-\boldsymbol{p}^{\prime 1 T}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& {\left[\begin{array}{llll}
v_{i} p_{31}-p_{21} & v_{i} p_{32}-p_{22} & v_{i} p_{33}-p_{23} & v_{i} p_{34}-p_{24} \\
u_{i} p_{31}-p_{11} & u_{i} p_{32}-p_{12} & u_{i} p_{33}-p_{13} & u_{i} p_{34}-p_{14} \\
v_{i}^{\prime} p_{31}^{\prime}-p_{21}^{\prime} & v_{i}^{\prime} p_{32}^{\prime}-p_{22}^{\prime} & v_{1}^{\prime} p_{33}^{\prime}-p_{23}^{\prime} & v_{i}^{\prime} p_{34}^{\prime}-p_{24}^{\prime} \\
u_{i}^{\prime} p_{31}^{\prime}-p_{11}^{\prime} & u_{i}^{\prime} p_{32}^{\prime}-p_{12}^{\prime} & u_{i}^{\prime} p_{33}^{\prime}-p_{13}^{\prime} & u_{i}^{\prime} p_{34}^{\prime}-p_{14}^{\prime}
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& A \tilde{X}_{i}=0
\end{aligned}
$$

Linear triangulation

Minimizing the algebraic error

- This algorithm uses the two equations for perspective projection to solve for the 3D point that are optimal in a least squares sense
- Each perspective camera model gives rise to two equations on the three entries of \boldsymbol{X}_{i}
- Combining these equations we get an over determined homogeneous system of linear equations that we can solve with SVD
- The minimized algebraic error is not geometrically meaningful, but the method extends naturally to the case when \boldsymbol{X}_{i} is observed in more than two images

$$
\begin{aligned}
& {\left[\begin{array}{c}
v_{i} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{2 T} \\
u_{i} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{1 T} \\
v_{i}^{\prime} \boldsymbol{p}^{3 T}-\boldsymbol{p}^{2 T} \\
u_{i}^{\prime} \boldsymbol{p}^{\prime 3 T}-\boldsymbol{p}^{\prime 1 T} \\
\vdots
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& {\left[\begin{array}{cccc}
v_{i} p_{31}-p_{21} & v_{i} p_{32}-p_{22} & v_{i} p_{33}-p_{23} & v_{i} p_{34}-p_{24} \\
u_{i} p_{31}-p_{11} & u_{i} p_{32}-p_{12} & u_{i} p_{33}-p_{13} & u_{i} p_{34}-p_{14} \\
v_{i}^{\prime} p_{31}^{\prime}-p_{21}^{\prime} & v_{i}^{\prime} p_{32}^{\prime}-p_{22}^{\prime} & v_{1}^{\prime} p_{33}^{\prime}-p_{23}^{\prime} & v_{i}^{\prime} p_{34}^{\prime}-p_{24}^{\prime} \\
u_{i}^{\prime} p_{31}^{\prime}-p_{11}^{\prime} & u_{i}^{\prime} p_{32}^{\prime}-p_{12}^{\prime} & u_{i}^{\prime} p_{33}^{\prime}-p_{13}^{\prime} & u_{i}^{\prime} p_{34}^{\prime}-p_{14}^{\prime} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right] \tilde{\boldsymbol{X}}_{i}=\mathbf{0}} \\
& A \tilde{\boldsymbol{X}}_{i}=\mathbf{0}
\end{aligned}
$$

Example

- Two views with known relative pose

Example

- Two views with known relative pose
- Matching feature points

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

- Sparse 3D reconstruction of the scene by triangulation

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

- Sparse 3D reconstruction of the scene by triangulation

Example

- Two views with known relative pose
- Matching feature points
- After filtering by the epipolar constraint
- Keeping matches that are within ± 0.5 pixels of the epipolar line

- Sparse 3D reconstruction of the scene by triangulation

Non-linear triangulation

Minimizing a geometric error

- Compared to the previous algorithms it would be better to find the 3d point \boldsymbol{X}_{i} that minimize a meaningful geometric error, like the reprojection error

$$
\epsilon_{i}=d\left(\boldsymbol{u}_{i}, P \boldsymbol{X}_{i}\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, P^{\prime} \boldsymbol{X}_{i}\right)^{2}
$$

- It can be shown that if the measurement noise in image points is Gaussian with mean equal to zero, the minimizing the reprojection error gives the Maximum Likelihood estimate of \boldsymbol{X}_{i}
- At first glance, this minimization appears to be over the three parameters in \boldsymbol{X}_{i}, but under the assumption that P and P^{\prime} are error free the problem can be reduced to a minimization over one parameter
\{C\}

$$
d\left(\boldsymbol{u}_{i}, P \boldsymbol{X}_{i}\right)
$$

Non-linear triangulation

Minimizing a geometric error

- If P and P^{\prime} are error free, then the epipolar geometry is error free
- We have a unique baseline which define all possible epipolar planes as a 1-parameter family
- We have unique epipoles that all epipolar lines must pass through, so we have 1-parameter families of epipolar lines as well
- By requiring that both reprojected points lie on the same epipolar plane, the minimization problem can be reformulated in terms of the 1parameter families of epipolar lines

Non-linear triangulation

Minimizing a geometric error

- If P and P^{\prime} are error free, then the epipolar geometry is error free
- We have a unique baseline which define all possible epipolar planes as a 1-parameter family
- We have unique epipoles that all epipolar lines must pass through, so we have 1-parameter families of epipolar lines as well
- By requiring that both reprojected points lie on the same epipolar plane, the minimization problem can be reformulated in terms of the 1parameter families of epipolar lines

$$
\epsilon_{i}=d\left(\boldsymbol{u}_{i}, \boldsymbol{l}(t)\right)^{2}+d\left(\boldsymbol{u}_{i}^{\prime}, \boldsymbol{l}^{\prime}(t)\right)^{2}
$$

- To find the t that minimize the reprojection error one has to minimize a $6^{\text {th }}$ degree polynomial in t

- More details about this method and comparison with other methods can be found in the 1997 paper Triangulation by R. I. Hartley and P. Sturm

Summary

- Triangulation - Estimate a 3D point \boldsymbol{X}_{i} for a noisy 2D correspondence under the assumption that camera matrices P and P^{\prime} are known
- Minimal 3D error - Choose X_{i} to be the midpoint between back projected image points
- Minimal algebraic error - Combine the two perspective models to get a homogeneous system of linear equations, then determine X_{i} by SVD
- Minimal reprojection error - Determine the epipolar plane (and points $\widehat{\boldsymbol{u}}_{i}$ and $\widehat{\boldsymbol{u}}_{i}^{\prime}$) that minimize the reprojection error by minimizing a $6{ }^{\text {th }}$ order polynomial
- Additional reading
- Szeliski: 7.1
- Optional reading
- R. I. Hartley and P. Sturm, Triangulation (1997)

