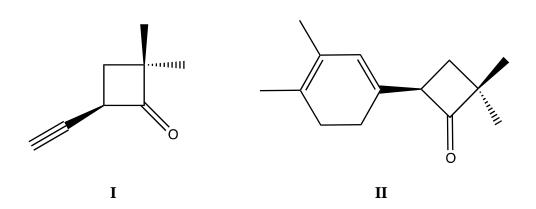
Universitetet i Oslo

Det matematisk-naturvitenskaplige fakultet

Exam in: KJM3000 and KJM4000

Day of exam: 2011-26-08


Exam hours: 14.30 - 18.30 (4 hours) This examination paper consists of 2 page(s).

Appendices: 3 (1, 3 and 2 pages respectively)

Permitted materials: Ruler, calculator and molecular modelling kit

Make sure that your copy of this examination paper is complete before answering

Question 1 (40%)

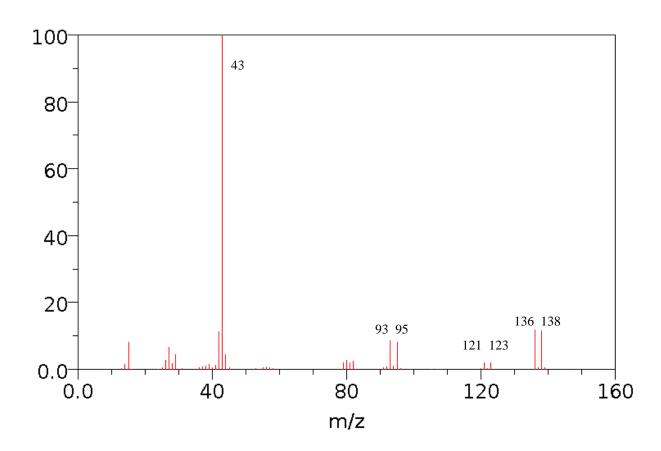
Compound **1** has been synthesized and the following 1 H NMR has been recorded: (CDCl₃, 300 MHz): δ 1.22 (s, 3H), 1.27 (s, 3H), 1.89 (dd, J 7.5 og 9.0 Hz, 1H), 2.13 (dd, J 3.5 og 9.0 Hz, 1H), 2.83 (d, J 2.5 Hz, 1H), 4.03 (m, 1H).

- a) Assign the listed signals in the ¹H-NMR spectrum of compound **1** and give a brief explanation of the coupling pattern.
- b) Calculate λ_{max} and propose an approximate ε_{max} value for compound **II**.
- c) Identify the compound which give rise to the MS spectrum (EI, 70 eV) found in attachment 2. Give a brief explantation.

Question 2 (60%).

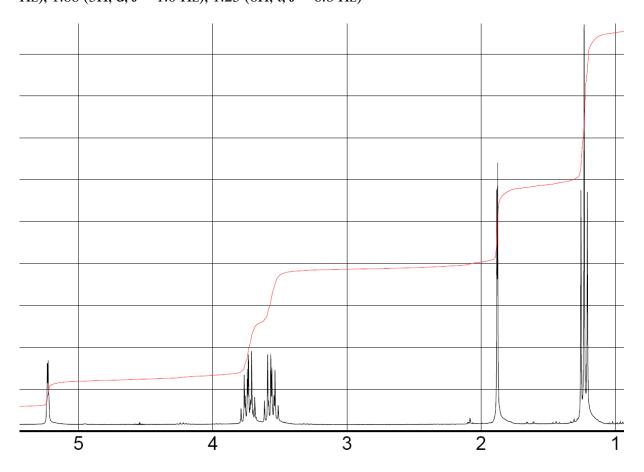
a) Identify the compound which gives rise to the spectra found in attachment 3. Assign the signals in the ¹³C- and ¹H-NMR spectra to the molecular structure and give a brief explanation. Draw equations to account for the fragmentation reactions which produce the following ions in the mass spectrum (EI, 70 eV): 141, 97, 69, 39, 29.

