
Challenges with simultaneous equilibrium

Speciation programs (MINEQL)

Inorganic complexes

Major cations in natural waters
 H⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺

Common ligands in natural systems:

- HCO₃⁻, SO₄²⁻, NO₃⁻, Cl⁻, F⁻ & organic anions
- In anoxic environment: HS⁻ & S²⁻

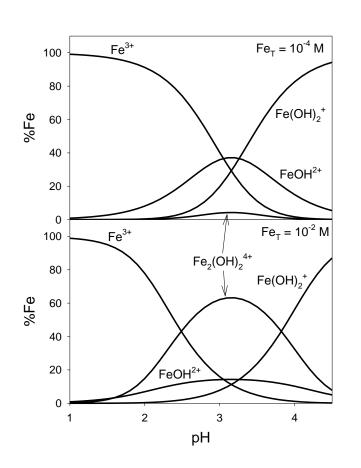
 Dominating species in aerobic freshwater at pH 8 are:

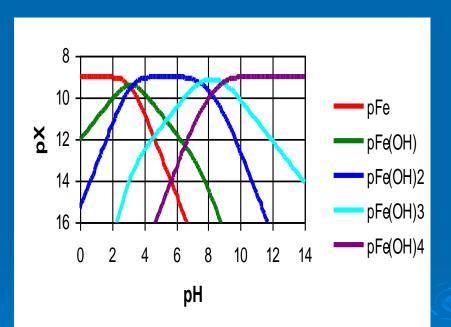
Metal ion	Dominating species	% $\mathbf{M}^{\mathbf{n}_{+}}_{\mathbf{aq}}$ of
		total amount
		of M
Mg(II)	$Mg(H_2O)_6^{2+}$	94
Ca(II)	$Ca(H_2O)_6^{2+}$	94
Al(III)	$Al(OH)_2(H_2O)_4^+$, $Al(OH)_3(H_2O)_3^0$, $Al(OH)_4(H_2O)_2^-$	1•10 ⁻⁷
Mn(IV)	$MnO_2(H_2O)_2^0$	-
Fe(III)	$Fe(OH)_2(H_2O)_4^+$, $Fe(OH)_3(H_2O)_3^0$, $Fe(OH)_4(H_2O)_2^-$	2•10-9
Ni(II)	$Ni(H_2O)_6^{2+}$, $NiCO_3(H_2O)_5^{0}$	40
Cu(II)	$CuCO_3(H_2O)_2^0$, $Cu(OH)_2(H_2O)_2^0$	1
Zn(II)	$Zn(H_2O)_4^{2+}$, $ZnCO_3(H_2O)_2^{0}$	40
Pb(II)	$PbCO_3(H_2O)_4^0$	5

Hydrolysis

Hydrolysis reactions are important in aqueous systems L^{-} r Z = charge r = radiusThe logarithm of the first hydrolysis constant is proportional to $\frac{Z^{2}}{r}$

- Hydrolysis reactions are controlled by ionic index and {H⁺}
 - The higher the pH, the stronger the hydrolysis of metal cations
 - E.g. Aluminium

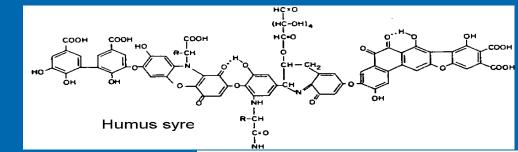

 $Al_{aq}^{3+} H_{2}O \leftrightarrow Al(OH)^{2+} H^{+} \qquad pK_{1} = 4.95$ $Al(OH)^{2+} H_{2}O \leftrightarrow Al(OH)^{+} H^{+} \qquad pK_{2} = 5.6$ $Al(OH)^{+} H_{2}O \leftrightarrow Al(OH)^{0} H^{+} \qquad pK_{3} = 6.75$ $Al(OH)^{0} H_{3} H^{+} H_{2}O \leftrightarrow Al(OH)^{-} H^{+} \qquad pK_{4} = 5.6$


