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6. Electrical conductivity 
 

Introduction 
 

In the preceding chapter we have described and discussed diffusion of 

particles in solids and particularly of ions and defects in metal oxides. The driving 

force for the diffusion has been taken to be the negative value of the particle 

gradient or more precisely the negative value of the chemical potential gradient. 

When using isotopes as tracers one may study self-diffusion, i.e. diffusion of the 

components in the oxide (metal and oxide ions) in a homogeneous oxide; in this 

case the isotopic tracer gradient is the driving force for the diffusion. 

In this chapter the transport of electrical charges will be described and 

discussed. In metal oxides the electrically charged particles comprise ions and 

electrons. The ionic charge carriers comprise the cations, anions, and foreign ions 

(e.g. impurity ions, dopant ions and protons) and the electronic charge carriers are 

the electrons and electron holes. The concentrations of the charge carriers are 

directly related to the defect structure of the oxide and in this chapter we will 

derive expressions for  the temperature and oxygen pressure dependence of the 

electrical conductivity. The discussion will be limited to transport of charges in 

chemically homogeneous metal oxides (no chemical potential gradient) but with 

an electrical potential gradient as the driving force. In the next chapter transport of 

ionic and electronic charge carriers in metal oxides which are simultaneously 

exposed to chemical and electrical potential gradients, i.e. electrochemical 

potential gradients, will be discussed. 

As the mobilities of electrons and electrons holes are normally much higher 

than those of ions, most oxides are electronic conductors. One type of charge 

carrier often predominates in an oxide under particular conditions of temperature 

and oxygen pressure. An electronically conducting oxide is an n-conductor if 

transport of electrons predominate and a p-conductor if electron holes prevail. 

However, some oxides are or may become ionic conductors or mixed 

ionic/electronic conductors depending on the temperature and oxygen pressure 

often as a result of appropriate doping with aliovalent foreign ions. Some oxides 

may also exhibit proton conductivity in hydrogen- or water vapour-containing 

atmospheres; predominant proton conductivity in such oxides is in some cases 

observed at reduced temperatures (< 600-700 °C).  

 

Transport in an electrical potential gradient 
 

As described in the previous chapter on diffusion in metal oxides the driving 

force is given by the negative of the potential gradient. The force exerted on a 

charged particle of type i with charge zie is given by  
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 F = -zie 
dφ

dx  = zieE       (6.1) 

 

where φ is the electrical potential and E = - 
dφ

dx   is the electric field. As we have 

considered also in Ch. 5, the flux density of particles of type i is the product of the 

concentration ci and drift velocity vi, where the latter is given by the particle 

mobility Bi, and the force Fi: 

 

 ji = civi =ciBi Fi = zie ciBiE      (6.2) 

 

The current density ii is given by the product of flux density and charge: 

 

 ii = zieji = (zie)2 Bi ci E      (6.3) 

 

While Bi is the particle mechanical mobility ("beweglichkeit"), the product of Bi 

and the charge on each particle, zie, is termed the charge mobility ui: 

 

 ui = zieBi        (6.4) 

 

Equation 6.3 can then be written 

 

 ii = zie ciui E = σi E       (6.5) 

 

in which we have the very important definition of partial electrical conductivity of 

the species i:  

 

σi = zie ci ui         (6.6) 

 

It should be noted that Eq.6.5 is an expression of Ohm's law. The unit for the 

electrical conductivity is Siemens per cm, Scm-1 (one Siemens is the reciprocal of 

one ohm and in older literature the electrical conductivity is expressed as ohm-

1cm-1). The unit for the charge is coulomb, the concentration of charge carriers is 

expressed as the number of charge carriers of type i per cm3, and charge carrier 

mobility in units of cm2/Vs. (Although the SI unit for length is m, cm is being 

used in the following as it is still by far the one most commonly used in the 

literature). 
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It may be noted that in the above terminology, F, E, ii, zi, ui and ji may each 

be positive or negative. ui and zi always have the same sign, and as long as no 

other forces than the the electrical act, ii and E always have the same sign, and ji 

and F always have the same sign. Bi and σi are always positive, and it is common 

to neglect the sign when specifying charge mobilities ui. 