Vedlegg 1 / Attachment 1

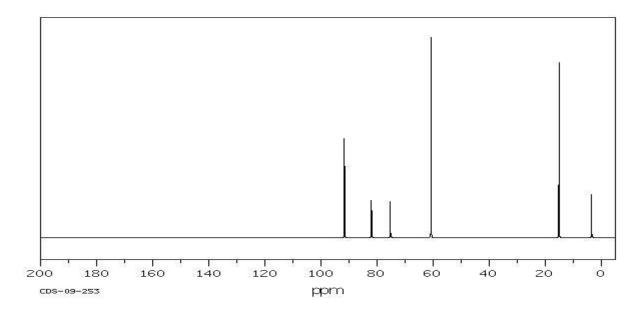

 Table 4.3
 Atomic weights and approximate natural abundance of some isotopes

Isotope	Atomic weight $(^{12}C = 12.000000)$	Natural abundance (%)
¹ H	1.007 825	99.985
² H	2.014 102	0.015
¹² C	12.000 000	98.9
¹³ C	13.003 354	1.1
¹⁴ N	14.003 074	99.64
15N	15.000 108	0.36
¹⁶ O	15.994 915	99.8
¹⁷ O	16.999 133	0.04
¹⁸ O	17.999 160	0.2
¹⁹ F	18.998 405	100
²⁸ Si	27.976 927	92.2
²⁹ Si	28.976491	4.7
³⁰ Si	29.973 761	3.1
³¹ P	30.973 763	100
³² S	31.972 074	95.0
³³ S	32.971 461	0.76
³⁴ S	33.967 865	4.2
³⁵ Cl	34.968 855	75.8
³⁷ Cl	36,965 896	24.2
⁷⁹ Br	78.918 348	50.5
81Br	80.916 344	49.5
127 _I	126.904 352	100

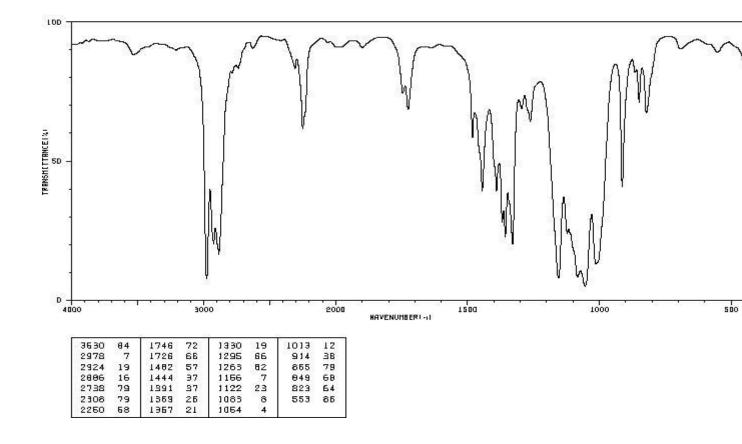
Table 1.3 Rules for diene and triene absorption


Value assigned to parent heteroannular or open chain diene	214 nm
Value assigned to parent homoannular diene	253 nm
Increment for	
(a) each alkyl substituent or ring residue	5 nm
(b) the exocyclic nature of any double bond	5 nm
(c) a double-bond extension	30 nm
(d) auxochrome—OAcyl	0 nm
—OAlkyl	6 nm
—SAlkyl	30 nm
—Cl, —Br	5 nm
$-NAlkyl_2$	60 nm
$\lambda_{ m calc}$	Total

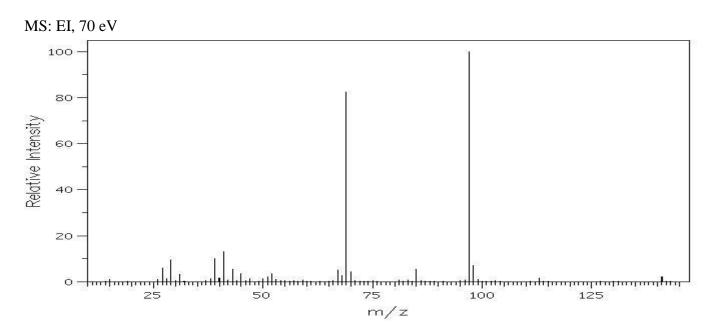
MS (EI, 70 eV):



Vedlegg 3 / Attachment 3


¹H-NMR: 300z, in CDCl₃ δ: 5.22 (1H, q, J = 1.0 Hz), 3.71 (2H, dq, J = 9.2 and 6.8 Hz), 3.58 (2H, dq, J = 9.2 and 6.8 Hz), 1.88 (3H, d, J = 1.0 Hz), 1.23 (6H, t, J = 6.8 Hz)

 $^{13}\text{C-NMR}$: Broadband decoupled, 22.5 MHz, 0.05 ml in 0.5 ml CDCl $_3$ δ : 91.6, 82.0, 75.2, 60.7, 15.1, 3.5.



IR: Liquid film. Numbers in table indicate frequency and transmittance.

MS (CI): 143 (100)

Grunnstoff analyse/Elemental analysis: C:67.51%, H:9.84%.

