Lecture 1.3
 Basic projective geometry

Thomas Opsahl

Motivation

- For the pinhole camera, the correspondence between observed 3D points in the world and 2D points in the captured image is given by straight lines through a common point (pinhole)
- This correspondence can be described by a mathematical model known as "the perspective camera model" or "the pinhole camera model"
- This model can be used to describe the imaging geometry of many modern cameras, hence it plays a central part in computer vision

Motivation

- Before we can study the perspective camera model in detail, we need to expand our mathematical toolbox
- We need to be able to mathematically describe the position and orientation of the camera relative to the world coordinate frame
- Also we need to get familiar with some basic elements of projective geometry, since this will make it MUCH easier to describe and work with the perspective camera model

Introduction

- We have seen that the pose of a coordinate frame $\{B\}$ relative to a coordinate frame $\{A\}$, denoted ${ }^{A} \xi_{B}$, can be represented as a homogeneous transformation ${ }^{A} T_{B}$ in 2D

$$
{ }^{A} \xi_{B} \mapsto{ }^{A} T_{B}=\left[\begin{array}{cc}
{ }^{A} R_{B} & { }^{A} \boldsymbol{t}_{B} \\
\boldsymbol{0} & 1
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & { }^{A} t_{B x} \\
r_{21} & r_{22} & { }^{A} t_{B x} \\
0 & 0 & 1
\end{array}\right] \in S E(2)
$$

Introduction

- We have seen that the pose of a coordinate frame $\{B\}$ relative to a coordinate frame $\{A\}$, denoted ${ }^{A} \xi_{B}$, can be represented as a homogeneous transformation ${ }^{A} T_{B}$ in 2D and 3D

$$
{ }^{A} \xi_{B} \quad \mapsto \quad{ }^{A} \boldsymbol{T}_{B}=\left[\begin{array}{cc}
{ }^{A} R_{B} & { }^{A} \boldsymbol{t}_{B} \\
\boldsymbol{0} & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & { }^{A} t_{B x} \\
r_{21} & r_{22} & r_{23} & { }^{A} t_{B y} \\
r_{31} & r_{32} & r_{33} & { }^{A} t_{B z} \\
0 & 0 & 0 & 1
\end{array}\right] \in S E(3)
$$

Introduction

- And we have seen how they can transform points from one reference frame to another if we represent points in homogeneous coordinates

$$
\boldsymbol{p}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto \quad \tilde{\boldsymbol{p}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \boldsymbol{p}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mapsto \quad \tilde{\boldsymbol{p}}=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- The main reason for representing pose as homogeneous transformations, was the nice algebraic properties that came with the representation

Introduction

- Euclidean geometry
$-{ }^{A} \xi_{B} \mapsto\left({ }^{A} R_{B},{ }^{A} \boldsymbol{t}_{B}\right)$
- Complicated algebra

$$
\begin{aligned}
{ }^{A} \boldsymbol{p}={ }^{A} \xi_{B} \cdot{ }^{B} \boldsymbol{p} & \mapsto & { }^{A} \boldsymbol{p}={ }^{A} R_{B}{ }^{B} \boldsymbol{p}+{ }^{A} \boldsymbol{t}_{B} \\
{ }^{A} \xi_{C}={ }^{A} \xi_{B} \oplus{ }^{B} \xi_{C} & \mapsto & \left({ }^{A} R_{C},{ }^{A} \boldsymbol{t}_{C}\right)=\left({ }^{A} R_{B}{ }^{B} R_{C},{ }^{A} R_{B}{ }^{B} \boldsymbol{t}_{C}+{ }^{A} \boldsymbol{t}_{B}\right) \\
\ominus^{A} \xi_{B} & \mapsto & \left({ }^{A} R_{C}{ }^{T},-{ }^{A} R_{C}{ }^{T}{ }^{A} \boldsymbol{t}_{C}\right)
\end{aligned}
$$

- Projective geometry
$-{ }^{A} \xi_{B} \mapsto{ }^{A} T_{B}=\left[\begin{array}{cc}{ }^{A} R_{B} & { }^{A} \boldsymbol{t}_{B} \\ \mathbf{0} & 1\end{array}\right]$

$$
\begin{array}{ccc}
{ }^{A} \boldsymbol{p}={ }^{A} \xi_{B} \cdot{ }^{B} \boldsymbol{p} & \mapsto & { }^{A} \tilde{\boldsymbol{p}}={ }^{A} T_{B}{ }^{B} \tilde{\boldsymbol{p}} \\
{ }^{A} \xi_{C}={ }^{A} \xi_{B} \oplus{ }^{B} \xi_{C} & \mapsto & { }^{A} T_{C}={ }^{A} T_{B}{ }^{B} T_{C} \\
\ominus^{A} \xi_{B} & \mapsto & { }^{A} T_{B}{ }^{-1}
\end{array}
$$

- In the following we will take a closer look at some basic elements of projective geometry that we will encounter when we study the geometrical aspects of imaging
- Homogeneous coordinates, homogeneous transformations

The projective plane

Points
How to describe points in the plane?