 

Partial and total conductivity 
 

The total electrical conductivity σ of a substance is the sum of the partial 

conductivities σi of the different charge carriers: 

 

 σ = ∑
i

σi         (6.7) 

 

The ratio of the partial conductivity σi to the total conductivity σ is termed the 

transport number (or transference number) of species i: 

 

 ti = 
σi

σ
          (6.8) 

 

The native charge carriers in a binary oxide are the ions (cations and anions) 

and electrons. Each of these may have contributions from different transport 

mechanisms (defects). Most important is usually the contributions to electronic 

conductivity from defect (conduction band) electrons called n-type conductivity, 

and from electron holes, called p-type conductivity. The total conductivity is then 

given by  

 

 σ = σion + σel = σc + σa + σn + σp     (6.9) 

 

where σc, σa, σn, and σp are the cation, anion, electron and electron hole 

conductivities, respectively. 

 Correspondingly, the cation conductivity may have contributions from 

vacancy and interstitial cation conductivities, and the same applies to anions. 

However, we do not pursue this level of detail here. 

Following Eq. 6.8 the individual conductivities may be written in terms of 

their transport numbers: σc = tc σ, σa = σ ta, σn = σ tn and σp = σ tp. Using these 

values Eq.6.9 takes the form  
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σ  =  σ (tion + tel )  =  σ (tc + ta + tn + tp).     (6.10) 

 

It may be noted that the sum of the transport numbers of all the charge 

carriers equals unity: 

 

tion + tel  =  tc + ta + tn + tp = 1      (6.11) 

 

Often only one type of charge carrier dominates the charge transport, and in 

many cases, and as an approximation, contributions from minority carriers are 

neglected. For oxides the mobilities of electrons and electron holes are usually 

several orders of magnitude (~104 - 108) larger than those of the ions, and even 

when the concentration of electron or electrons holes is smaller than that of the 

ionic charge carriers (or, more precisely, than that of ionic charge carrier defects) 

the oxide may still be a predominantly electronic conductor. The relative 

importance of ionic and electronic conductivity will often vary greatly with 

temperature and oxygen pressure, as we shall see laer on.  

  

  

The Nernst-Einstein relation between mobility 
and diffusion coefficient 

 

In the previous chapter it was shown that the relation between the random 

diffusion coefficient of particles of type i and the particle’s mechanical mobility is 

given by  

 

 Di = kTBi        (6.12) 

 

By combining this relation with Eqs. 6.4 and 6.5 one obtains the following 

relation between the random diffusion coefficient and the charge carrier mobility 

and the electrical conductivity: 

 

 Di = kTBi = ui 
kT

zie
  = σi 

kT

ciz
2

i e2
      (6.13) 

 

These are variants of the Nernst-Einstein relation. This relation and also the effect 

of an applied electric field on migration of charged species in a homogeneous 

crystal may also be derived from the following model, in which we will 

understand also when and why conduction is termed a linear process. 
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Consider a one-dimensional system with a series of parallel planes separated 

by a distance s (cf. Fick's first law in Chapter 5). It is assumed that the system is 

homogeneous and that the volume concentration of the particles in the planes is ci. 

The particles in neighbouring planes 1 and 2 have equal probability of jumping to 

the neighbouring  planes. In the absence of any external kinetic force, the number 

of particles which jump from plane 1 to plane 2 and from 2  to 1 per unit time is 

equal and opposite and given by 
1

2 ωcis. In a homogeneous system there will be no 

net transport of particles.  

When there is no applied electric field, the activation energy associated with 

the jumps is ∆Hm. When an electric field E is applied the activation energies are 

changed. In the forward direction of the field (downhill) the activation energy is 

reduced to ∆Hm- 
1

2 ziesE and in the reverse (uphill) direction increased to ∆Hm+ 
1

2 

ziesE. This is illustrated schematically in Fig.6.1. 

