Lecture 9.2
Image Feature Extraction

Idar Dyrdal
Classification system

Camera → Feature Extractor (Image Processing) → Classifier
Image Analysis

Typical steps:
• Pre-processing
• Segmentation (object detection)
• Feature extraction
• Feature selection
• Classifier training
• Evaluation of classifier performance.
Features for image analysis

Applications:
- Remote sensing
- Medical imaging
- Character recognition
- Robot Vision
- …

Major goal of image feature extraction:

Given an image, or a region within an image, generate the features that will subsequently be fed to a classifier in order to classify the image in one of the possible classes.

Feature extraction

The goal is to generate features that exhibit high information-packing properties:

• Extract the information from the raw data that is most relevant for discrimination between the classes
• Extract features with low within-class variability and high between class variability
• Discard redundant information.

• The information in an image \(f[i,j] \) must be reduced to enable reliable classification (generalization)
• A 64x64 image \(\rightarrow \) 4096-dimensional feature space!
“Curse of dimensionality”

Error rate

New data

Training data

\[
\vec{x} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_d
\end{bmatrix}
\]
Feature types (regional features)

- Colour features
- Gray level features
- Shape features
- Histogram (texture) features
Shape features - example

Perimeter \((P)\)

Area \((A)\)

Possible shape feature: \(\frac{P^2}{A}\)
Moments

Geometric moments (order p,q):

\[m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q f(x, y) \, dx \, dy \approx \sum_i \sum_j i^p j^q f[i, j] \]

Central moments:

\[\mu_{pq} = \sum_i \sum_j (i - \bar{i})^p (j - \bar{j})^q f[i, j] \text{ where } \begin{cases} \bar{i} = \frac{m_{10}}{m_{00}} \\ \bar{j} = \frac{m_{01}}{m_{00}} \end{cases} \]
Binary images

\[f[i, j] = \begin{cases}
1 \Rightarrow \text{Object pixel} \\
0 \Rightarrow \text{Background pixel}
\end{cases} \]

Area: \[m_{00} = \sum_i \sum_j f[i, j] \]

Center of mass:

\[\begin{align*}
m_{10} &= \sum_i \sum_j i f[i, j] \Rightarrow \bar{i} = \frac{m_{10}}{m_{00}} \\
m_{01} &= \sum_i \sum_j j f[i, j] \Rightarrow \bar{j} = \frac{m_{01}}{m_{00}}
\end{align*} \]
Moments of inertia

\[\mu_{20} = \sum_i \sum_j (i - \tilde{i})^2 f[i, j] \]

\[\mu_{02} = \sum_i \sum_j (j - \tilde{j})^2 f[i, j] \]

\[\mu_{11} = \sum_i \sum_j (i - \tilde{i})(j - \tilde{j}) f[i, j] \]
Closest fitting ellipse

Orientation:

\[\theta = \frac{1}{2} \tan^{-1} \left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right) \]

Eccentrisity:

\[\epsilon = \frac{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}}{A} \]
Major an minor axes

\[a^2 = \frac{2(\mu_{20} + \mu_{02} + \sqrt{(\mu_{20} + \mu_{02})^2 + 4\mu_{11}^2})}{\mu_{00}} \]

\[b^2 = \frac{2(\mu_{20} + \mu_{02} - \sqrt{(\mu_{20} + \mu_{02})^2 + 4\mu_{11}^2})}{\mu_{00}} \]
Histogram (texture) features

- First order statistics (information related to the gray level distribution)
- Second order statistics (information related to spatial/relative distribution of gray level), i.e. second order histogram, co-occurrence matrix

Histogram:

\[P(I) = \frac{\text{Number of pixels with gray level } I}{\text{Total number of pixels in the region}} \]

Moments from gray level histogram:

\[m_p = E\{I^p\} = \sum_{l=0}^{L-1} I^p P(I), \quad p = 1, 2, \ldots \]

Entropy:

\[H = -E\{\ln P(I)\} = -\sum_{l=0}^{L-1} P(I) \ln P(I) \]

\[m_1 = E(I) = \text{Mean value of } I \]
Histogram (texture) features

Central moments:

\[\mu_p = E\{(I - E(I))^p\} = \sum_{l=0}^{L-1} (I - m_1)^p P(I), \quad p = 1, 2, \ldots \]

Features:

\[\mu_2 = \sigma^2 = \text{variance} \]
\[\mu_3 = \text{skewness} \]
\[\mu_4 = \text{kurtosis} \]
Feature selection

• A number of feature candidates may have been generated
• Using all candidates will easily lead to over training (unreliable classification of new data)
• Dimensionality reduction is required, i.e. feature selection!
• Exhaustive search impossible!
• Trial and error (select feature combination, train classifier, estimate error rate).
• Suboptimal search
• «Branch and Bound» search
• Linear or non-linear mappings to lower dimensional feature space.
Dimensionality reduction – linear transformations

- Projection of multidimensional feature vectors to a lower-dimensional feature space
- Example: Fishers linear discriminant provides a projection from a d-dimensional space (d>1) to a one-dimensional space in such a way that the separation between classes are maximized.
Summary

Image feature extraction:
• Feature extraction
• Feature selection

Read also: Szeliski 14.4