The projective plane
 Points

How to describe points in the plane?
Euclidean plane \mathbb{R}^{2}

- Choose a 2D coordinate frame
- Each point corresponds to a unique pair of Cartesian coordinates

$$
\boldsymbol{x}=(x, y) \in \mathbb{R}^{2} \mapsto \boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The projective plane
 Points

How to describe points in the plane?
Euclidean plane \mathbb{R}^{2}

- Choose a 2D coordinate frame
- Each point corresponds to a unique pair of Cartesian coordinates

$$
\boldsymbol{x}=(x, y) \in \mathbb{R}^{2} \mapsto \boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Projective plane \mathbb{P}^{2}

- Expand coordinate frame to 3D
- Each point corresponds to a triple of homogeneous coordinates

$$
\widetilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \widetilde{w}) \in \mathbb{R}^{2} \mapsto \widetilde{\boldsymbol{x}}=\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\widetilde{w}
\end{array}\right]
$$

s.t.

$$
(\tilde{x}, \tilde{y}, \widetilde{w})=\lambda(\tilde{x}, \tilde{y}, \widetilde{w}) \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

The projective plane
 Points

Observations

1. Any point $\boldsymbol{x}=(x, y)$ in the Euclidean plane has a corresponding homogeneous point $\widetilde{\boldsymbol{x}}=(x, y, 1)$ in the projective plane
2. Homogeneous points of the form $(\tilde{x}, \tilde{y}, 0)$ does not have counterparts in the Euclidean plane

They correspond to points at infinity and are called ideal points

The projective plane
 Points

Observations

3. When we work with geometrical problems in the plane, we can swap between the Euclidean representation and the projective representation

$$
\begin{array}{ll}
\mathbb{R}^{2} \ni \boldsymbol{x}=\left[\begin{array}{c}
x \\
y
\end{array}\right] & \mapsto
\end{array} \tilde{\boldsymbol{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \in \mathbb{P}^{2},\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right] \quad \mapsto \quad \boldsymbol{x}=\left[\begin{array}{c}
\tilde{\boldsymbol{x}} / \tilde{w} \\
\tilde{y} / \tilde{w}
\end{array}\right] \mathbb{R}^{2}
$$

Example

1. These homogeneous vectors are different numerical representations of the same point in the plane

$$
\tilde{\boldsymbol{x}}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
-30 \\
-20 \\
-10
\end{array}\right] \in \mathbb{B}^{2}
$$

2. The homogeneous point $(1,2,3) \in \mathbb{P}^{2}$ represents the same point as $\left(\frac{1}{3}, \frac{2}{3}\right) \in \mathbb{R}^{2}$

The projective plane
 Lines

How to describe lines in the plane?

The projective plane
 Lines

How to describe lines in the plane?
Euclidean plane \mathbb{R}^{2}

- 3 parameters $a, b, c \in \mathbb{R}$

$$
l=\{(x, y) \mid a x+b y+c=0\}
$$

The projective plane
 Lines

How to describe lines in the plane?
Euclidean plane \mathbb{R}^{2}

- Triple $(a, b, c) \in \mathbb{R}^{3} \backslash\{\mathbf{0}\}$

$$
l=\{(x, y) \mid a x+b y+c=0\}
$$

Projective plane \mathbb{P}^{2}

- Homogeneous vector $\tilde{\boldsymbol{l}}=[a, b, c]^{T}$

$$
l=\left\{\widetilde{\boldsymbol{x}} \in \mathbb{P}^{2} \mid \tilde{\boldsymbol{l}}^{T} \widetilde{\boldsymbol{x}}=0\right\}
$$

The projective plane
 Lines

Observations

1. Points and lines in the projective plane have the same representation, we say that points and lines are dual objects in \mathbb{P}^{2}
2. All lines in the Euclidean plane have a corresponding line in the projective plane
3. The line $\tilde{\boldsymbol{l}}=[0,0,1]^{T}$ in the projective plane does not have an Euclidean counterpart