 $Al^{3+}_{aq} + H_2O \leftrightarrow Al(OH)^{2+}_{aq} + H^+$ $Al^{3+}_{aq} + 2H_2O \leftrightarrow Al(OH)_2^{+}_{aq} + 2H^+$ $Al^{3+}_{aq} + 3H_2O \leftrightarrow Al(OH)_3^{-}_{aq} + 3H^+$ $Al^{3+}_{aq} + 4H_2O \leftrightarrow Al(OH)_4^{-}_{aq} + 4H^+$

 $p\beta_{1} = pK_{1} = 4.95$ $p\beta_{2} = pK_{1} + pK_{2} = 10.55$ $p\beta_{3} = pK_{1} + pK_{2} + pK_{3} = 17.25$ $p\beta_{4} = pK_{1} + pK_{2} + pK_{3} + pK_{4} = 22.85$

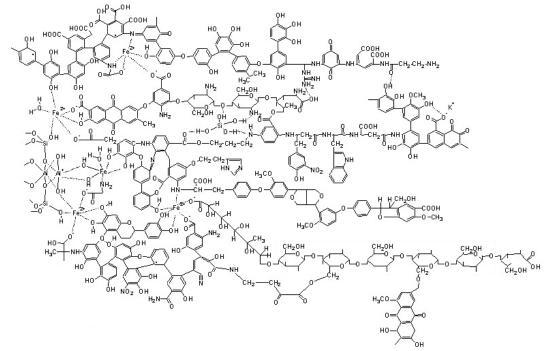
Al³⁺_{aq} denotes Al(H₂O)₆³⁺

Distribution of dissolved Fe³⁺ species Two total Fe concentrations, $Fe_T = 10^{-4}M$ and $Fe_T = 10^{-2}M$



Distribution diagrams

Dissolved Organic Matter


- Low molecular weight (LMW)
 - < 1000Da (e.g. $C_{32}H_{80}O_{33}N_5P_{0.3}$)

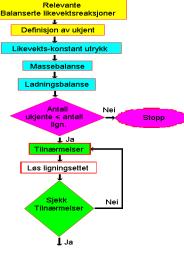
- > High molecular weight
 - 1000 > 100 000Da
 - Humic substance
 - Very complex and coloured substances
- Measured by TOC/DOC

E.g.:

 Or by UV absorbency or colour

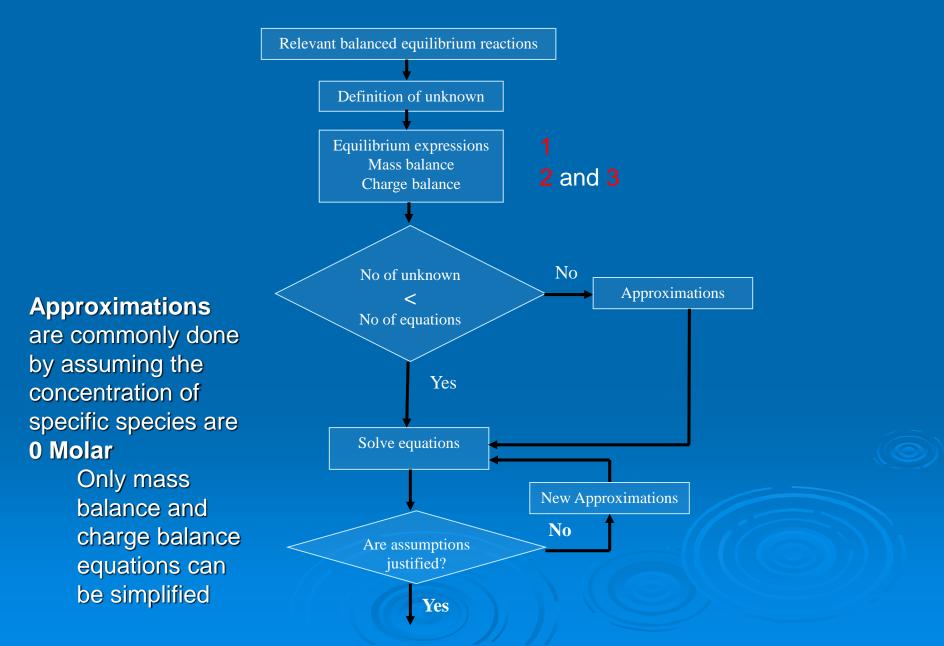
Speciation with different ligands present