The net particle flux is given by the difference in number of jumps in the 

forward and reverse directions of the field: 

 

ji = 
1

2 cis {ωforw - ωrev}       (6.14) 

where   

ωforw = ν exp(
∆S

k

m
) exp(- 

∆H -  
z esE

2

kT

m

i

)  

ωrev = ν exp(
∆S

k

m
) exp(- 

∆H +  
z esE

2

kT

m

i

). 
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Figure 6-1. Schematic illustration of the effect of an electric field on the 

migration of charged species in a homogeneous crystal. E represents the 
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electric field. ∆Hm is the activation energy in the absence of an electric 

field. In the forward direction the activation energy may be considered to 

be lowered by ½ ziesE and increased by the same amount in the reverse 

direction. 

 

Equation 6.14 then becomes  

 

 ji = 
1

2  cisω{exp (
ziesE

2kT
  ) - exp (- 

ziesE

2kT
 )}    (6.15) 

where ω = ν exp(
∆S

k

m
) exp(- 

∆Hm

kT
 ). 

When ziesE << 2kT, which is valid for normal electrical measurements in 

bulk materials (and when Ohm's law is applicable), the difference in exponentials 

in Eq. 6.15 may be written ziesE/kT (since ex - e-x = 2x for x<<1). Eq. 6.15 then 

takes the form 

 

 ji =  
1

2  ωs2ci 
zieE

kT
        (6.16) 

 

The diffusion coefficient for one-dimensional random diffusion is given by Di = 
1

2  ωs2 and ji hence becomes 

 

 ji = Di 
cizieE

kT
         (6.17) 

 

We have by this shown that net flux density of a hopping charge carrier in an 

electrical field in the small-signal (linear) range is proportional to the random 

diffusion coefficient. As we have shown before, the flux of particles with a charge 

zie may also be expressed in terms of charge carrier mobility or conductivity: 

 

 ji = zie ciBiE = ci ui E = 
σiE

zie
       (6.18) 

 

and when one combines Eqs. 6.17 and 6.18 one obtains various forms of the 

Nernst-Einstein relation (Eq. 6.13): 

 

Di = Bi kT = ui 
kT

zie
  = σi 

kT

ciz
2

i e2
       (6.13) 
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or, rearranged, σi = (zie)
2
ciDi/kT. 

It is emphasised that the relation is derived assuming random diffusion and 

that the mobilities and conductivity through this relation connects to the random 

diffusion coefficient Dr. It is thus meaningful for relating electrical and diffusional 

transport of atoms and ions. For electrons and holes this is only meaningful when 

they migrate by an activated hopping mechanism. 

From the Nernst-Einstein relation it is also seen that the temperature 

dependence of the product σiT is the same as that of Dr. Thus in evaluating the 

activation energy associated with the diffusion coefficient from conductivity 

measurements, it is necessary to plot (σiT) vs 1/T. 

It is also important to note that in the derivation it is implicitly assumed that 

the ions and electrons move independently of each other, e.g. that there is no 

interference between ionic and electronic flows. 

 

 

Transport of electronic species 

Mobilities of electrons and electron holes 

 

In the preceding chapters we have looked at the conductivity and charge 

mobility of thermally activated diffusing species and how they relate to random 

diffusion. In the following, we consider the charge carrier mobilities of electrons 

and holes. 

 

Non-polar solids – itinerant electron model 

The temperature dependence of the charge carrier mobility is dependent on 

the electronic structure of the solid. For a pure non-polar solid - as in an ideal and 

pure covalent semiconductor - the electrons in the conduction band and the 

electron holes in the valence band can be considered as quasi-free (itinerant) 

particles. If accelerated by an electrical field they move until they collide with a 

lattice imperfection. In an ideally pure and perfect crystal the mobilities of 

electrons and electron holes, un and up, are then determined by the thermal 

vibrations of the lattice in that the lattice vibrations result in electron and electron 

hole scattering (lattice scattering). Under these conditions the charge carrier 

mobilities of electrons and electron holes are both proportional to T-3/2, e.g. 

 

 un,latt = un,latt,0 T-3/2   up,latt = up,latt,0 T-3/2   (6.19) 
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If, on the other hand, the scattering is mainly due to irregularities caused by 

impurities or other imperfections, the charge carrier mobility is proportional to 

T3/2, e.g. 