This line consists entirely of ideal points, and is know as the line at infinity

The projective plane
 Lines

Properties of lines in the projective plane

1. In the projective plane, all lines
intersect, parallel lines intersect at infinity

Two lines $\tilde{\boldsymbol{l}}_{1}$ and $\tilde{\boldsymbol{l}}_{2}$ intersect in the point

$$
\tilde{x}=\tilde{\boldsymbol{l}}_{1} \times \tilde{\boldsymbol{l}}_{2}
$$

2. The line passing through points $\widetilde{\boldsymbol{x}}_{1}$ and $\widetilde{\boldsymbol{x}}_{2}$ is given by

$$
\tilde{\boldsymbol{l}}=\tilde{\boldsymbol{x}}_{1} \times \widetilde{\boldsymbol{x}}_{2}
$$

Example

Determine the line passing through the two points $(2,4)$ and $(5,13)$

Homogeneous representation of points

$$
\tilde{\boldsymbol{x}}_{1}=\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right] \in \mathbb{P}^{2} \quad \tilde{\boldsymbol{x}}_{2}=\left[\begin{array}{c}
5 \\
13 \\
1
\end{array}\right] \in \mathbb{P}^{2}
$$

Homogeneous representation of line

$$
\tilde{\boldsymbol{I}}=\tilde{\boldsymbol{x}}_{1} \times \tilde{\boldsymbol{x}}_{2}=\left[\tilde{\boldsymbol{x}}_{1}\right]_{\times} \tilde{\boldsymbol{x}}_{2}=\left[\begin{array}{ccc}
0 & -1 & 4 \\
1 & 0 & -2 \\
-4 & 2 & 0
\end{array}\right]\left[\begin{array}{c}
5 \\
13 \\
1
\end{array}\right]=\left[\begin{array}{c}
-9 \\
3 \\
6
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right]
$$

Equation of the line

$$
-3 x+y+2=0 \Leftrightarrow y=3 x-2
$$

Matrix representation of the cross product $u \times v \mapsto[u]_{\times} v$
where
$[\boldsymbol{u}]_{\times}^{\operatorname{def}}=\left[\begin{array}{ccc}0 & -u_{3} & u_{2} \\ u_{3} & 0 & -u_{1} \\ -u_{2} & u_{1} & 0\end{array}\right]$

Example

The projective plane

Transformations

- Some important transformations - like the action of a pose ξ on points in the plane happen to be linear in the projective plane and non-linear in the Euclidean plane
- The most general invertible transformations of the projective plane are known as homographies
- or projective transformations / linear projective transformations / projectivities / collineations

Definition

A homography of \mathbb{P}^{2} is a linear transformation on homogeneous 3 -vectors represented by a homogeneous, non-singular 3×3 matrix H

$$
\left[\begin{array}{c}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime} \\
\widetilde{w}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\widetilde{w}
\end{array}\right]
$$

So H is unique up to scale, i.e. $H=\lambda H \forall \lambda \in \mathbb{R} \backslash\{0\}$

บกा 4690

The projective plane
 Transformations

- One characteristic of homographies is that they preserve lines, in fact any invertible transformation of \mathbb{P}^{2} that preserves lines is a homography
- Examples
- Central projection from one plane to another is a homography

Hence if we take an image with a perspective camera of a flat surface from an angle, we can remove the perspective distortion with a homography

Perspective distortion

Images from http://www.robots.ox.ac.uk/~vgg/hzbook.html

The projective plane

Transformations

- One characteristic of homographies is that they preserve lines, in fact any invertible transformation of \mathbb{P}^{2} that preserves lines is a homography
- Examples
- Central projection from one plane to another is a homography
- Two images, captured by perspective cameras, of the same planar scene is related by a homography

The projective plane

Transformations

- One characteristic of homographies is that they preserve lines, in fact any invertible transformation of \mathbb{P}^{2} that preserves lines is a homography
- Examples
- Central projection from one plane to another is a homography
- Two images, captured by perspective cameras, of the same planar scene is related by a homography
- One can show that the product of two homographies also must be a homography We say that the homographies constitute a group - the projective linear group PL(3)
- Within this group there are several more specialized subgroups

Transformations of the projective plane

Transformation of \mathbb{P}^{2}	Matrix	\#DoF	Preserves	Visualization
Translation	$\left[\begin{array}{cc}I & \boldsymbol{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	2	Orientation + all below	
Euclidean	$\left[\begin{array}{cc}R & \boldsymbol{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	3	Lengths + all below	
Similarity	$\left[\begin{array}{cc}S R & \boldsymbol{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	4	Angles + all below	
Affine	$\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1\end{array}\right]$	6	Parallelism, line at infinity + all below	
Homography /projective	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$	8	Straight lines	