- In aqueous solution, containing a number of metal cations and ligand anions, there are several simultaneous equilibriums
 - Important ligands in natural water systems
 - Basic: CO₃²⁻, OH-, Org-, Cl⁻
 - Acid: F⁻, SO₄²⁻, Org⁻, Cl⁻
 - The distribution of species will depend on factors such
 as ligand concentrations, temperature, pH and ionic strength
- The calculations become very complex where a metal cation have the opportunity to bind to more than one type of ligands
 - Multiple iterations of the calculations are necessary
- For such calculations we apply computer programs as MINEQL+, ALCHEMI or PHREEQ-C



$$F' + H_{2}O + AI^{3+} \leftrightarrow AIOH^{2+} + H^{+}$$

$$H_{2}O + AI^{3+} \leftrightarrow AIOH^{2+} + H^{+}$$


$$\downarrow + H^{+} + F^{-} \qquad \downarrow + H^{+} + F^{-} \qquad \downarrow + H^{+} + H^{+}$$

$$OH^{-} + AIF^{2+} \leftrightarrow AI(OH)F$$

MINEQL+ Version 4.0 - [No F a Model About	ile]					_ 5 ×
Cancel	B. Domiosi Como	nents Selection Mod	nde			
		0 😋 New 🐧		lode 🛛 🥐 Help	1	
		Coloct Cor	an on on to	lar Calaul	otion	
		Select Cor	nponents	for Calcul	ation	
	C90	P 1120		E PSI0	E PSIB	Ê
	T SOH	C Ag[+]	C AJ(3+)	C Ax03(3-1	At04(3-1	
	- Au(+)	□ Ba(2+)	□ Be[2+]	E Br(-)	E B(OH)3	
	Cal2+1	Cd[2+]	Ce[3+]	E CIE	CN(-)	
		SCN(-)	C03(2-)	Co(2+)	Co(3+)	
	C(04(2-)	C(2+)	Cr(OH)2(+)	Cx(+)	Cu(2+)	
	Cu(+)	E Fe[2+]	E Fe[3+]	E F(-)	E Hg2[2+]	
	□ Hg(0H)2	E 10	🗆 K(+)	🗆 La(3+)	□ Li(+)	
	□ Mg(2+)	🗆 Mn(2+)	🗆 Mn(3+)	MoD4(2-)	Na(+)	
	T NH20H	NH4(+)	🗆 Ni[2+]	T NO2[-]	🗆 NO3(-)	
	E P207(4-)	P3010(5-)	Pb[2+]	PD4(3-)	E Bb(+)	
	T S(0)	E \$203(2-)	🗖 SЬ(ОН)З	🗖 Sb(OH)6(-)	C Sc[3+]	
				C SI(OH)4	□ Se(2+)	
	□ Se04(2-)	HSeD3(-)	HSe(-)			

Scheme for chemical equilibrium calculations

Set of expressions

1. Equilibrium expressions - K_W , K_{SP} , K_A , K_B , β_n , K_{REDOX} , K_d

 Mass (read: concentration) balance
 Set the equilibrium molarities (M_X) up against each other (M_X vs. M_Y) and against the analytical molarity (M_X vs. C_X)
 Analytical concentration is the concentration of a substance dumped

into a solution. It includes all the forms of that substance in the solution.