 

 un,imp = un,imp,0 T3/2  up,imp = up,imp,0 T3/2   (6.20) 

 

If both mechanisms are operative, each mobility is given by 

 

impnlattn

n
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=           
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,,

11

1

+

=    (6.21) 

 

and from the temperature dependencies given above it is evident that impurity 

scattering dominates at low temperature while lattice scattering takes over at 

higher temperature.  

 

Polar (ionic) oxides 

When electrons and electron holes move through polar compounds, such as 

ionic oxides, they polarise the neighbouring lattice and thereby cause a local 

deformation of the structure. Such an electron or electron hole with the local 

deformation is termed a polaron. The polaron is considered as a fictitious particle 

– the deformation moves along with the electron or hole. 

When the interaction between the electron or electron hole and the lattice is 

relatively weak, the polaron is referred to as a large polaron - the deformation 

gives a shallow energy minimum for the location of the electron or hole. Large 

polarons behave much like free electronic carriers except for an increased mass 

caused by the fact that polarons carry their associate deformations. Large polarons 

still move in bands, and the expressions for the effective density of states in the 

valence and conduction bands are valid. The temperature dependence of the 

mobilities of large polarons at high temperatures
*
 is given by  

 

 ularge pol. = ularge pol.,0 T-1/2       (6.22) 

 

The large polaron mechanism has been suggested for highly ionic non-

transition metal oxides, with large band gaps.  

For other oxides it has been suggested that the interactions between the 

electronic defects and the surrounding lattice can be relatively strong and more 

                                                

* "High temperatures" are temperatures above the optical Debye temperature, θ. For oxides 

θ~(hω)/2πk, where h is the Planck constant, k the Boltzmann constant and ω the longitudinal 

optical frequency which for an oxide is  ~1014 s-1. 
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localised. If the dimension of the polaron is smaller than the lattice parameter, it is 

called a small polaron or localised polaron, and the corresponding electronic 

conduction mechanism is called a small polaron mechanism.  

The transport of small polarons in an ionic solid may take place by two 

different mechanisms. At low temperatures small polarons may tunnel between 

localised sites in what is referred to as a narrow band. The temperature 

dependence of the mobility is determined by lattice scattering and the polaron 

mobility decreases with increasing temperature in a manner analogous to a broad 

band semiconductor.  

However, at high temperatures (for oxides above roughly 500 °C) the band 

theory provides an inadequate description of the electronic conduction 

mechanism. The energy levels of electrons and electron holes do not form bands, 

but are localised on specific atoms of the crystal structure (valence defects). It is 

assumed that an electron or electron hole is self-trapped at a given lattice site, and 

that the electron (or electron hole) can only move to an adjacent site by an 

activated hopping process similar to that of ionic conduction. Consequently it has 

been suggested that the mobility of a small polaron can be described by a classical 

diffusion theory as described in a preceding chapter and that the Nernst -Einstein 

can be used to relate the activation energy of hopping, Eu, with the temperature 

dependence of the mobility, u, of an electron or electron hole: 

 

u = 
e

kT  D = u0T-1exp(- 
Eu

kT )      (6.23) 

 

where Eu is the activation energy for the jump. 

At high temperatures, the exponential temperature dependence of small 

polaron mobilities can thus in principle be used to distinguish it from the other 

mechanisms.  

The different mechanisms can also be roughly classified according to the 

magnitude of the mobilities; the lattice and impurity scattering mobilities of 

metals and non-polar solids are higher than large-polaron mobilities which in turn 

are larger than small-polaron mobilities. Large polaron mobilities are generally of 

the order of 1-10 cm2/V-1s-1, and it can be shown that a lower limit is 

approximately 0.5 cm2V-1s-1. Small polaron mobilities generally have values in 

the range 10-4-10-2 cm2V-1s-1. For small polarons in the regime of activated 

hopping the mobility increases with increasing temperature and the upper limit is 

reported to be approximately 0.1 cm2V-1s-1. 

