TWO-DIMENSIONAL METAMATERIAL

We have already seen how the concept of a metamaterial yields an analytic description of a planar periodic layer structure. Now let us apply the metamaterial concept to a doubly periodic array of cylinders. Let the relative permittivity be \(\varepsilon_1 \) inside the cylinders and \(\varepsilon_2 \) between the cylinders, and let the cylinder radius be \(a \).

Problem 1

Let us first consider the case with the E field pointing in the \(z \) direction along the cylinders, \(i.e., \) transverse magnetic (TM) polarization. In the metamaterial (low–frequency) limit, the E field is then approximately constant inside a unit cell of the photonic crystal. The effective relative permittivity \(\varepsilon_{zz} \) of the metamaterial is defined as the mean of the D field over the unit cell divided by the mean of the E field times \(\varepsilon_0 \) over the unit cell. Show that for a \(z \)-polarized field,

\[
\varepsilon_{zz} = \varepsilon_2 + (\varepsilon_1 - \varepsilon_2) f, \tag{1}
\]

where the fill factor \(f \) is the area of the cylinder relative to the area of the unit cell,

\[
f = \pi a^2/A_u = \pi a^2/(bh). \tag{2}
\]

The area \(A_u \) of the unit cell is the base line \(b \) times the height \(h \).

Problem 2

Let us then consider a TE-polarized field, with the E field lying in the \(x-y \) plane, perpendicular to the cylinders, again in the metamaterial limit. Limiting our analysis to a small fill factor, we may consider the E field to be approximately constant inside and between the cylinders. There is then a region near the outside of each cylinder where the field is not constant, and where we may use the low-frequency approximation that the E field is the gradient of a potential \(V(r, \varphi) \) that is continuous everywhere, and has the form

\[
V_1(r, \varphi) = -E_0 \frac{2\varepsilon_2}{\varepsilon_2 + \varepsilon_1} r \cos \varphi = -E_0 \frac{2\varepsilon_2}{\varepsilon_2 + \varepsilon_1} x \quad \text{for } r < a \quad \text{(inside the cylinder)} \tag{3}
\]

\[
V_2(r, \varphi) = -E_0 \left(r + \frac{\varepsilon_2 - \varepsilon_1 a^2}{\varepsilon_2 + \varepsilon_1} r \right) \cos \varphi = -E_0 \left(x + \frac{\varepsilon_2 - \varepsilon_1 a^2 x}{\varepsilon_2 + \varepsilon_1} \right) \cos \varphi \tag{4}
\]

\[
= -E_0 \left(x + \frac{\varepsilon_2 - \varepsilon_1 a^2 x}{\varepsilon_2 + \varepsilon_1} \right) \cos \varphi \quad \text{for } r > a \quad \text{(outside the cylinder)} \tag{5}
\]

Show that the potential (3) inside the cylinder yields a constant E field that points in the \(x \) direction and is equal to

\[
E_{x,1} = \frac{2\varepsilon_2}{\varepsilon_2 + \varepsilon_1} E_0. \tag{6}
\]

Problem 3

From (5), derive expressions for the \(x \) and \(y \) components of the E field outside the cylinder with radius \(a \). Show that the mean of the E field points in the \(x \) direction, when the mean is taken over the cross-sectional area outside the cylinder of radius \(a \) and inside the rectangular unit cell. Show that this mean is equal to \(E_0 \), regardless of the size of the unit cell.
Problem 4

Show that when the cylinders are far from each other, we get the following approximations for the means of E_x and D_x over the unit cell,

\[
\begin{align*}
\bar{E}_x & = \left(1 + \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + \varepsilon_1} f \right) E_0, \\
\bar{D}_x & = \varepsilon_2 \varepsilon_0 \left(1 - \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + \varepsilon_1} f \right) E_0,
\end{align*}
\]

resulting in the effective relative permittivity

\[
\varepsilon_{xx} \approx \varepsilon_2 \left(1 - \frac{2(\varepsilon_2 - \varepsilon_1)}{\varepsilon_2 + \varepsilon_1} f \right).
\]