3. Charge balance

- Σ eqv./L positive charge = Σ eqv./L negative charge

1. Equilibrium expressions
• K_W, K_{SP}, K_A, K_B, β_n, K_{REDOX}, K_d

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

$$K_{sp} = [Ba^{2+}][SO_{4}^{2-}]$$

$$K_{a} = \frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$$

$$K_{B} = \frac{[OH^{-}][CH_{3}COOH]}{[CH_{3}COO^{-}]}$$

$$K_{B} = \frac{[OH^{-}][CH_{3}COOH]}{[CH_{3}COO^{-}]}$$

$$K_{RedOks} = \frac{[Mn^{2+}][Fe^{3+}]^{5}}{[MnO_{4}^{-}][Fe^{2+}]^{5}[H^{+}]^{8}}$$

$$K_{a} = \frac{[I_{2}]_{org}}{[I_{2}]_{aq}}$$

2. Mass balance

Ex.1: BaSO₄ in HCI solution

- We see from the molecular formula

that:

Ba²⁺ : **SO**²⁻ = 1 : 1 So that: $[Ba^{2+}] = [SO_{4}^{2-}] + [HSO_{4}^{-}]$

>The hydroniumion (H⁺) has two sources: HCl ($=c_{HCl}$) and the auto-proteolysis of water ($=[OH^{-}]$): $[\mathbf{H}_{2}\mathbf{O}^{\dagger}] = \mathbf{c}_{\mathbf{H}_{1}}^{\dagger} + [\mathbf{O}\mathbf{H}^{\dagger}]$

• Ex.2: Ag₂CrO₄ solution - We see from the molecular formula that $Ag^+:CrO_a^2 = 2$: 1 >So that : $2[CrO_4^{2-}] = [Ag^+]$

3. Charge balance

- The law of physics demand that

 Number of positive charge is
 equal to number of negative charge
 Charge contribution of a specie
 - = Valens · Molar concentration

 $\Sigma n \cdot [X^{n+}] = \Sigma m \cdot [Y^{m-}]$

Ex. 1:
$$2[Ba^{2*}] + [H_3O^*] = 2[SO_4^{2*}] + [HSO_4^{2*}] + [OH^*] + [CI^*]$$

 In neutral pH solutions one can disregard the H⁺ and OH⁻ ions

Ex. 2:
$$[Ag^+] = 2[CrO_4^{2-}]$$

- No new information

Metal hydrolysis

The hydrolysis is described by a set of equilibrium reactions

$$Fe^{3+}_{aq} + H_2O \leftrightarrow Fe(OH)^{2+}_{aq} + H^+$$
 $p\beta_1 = pK_1 = 3.05$
 $Fe^{3+}_{aq} + 2H_2O \leftrightarrow Fe(OH)^+_{2aq} + 2H^+$
 $p\beta_2 = pK_1 + pK_2 = 6.31$
 $Fe^{3+}_{aq} + 3H_2O \leftrightarrow Fe(OH)^{0}_{3aq} + 3H^+$
 $p\beta_3 = pK_1 + pK_2 + pK_3 = 13.8$
 $Fe^{3+}_{aq} + 4H_2O \leftrightarrow Fe(OH)^{-}_{4aq} + 4H^+$
 $p\beta_4 = pK_1 + pK_2 + pK_3 + pK_4 = 22.7$

 $C = \{Fe^{3+}\} + \{Fe(OH)^{2+}\} + \{Fe(OH)^{+}_{2}\} + \{Fe(OH)^{0}_{3}\} + \{Fe(OH)^{-}_{4}\} + \{Fe(OH)^{-}_{4}\} + \{Fe(OH)^{-}_{4}\} + \{Fe(OH)^{0}_{4}\} + \{Fe(OH)^{0}_{4}\}$