 

Electronic conductivity 

 

Most metal oxides are electronic conductors at high temperatures. For many 

of these oxides the conductivity increases with increasing temperature and as the 

conductivity at the same time is much smaller than in metals, this type of 

conductivity is termed semiconductivity. The principal reason for the increasing 
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conductivity is that the number of electronic defects increases with increasing 

temperature. A limited number of oxides - especially among transition metal 

monoxides - are metallic conductors and for which the conductivity decreases 

with increasing temperature. In this case this is attributed to a mobility of 

electronic defects decreasing with increasing temperature. Other oxides, e.g. p-

conducting acceptor-doped perovskites to be discussed in a later chapter, also 

exhibit metallic-like conductivity in that the conductivity also here decreases with 

increasing temperature; however in these cases the decreasing conductivity is 

attributed to a decreasing number of electron holes with increasing temperature, 

and the conductivity is thus not to be classified as metallic. 

The electronic conductivity, σel, is, using Eq. 6.6, given by  

 

σel = σn + σp = enun+ epup      (6.24) 

 

where σn and σp are the electron and electron hole conductivities, n and p the 

charge carrier concentrations of electrons and electron holes, respectively, and un 

and up are the charge mobilities of electrons and electron holes. As mentioned 

above, one type of charge carrier will often dominate; however, in special cases 

where an oxide is close to stoichiometric both n- and p- conductivity may 

contribute significantly to the electronic conductivity. In the following, we analyse 

the electronic conductivity in some detail for selected cases of defect structure. 

 

Intrinsic electronic semiconductor 

When the temperature of a pure, undoped semiconductor is increased, 

electrons in the valence band are excited across the forbidden energy gap to the 

conduction band. This is the intrinsic ionisation. The electrons in the conduction 

band and the unoccupied electron sites in the valence band (electron holes) can 

move in an electric field. The electron holes behave as though they were 

positively charged and move in the opposite direction of the electrons. The 

intrinsic ionisation thus produces pairs of electron + electron hole charge carriers: 

 

0 = e' + h.         (6.25) 

 

n.p = Ki         (6.26) 

 

where Ki is the equilibrium constant for the intrinsic ionisation, and  

 

 Ki = n.p = NC NV exp (- 
Eg

kT
 )      (6.27) 
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where Eg is the band gap, Eg = EC – EV, and NC and NV are, respectively, the 

densities of state in the conduction and valence bands.  

In an intrinsic semiconductor the concentrations of electrons and electron 

holes are equal, and thus 

 

n = p = Ki
1/2 = (NC NV)1/2 exp (- 

Eg

2kT
 )    (6.28) 

 

and the electronic conductivity then becomes 

 

σel = σn + σp = enµn + epµp = e (NCNV)1/2(un + up) exp(- 
Eg

2kT ) (6.29) 

 

Via differences in the mobility one of the charge carriers may dominate. It may be 

noted that NC and NV are temperature dependent and that also un and up may have 

various dependencies on temperature. If the latter are not exponential (as in 

diffusional hopping conduction processes) the exponential term of the energy gap 

tend to dominate the temperature dependence and as an approximation Eq. 6.29 is 

then often written 

 

 σel  ≈ σel,0 ·exp(- 
Eg

2kT )      (6.30) 

 

From these relations it is evident that the intrinsic electronic conductivity 

increases with decreasing energy gap. 

 

Effects of donors and acceptors 

A donor is a defect with an electron close to the conduction band. It is thus 

easily ionised to give an electron in the conduction band. Similarly, an acceptor 

would accept an electron from the valence band and the energy of this is close to 

the valence band.   
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Figure  6-2. Schematic illustration of additionally localised energy levels due to 

donors and acceptors in the forbidden energy gap in the energy band diagram of 

a semiconductor. 

 

Because of the small ionisation energies Ed and Ea, donors and acceptors are 

usually ionised except at very low temperatures. The compensation of the donors 

and acceptors may be done by electronic defects and point defects in competition 

with each other. In elemental and other covalent semiconductors with moderate or 

small band gaps, electronic defects will dominate. In these, the concentration of 

electronic defects compensating the donor or acceptor is thus constant. The 

temperature dependency of the conductivity is then only given by that of the 

mobility term of the charge compensating electronic defect. 

 In a donor-doped material with compensation by electrons, the 

conductivity will thus be  

  [D]nn eu== σσ        (6.31) 

where the donor concentration [D] is a constant and the temperature dependency 

thus only given by that of the mobility un.   