Problem 5

Now let us consider the general case with cylinders that are not far from each other, but restrict ourselves to a rectangular unit cell with width b and height h. We note that if the E field is x-polarized in the center of the cylinder in a rectangular unit cell, the E field is purely x polarized in all the mirror planes of the structure, x-z planes and y-z planes going through the centers of the cylinders and in the middle between cylinders. We note that everywhere inside the unit cell,

\[
r < d = \frac{1}{2} \sqrt{b^2 + h^2}.
\]

Instead of a single cosine contribution like in (3), we then need a sum of cosine terms, a so-called multipole expansion, to represent the E field, both inside and outside the cylinder. Inside the cylinder (for $r < a$) we may use the following expressions for the x and y components of the E field

\[
\begin{align*}
E_{x,1}(r, \varphi) & = \sum_{m=0}^{M-1} E_m \frac{2\varepsilon_2}{\varepsilon_2 + \varepsilon_1} \frac{r^{2m}}{d^{2m}} \cos (2m\varphi), \\
E_{y,1}(r, \varphi) & = -\sum_{m=0}^{M-1} E_m \frac{2\varepsilon_2}{\varepsilon_2 + \varepsilon_1} \frac{r^{2m}}{d^{2m}} \sin (2m\varphi).
\end{align*}
\]

The corresponding expressions for the E field outside of the cylinders (for $r > a$) are

\[
\begin{align*}
E_{x,2}(r, \varphi) & = \sum_{m=0}^{M-1} E_m \left(\frac{r^{2m}}{d^{2m}} \cos (2m\varphi) - \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + \varepsilon_1} \frac{a^{4m+2}}{d^{2m}r^{2m+2}} \cos (2m\varphi + 2\varphi) \right), \\
E_{y,2}(r, \varphi) & = -\sum_{m=0}^{M-1} E_m \left(\frac{r^{2m}}{d^{2m}} \sin (2m\varphi) - \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + \varepsilon_1} \frac{a^{4m+2}}{d^{2m}r^{2m+2}} \sin (2m\varphi + 2\varphi) \right).
\end{align*}
\]

We note that for an x-polarized field in a rectangular unit cell, only terms with even multiples $2m$ of the angle φ are needed in the multipole expansions (11)-(14).

Show that with E_x and E_y given by the multipole expansions (11)-(14), the average of E_y over a rectangular unit cell is zero.

Problem 6 (Matlab)

We can find the expansion coefficients E_m in the series (11)-(14) via point matching. So let us require $E_y(r, \varphi)$ in (14) to be minimized in $2M - 1$ different positions around the unit cell, given by $2M - 1$ different values for the angle φ

\[
\varphi_p = \frac{\pi}{4M} p, \quad p = 1, 2, \ldots, (2M - 1).
\]
The corresponding distances from the origin are

\[r_p = \frac{b}{2 \cos \varphi_p} \quad \text{if} \quad \tan \varphi_p < h/b \quad \text{and} \quad r_p = \frac{h}{2 \sin \varphi_p} \quad \text{if} \quad \tan \varphi_p > h/b. \quad (16) \]

Use the \(2M-1\) equations obtained by setting \(E_y(r_p, \varphi_p)/E_0 = 0\) in (14) for \(p = 1, 2, \ldots (2M-1)\) to set up an overdetermined set of linear equations in Matlab and determine \(E_m/E_0\) for \(m = 1, 2, \ldots (M-1)\). Then compute the field in the middle between the cylinders, \(E_x(r = b/2, \varphi = 0)/E_0\). Do the calculation for \(\varepsilon_1 = 2, \varepsilon_2 = 1, \) and \(M = 10\) terms in the series expansion, for two cases of a rectangular unit cell, a tall cell with \(b = 3a\) and \(h = 4a\), and a wide cell with \(b = 4a\) and \(h = 3a\).

Hint: An overdetermined system of linear equations can be solved in Matlab with the help of the matrix divide operation.

Finally, do a numerical average over the unit cell to obtain \(\overline{E}_x\) and \(\overline{D}_x\) for both the tall and the wide unit cells, and compare the numerically computed averages with the formulas (7) and (8).

Updated 29 October, 2014.