Fe³⁺} is determined by replacing each of the other parts of the mass equation with their equilibrium expression expressed by {Fe³⁺} :

$$Fe^{3+}_{aq} + 2H_{2}O \leftrightarrow Fe(OH)_{2}^{+}_{aq} + 2H^{+}$$

$$\beta_{2} = \frac{\{Fe(OH)_{2}^{+}\} \bullet \{H^{+}\}^{2}}{\{Fe^{3+}\}}$$

$$\{Fe(OH)_{2}^{+}\} = \frac{\beta_{2}\{Fe^{3+}\}}{\{H^{+}\}^{2}}$$

$$C = \{Fe^{3+}\} \left(1 + \frac{\beta_{1}}{\{H^{+}\}} + \frac{\beta_{2}}{\{H^{+}\}^{2}} + \frac{\beta_{3}}{\{H^{+}\}^{3}} + \frac{\beta_{4}}{\{H^{+}\}^{4}}\right)$$

• Then the other species can be determined from the {Fe³⁺} and β E.g.; $Fe(OH)_2^+ = \frac{\beta_2 \{Fe^{3+}\}}{\{H^+\}^2}$

Speciation programmes

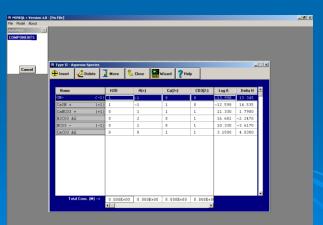
- MINEQL+ is a chemical equilibrium model capable of calculating
 - aqueous speciation
 - solid phase saturation
 - precipitation-dissolution
 - adsorption
- An extensive thermodynamic database is included in the model

A Chemical Equilibrium Modeling System Copyright (c) 1998 - 2007 Environmental Research Software

Speciation; Shortcomings

The equilibrium model is based on a choice of complexes and their stability constants, which makes the results questionable

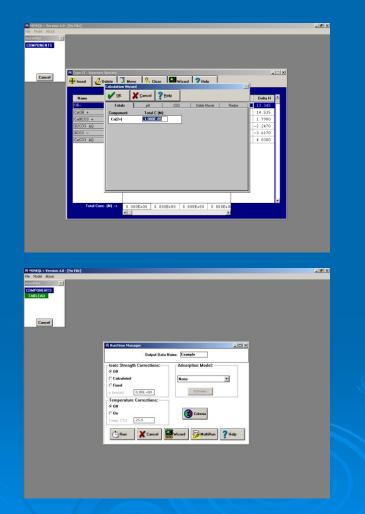
🚆 Type II - Aqueous Species 📃 🗌 🔀								
🕂 Insert	- Delete] Move	🖒 Close 🎇	Wizard Hel	p			
			,,					
Name		H20	H(+)	Al(3+)	Ca(2+)	Log K	Delta H	-
OH-	(-	1) 1	-1	0	0	-13.998	13.345	
A1(OH)2	(+) (+	1) 2	-2	1	0	-10.100	0.0000	
A1(OH)3	AQ	3	-3	1	0	-16.000	0.0000	
A1(OH)4	(-) (-	1) 4	-4	1	0	-23.000	44.060	
A10H(+2) (+	2) 1	-1	1	0	-4.9900	11.899	
CaOH +	(+	1) 1	-1	0	1	-12.598	14.535	
MgOH +	(+	1) 1	-1	0	0	-11.790	15.935	
H2F2 AQ		0	2	0	0	6.7680	0.0000	
HF2 -	(-	1) 0	1	0	0	3.7490	4.5500	
HF AQ		0	1	0	0	3.1690	3.4600	
NH3 AQ		0	-1	0	0	-9.2520	12.480	
HSO4 -	(-	1) 0	1	0	0	1.9870	4.9100	
A1F2 +	(+	1) 0	0	1	0	12.750	20.000	
A1F3 AQ		0	0	1	0	17.020	2.5000	
A1F +2		2) 0		1	0	7.0100	0.0000	
lot	al Conc. (M)>	0.000E+	-00 0.000E+00	0.000E+00	0.000E+0			
					•			