 In an acceptor-doped material with compensation by electron holes, the 

conductivity will correspondingly be 

 [A]pp eu== σσ        (6.32) 

We end this part by reminding ourselves that the temperature dependency of 

electronic conduction in semiconductors typically consists of two or three regions:  

At the highest temperatures, intrinsic ionisation dominates and the band gap 

divided by two dominates the exponential temperature dependency. At 

intermediate temperatures the conductivity is given by a constant concentration of 

the electronic defect, fixed by dopants, so that only the temperature of the 

mobility remains. At the lowest temperatures, the dopants may not be fully 

ionised, and an exponential dependency of the ionisation energy of the dopant 

comes into play.   
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Electronic conduction in nonstoichiometric oxides 

Corresponding expressions for σel for nonstoichiometric electronic 

semiconductors readily follows by considering the temperature and oxygen 

pressure dependence of the concentration of the electronic defects in oxides.  

For nonstoichiometric oxides the concentration of electronic defects is 

determined by the deviation from stoichiometry, the presence of native charged 

point defects, and aliovalent impurities and/or dopants. The concentration of 

electronic defects can be evaluated from proper defect structure models and 

equilibria. Various defect structure situations have been described in previous 

chapters and at this stage only one example - dealing with oxygen deficient oxides 

with doubly charged oxygen vacancies as the prevalent point defects - will be 

described to illustrate the electrical conductivity in nonstoichiometric oxides.  

Let us recapitulate the equations for formation of doubly charged oxygen 

vacancies. As described in Chapter 3 the defect equation may be written 

 

OO = V
2.

O
  + 2e' + 

1

2 O2       (6.33) 

 

The corresponding defect equilibrium is given by 

 

[V
2.

O
 ] n2 = KV

2.

O
  p

-1/2

O2
        (6.34) 

 

If we deal with a high-purity oxide where the concentration of impurities can be 

ignored compared to the concentration of oxygen vacancies and electrons, the 

electroneutrality condition becomes 

 

n = 2[V
2.

O
 ]        (6.35) 

 

By combining Eqs. 6.34 and 6.45 the concentration of electrons is given by  

 

 n = 2[V
2.

O
 ] = (2KV

2.

O
 )1/3 p

-1/6

O2
      (6.36) 

 

The total electrical conductivity is given by the sum of the conductivity of the 

electrons and of the oxygen vacancies: 

 

σt = 2e[V
2.

O
 ]uV

2.

O
  + e n un      (6.37) 
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2e[V
2.

O
 ]uV

2.

O
  represents the ionic conductivity due to the oxygen vacancies and 

where uV
2.

O
  is the mobility of the oxygen vacancies. However, if the electrons and 

oxygen vacancies are the prevalent charge carriers, the contribution due to oxygen 

vacancies can be ignored due to the much higher mobility of electrons than 

oxygen vacancies, and the oxide is an n-type conductor where the conductivity 

can then be written 

 

σt = σn = e n un = e un (2KV
2.

O
 )1/3 p

-1/6

O2
     (6.38) 

 

As described in previous chapters the equilibrium constant for the formation of 

doubly charged oxygen vacancies and 2 electrons is given by 

 

KV
2.

O
  = exp (

∆S

k

VO

2.

) exp(- 
∆H

kT

VO

2.

)     (6.39) 

 

When one combines Eqs. 6.38 and 6.39 the n-type conductivity may be written: 

 

σt = σn = e un exp (
∆S

3k

VO

2.

) exp (-
∆H

3kT

VO

2.

) p
-1/6

O2
    (6.40) 

 

Let us further assume that the electrons are small polarons and thus that the 

mobility of the electrons are given by Eq. 6.23. The conductivity can then be 

expressed by  

 

σn = u0 e  
1

T   exp (
∆S

3k

VO

2.

) exp (-
∆H / 3 + E

kT

VO

2.

u
) p

-1/6

O2
   (6.41) 

 

Thus, following this equation the n-type conductivity is proportional to p
-1/6

O2
 , and 

if this defect structure situation prevails over a temperature range from T1 to T5, 

one will obtain a set of isotherms of the n-type conductivity as shown in Fig.6.5. 
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Figure  6-3. Schematic presentation of different isotherms of the n-conductivity at 

temperatures from T1 to T5 for an oxygen deficient oxide where the predominant 

defects are doubly charged oxygen vacancies and electrons. 