The projective space

- The relationship between the Euclidean space \mathbb{R}^{3} and the projective space \mathbb{P}^{3} is much like the relationship between \mathbb{R}^{2} and \mathbb{P}^{2}
- In the projective space
- We represent points in homogeneous coordinates

$$
\widetilde{\boldsymbol{x}}=\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\widetilde{w}
\end{array}\right]=\left[\begin{array}{l}
\lambda \tilde{x} \\
\lambda \tilde{y} \\
\lambda \tilde{z} \\
\lambda \widetilde{w}
\end{array}\right] \forall \lambda \in \mathbb{R} \backslash\{0\}
$$

- Points at infinity have last homogeneous coordinate equal to zero
- Planes and points are dual objects

$$
\widetilde{\Pi}=\left\{\widetilde{\boldsymbol{x}} \in \mathbb{P}^{3} \mid \tilde{\boldsymbol{\pi}}^{T} \widetilde{\boldsymbol{x}}=0\right\}
$$

$$
\begin{aligned}
& \mathbb{R}^{3} \ni \boldsymbol{x}=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \quad \mapsto \quad \tilde{\boldsymbol{x}}=\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \in \mathbb{\mathbb { P }}^{3} \\
& \mathbb{\mathbb { P }}^{3} \ni \tilde{\boldsymbol{x}}=\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
\tilde{w}
\end{array}\right] \mapsto \quad \boldsymbol{x}=\left[\begin{array}{c}
\tilde{x} / \tilde{w} \\
\tilde{y} / \tilde{w} \\
\tilde{z} / \tilde{w}
\end{array}\right] \mathbb{R}^{3}
\end{aligned}
$$

- The plane at infinity are made up of all points at infinity

Transformations of the projective space

Transformation of \mathbb{P}^{3}	Matrix	\#DoF	Preserves
Translation	$\left[\begin{array}{ll}I & \boldsymbol{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	3	Orientation + all below
Euclidean	$\left[\begin{array}{ll}R & \boldsymbol{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	6	Volumes, volume ratios, lengths + all below
Similarity	$\left[\begin{array}{cc}s R & \boldsymbol{t} \\ \mathbf{o}^{T} & 1\end{array}\right]$	7	Angles + all below
Affine	$\left[\begin{array}{cccc}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 1\end{array}\right]$	12	Parallelism of planes, The plane at infinity + all below
Homography /projective	$\left[\begin{array}{llll}h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44}\end{array}\right]$	15	Intersection and tangency of surfaces in contact, straight lines

Summary

- The projective plane \mathbb{P}^{2}
- Homogeneous coordinates
- Line at infinity
- Points \& lines are dual
- The projective space \mathbb{P}^{3}
- Homogeneous coordinates
- Plane at infinity
- Points \& planes are dual
- Linear transformations of \mathbb{P}^{2} and \mathbb{P}^{3}
- Represented by homogeneous matrices
- Represented by homogeneous matrices
- Homographies \supset Affine \supset Similarities \supset

Euclidean \supset Translations

- Additional reading
- Szeliski: 2.1.2, 2.1.3, Euclidean Translations

Summary

- The projective plane \mathbb{P}^{2}
- Homogeneous coordinates
- Line at infinity
- Points \& lines are dual
- The projective space \mathbb{P}^{3}
- Homogeneous coordinates
- Plane at infinity
- Points \& planes are dual
- Linear transformations of \mathbb{P}^{2} and \mathbb{P}^{3}
- Represented by homogeneous matrices
- Homographies \supset Affine \supset Similarities \supset Euclidean \supset Translations
- Additional reading
- Szeliski: 2.1.2, 2.1.3,

MATLAB WARNING

When we work with linear transformations, we represent them as matrices that act on points by right multiplication

$$
\begin{array}{rlc}
T: \mathbb{R}^{n} & \rightarrow & \mathbb{R}^{n} \\
\boldsymbol{x} & \mapsto & \boldsymbol{y}=M_{R} \boldsymbol{x}
\end{array}
$$

Matlab seem to prefer left multiplication instead

$$
\begin{array}{rllc}
T: & \mathbb{R}^{n} & \rightarrow & \mathbb{R}^{n} \\
& \boldsymbol{x}^{T} & \mapsto \boldsymbol{y}^{T}=\boldsymbol{x}^{T} M_{L}
\end{array}
$$

So if you use built in matlab functions when you work with transformations, be careful!!!