Tutorial MINEQL+

 Start out by choosing components that define your system

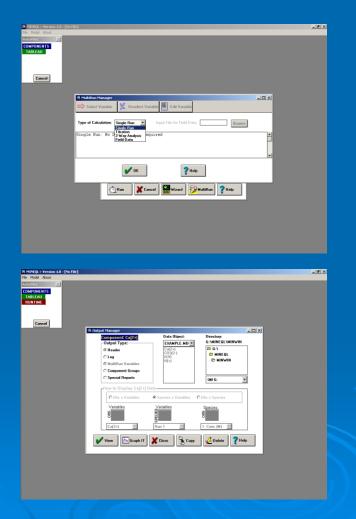
INEQL + Version 4.0 - [No I Model About	File					
Pilot 🔀						
Cancel	📇 Chemical Compo	nents Selection Mode	Je			
	Scan THERM	0 🗲 New 🐧	Return 🗮 Edit N	lode 🛛 🦿 Help	1	
						_
	5	Select Con	nonents	for Calcul	ation	
			periorito	or oralou	cluron	
						-
	□ e(-)	✓ H20	✓ H(+)	PSI0	🖂 PSIB	
	🗆 SOH	🗆 Ag(+)	🗆 Al(3+)	🗖 AsO3(3-)	🗆 As04(3-)	
	🗆 Au(+)	🗆 Ba(2+)	🗆 Be(2+)	🗖 Br(-)	🗖 В(ОН)З	
	🗆 Ca(2+)	🗖 Cd(2+)	🗖 Ce(3+)	🗖 CI(-)	🗖 CN(-)	
	🗆 OCN(-)	🗖 SCN(-)	🗖 CO3(2-)	🗆 Co(2+)	🖂 Co(3+)	
	🗆 CrO4(2-)	🗆 Cr(2+)	🗖 Cr(OH)2(+)	🗆 Cs(+)	🗖 Cu(2+)	
	🖂 Cu(+)	🗆 Fe(2+)	🗆 Fe(3+)	🗆 F(-)	🗌 Hg2(2+)	
	🗆 Hg(OH)2	🗆 I(-)	🗆 K[+]	🗆 La(3+)	🗆 Li(+)	
	🗆 Mg(2+)	🗖 Mn(2+)	🗖 Mn(3+)	🗆 MoO4(2-)	🗖 Na(+)	
	T NH20H	□ NH4(+)	🗆 Ni(2+)	T NO2(-)	🗆 NO3(-)	
	P207(4-)	P3010(5-)	Pb(2+)	P04(3-)	□ Bb(+)	
	□ S(0)	S203(2-)	T 56(0H)3	🗆 SЬ(ОН)6(-)	□ Sc(3+)	
	□ Se04(2-)	HSe03(-)	HSe(-)	Si(OH)4	□ Sn(2+)	


Find thermodynamic constants in database in "Scan Thermo"

Tutorial

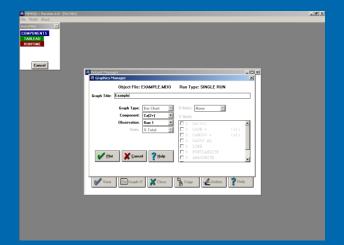
The Calculation Wizards Tool is a collection of 5 input options to describe the chemistry of the system