 

Furthermore, if it can be assumed that mobility of the charge carriers (defect 

electrons) is independent of the defect concentration, then a plot of the values of 

log10(σT) at a constant oxygen pressure yields a straight-line relationship as 

illustrated in Fig. 6.6. The slope of the line is given by  -
1

2.303k
 

H

3
  

V O

2.
∆

+Eu, 

where the factor 2.303 is the conversion factor in changing from lne to log10. The 

activation energy is given by the term 

 

 Eσ = 
∆H

3
  

V O

2.

+ Eu.       (6.42) 

 

 

Figure  6-4. Schematic illustration of a plot of log10(σnT) vs. the reciprocal 

absolute temperature at constant oxygen pressure (cf. Fig.6.5).  
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In general the temperature dependence of the charge carrier mobility of the 

electrons is much smaller than the enthalpy term associated with the formation of 

doubly charged oxygen vacancies. 

The mobility of electronic charge carriers may be determined by measuring 

the electrical conductivity and combine these measurements with independent 

measurements of the concentration of the electronic charge carriers. The 

concentration of the charge carriers may be estimated from measurements of the 

Seebeck coefficient or by measurements of the nonstoichiometry combined with  

the proper description of the defect structure (cf. Ch. 7). 

For mixed conductors that exhibit both ionic and electronic conductivities it 

is necessary to delineate the ionic and electronic contributions. A commonly used 

technique for this is the emf method originally derived by Wagner. This will be 

described in the next chapter (Ch. 7) dealing with electrochemical transport in 

metal oxides.  

 

 

Ionic conductivity 
 

Ionic conductivity follows the Nernst–Einstein relationship, for hopping 

species, derived early in this chapter: 

 

σi = zie ci ui = (zie)
2
ciDi/kT      (6.43) 

 

It may be noted that the species considered may be a defect (e.g. oxygen 

vacancies) or a constituent (oxide ions). For defects the mobility and diffusivity 

are large and roughly constant, while the concentration is small and variable. For 

the constituent, the mobility and diffusivity are small and variable (with defect 

concentration) while the concentration is large and roughly constant. The 

conductivity (here oxide ion conductivity by the vacancy mechanism) is the same. 

In many cases of utilizing ionic conduction, the concentration ci of ionic 

defects is constant, given by a dopant. For instance, ionic conductivity in yttria-

doped zirconia is determined by the concentration of oxide ion vacancies, in turn 

given as charge compensating the yttrium acceptors, 2[vO
..
] = [YZr

/
]. If the 

concentration of acceptors is given in mole-fraction, then it is necessary to 

multiply the resulting mole fraction of vacancies by the formula density or molar 

density of the compound in order to obtain the volume density required for 

insertion in  Eq. 6.43: 

 

σvO.. = 2e [YZr
/
]/2 * cZrO2 uvO.. = 2F [YZr

/
]/2 * CZrO2 uvO..  (6.44) 

 

where cZrO2 and CZrO2 are, respectively, the molecular and molar densities (number 

of formula units or moles per unit volume) of the oxide. 
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 There are of course also cases – also of practical interest – where the 

concentration of ionic defects vary, e.g. with temperature in intrinsically 

disordered compounds, and with temperature and non-stoichiometry in non-

stoichiometric compounds. In proton conducting oxides the proton conductivity 

varies with proton concentration, typically a function of water vapour partial 

pressure. 

 We leave further learning about ionic conduction to exercises and Chapter 

7 (electrochemical transport), and here only briefly mention a couple of aspects of 

ionic transport that relates it in more detail to diffusion.   

  

Correlation effects: tracer diffusion and ionic conduction 

 

In the discussions of diffusion mechanisms in Chapter 5 it was pointed out 

that successive jumps of tracers atoms in a solid may for some mechanisms not be 

completely random, but are to some extent correlated. This is, for instance, the 

case for the vacancy and interstitialcy mechanisms. For a correlated diffusion of a 

tracer atom in a cubic crystal the tracer diffusion coefficient, Dt, is related to the 

random diffusion coefficient for the atoms, Dr, through the correlation coefficient 

f: 

 

Dt = f Dr         (6.45) 

 

The value of f is governed by the crystal structure and the diffusion mechanism. 