Running the calculation

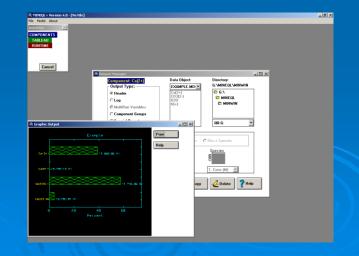

Tutorial

Multirun manager

- Titration
- 2 way analysis
- Field data


Output manager

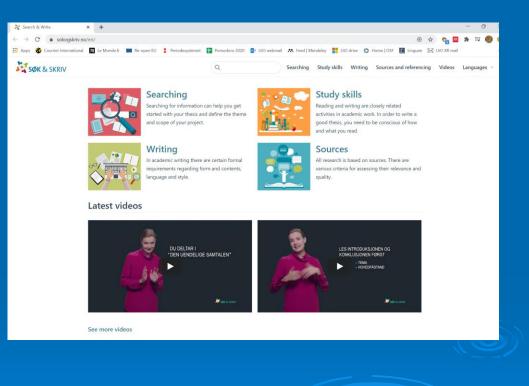
- Types of Output
 - The Header
 - The Log
 - The MultiRun Table
 - Component Groups
 - Special Reports



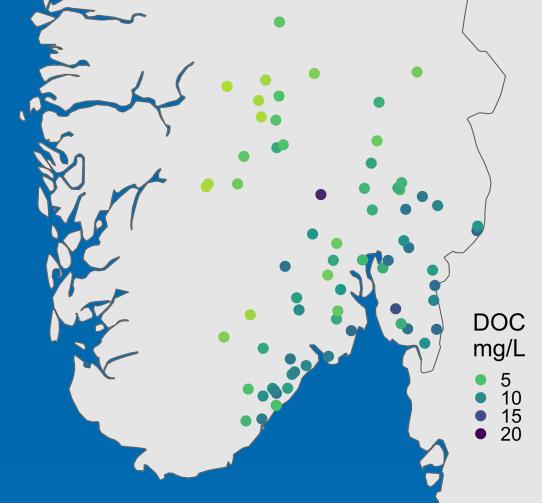
Tutorial

Graphics managerBar and X-Y plots

Run through the 4 problems


Report

- The report (~ 3p text + graphs/pictures) should include the following paragraphs
 - Abstract
 - Introduction
 - Material and methods
 - Results
 - Discussion
 - Conclusion

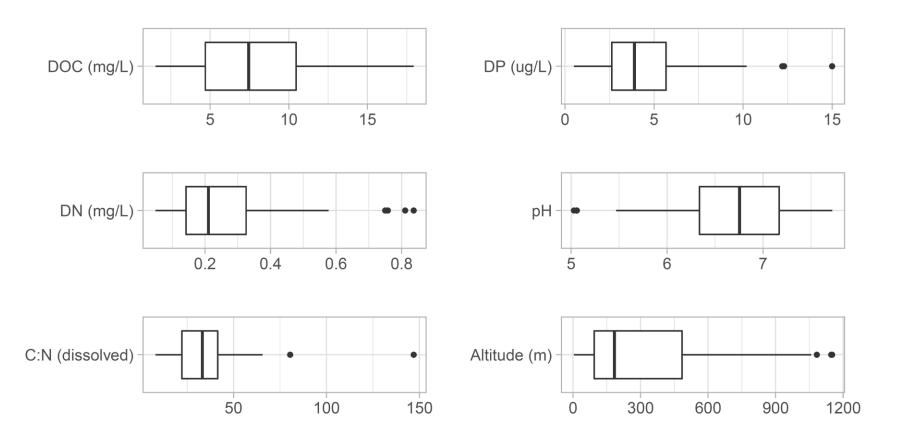

Extra tips

- Report from last year available on Canvas (NB: not perfect!)
- Søk og skriv: tips on academic writing
 https://sokogskriv.no/en/

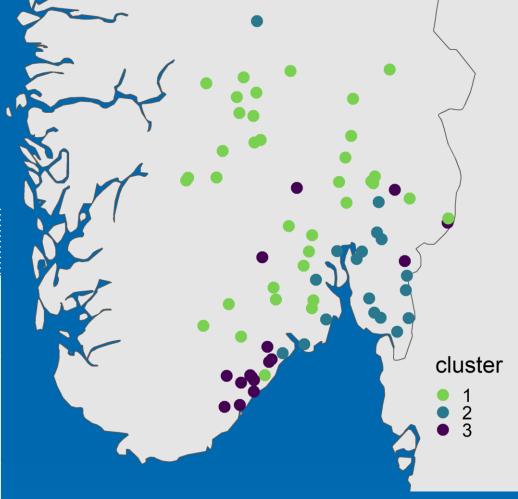
The CBA 100 lakes survey

- 81 lakes planned
 - 8 inaccessible
 - 3 discarded during data analysis
- Sampled between October 1st and November 8th 2019
- Cooperation with IBV and NIVA

Sampling

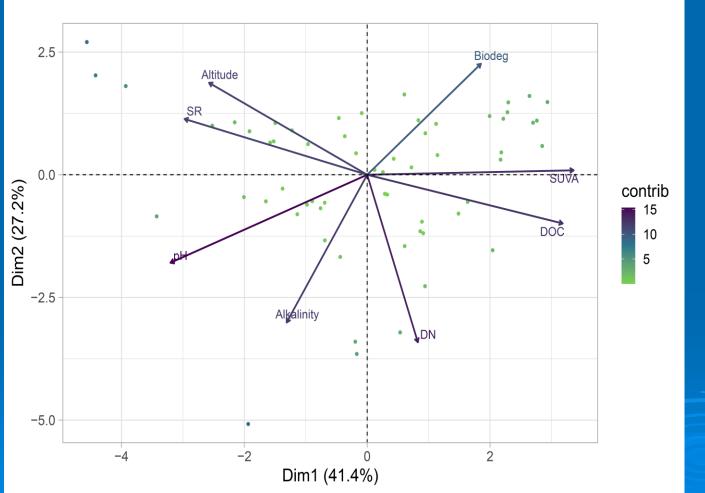


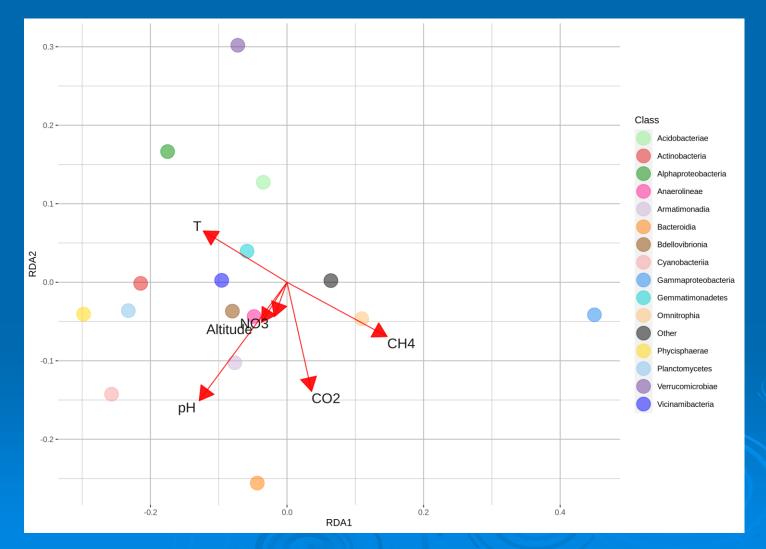
pH conductivity alkalinity absorbancy NO, Cl Br Si DOC SO,27 NO, PO,2- Pb Cd As Zn Cu Ni Co Mn Cr V Ca²⁺ Mg⁺ Na⁺ K²⁺ biodegredability TOC TOP CO₂ CH₄ bacteria land cover precipitations NDVI


0000

Characteristics of the lakes

26


	Cluster 1	Cluster 2	Cluster 3
DOC	-	+	+
Altitude	+	-	-
TN/TP	-	+	-
Mg/K/N a	-	+	-
SUVA	-	+/-	+
CH4	-	+/-	+
CN	-	-	+
рН	+	+	-


Clustering with k-mean method

Differences between cluster: Kruskal Wallis + Wilcoxon tests, p < 005

Principal component analysis

Bacteria