 

Ionic conductivity method 

Values of the correlation coefficient may be determined by comparing the 

measured values of the ionic conductivity and the tracer diffusion coefficient. 

Thus the use of the Nernst-Einstein relation gives the following expression for the 

correlation coefficient: 

 

 f  = 
Dt

Dr
  = 

Dt

σi
 
ci (zie)2

kT         (6.46) 

 

This equation is applicable to any diffusion process for which the atom jump 

distance is equal to the displacement of the effective charge, e.g. for vacancy and 

interstitial diffusion.  

However, in interstitialcy diffusion the charge displacement is larger than 

the atom jump distance, and a displacement factor S must be included in the 

Nernst-Einstein relation. In collinear interstitialcy diffusion (Fig. 5.9) the effective 

charge is, for instance, moved a distance twice that of the tracer atom and Dt/Dr is 

given by 
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Dt

Dr
  = 

Dt

S  
ci (zie)2

σikT
  = 

f

S   (collinear)    (6.47) 

 

where S = 2. For a collinear jump in an fcc structure the displacement factor is 

4/3. 

Studies on alkali and silver halides have provided illustrative, and by now 

classical examples of the applicability of the ionic conductivity method for 

determining the correlation factor and detailed aspects of the jumps in diffusion 

processes. NaCl, for instance, is essentially a pure cationic conductor. Measured 

ratios of Dt/Dr are in good agreement with the assumption that f =  0.78, i.e. that 

the Na-ions diffuse by a vacancy mechanism. 

However, such a simple relationship was not found for AgBr. AgBr is also a 

cationic conductor and comparative values of Dt (diffusion of Ag in AgBr) and of 

values of Dr  evaluated from conductivity measurements are shown in Fig. 6.7. 

From studies of the effect of Cd-dopants on the ionic conductivity it could 

be concluded that cationic Frenkel defects predominate in AgBr. Thus the 

diffusion was therefore expected to involve both vacancy diffusion and transport 

of interstitial ions. The experimentally measured ratios of Dt/Dr varied from 0.46 

at 150 °C to 0.67 at 350°C. For vacancy diffusion a constant ratio of 0.78 (=f) 

would have been expected, and the diffusion mechanism could thus be ruled out. 

For interstitial diffusion f=1, and this mechanism could also be excluded. 

 

 

Figure  6-5. Values of Dt and of Dr evaluated from conductivity measurements for 

diffusion of Ag in AgBr. Results after Friauf(1957,1962). 
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For interstitialcy diffusion of Ag in AgBr the value of f equals 2/3 for a collinear 

jump and 0.97 for a non-collinear jump. Following Eq.6.47 one would thus expect 

that Dt/Dr would range from 0.33 for a collinear jumps to 0.728 for non-collinear 

jumps. On this basis Friauf (1957, 1962) concluded that the interstitialcy diffusion 

is the important mechanism in AgBr and that collinear jumps are most important 

at low temperatures while non-collinear jumps become increasingly important the 

higher the temperature. 

 

Simultaneous diffusion and electric field 

The ionic conductivity and Dt may in principle be studied in a single 

experiment, as described by Manning (1962) and others. If a thin layer of the 

isotopes is sandwiched between two crystals and the diffusion anneal is performed 

while applying the electric field, the tracer distribution profile is displaced a 

distance ∆x = uiEt relative to the profile in the absence of the applied field. The 

resultant tracer distribution is given by  

 

 c =  
c

2( D t)
  

o

t

1/2π
exp (-  

t4D

x)-(x

t

2
∆

)     (6.48) 

 

The maximum in the concentration profile is - as illustrated in Fig. 6.8 - displaced 

a distance ∆x, and ui and Dt may be determined from the same experiment. If the 

crystal is a mixed ionic/electronic conductor, the value of the ionic transport 

number under the experimental conditions must be known. 

X

∆X = uiEt

C
O
N
C
E
N
T
R
A
T
IO
N

 

Figure  6-6. Schematic illustration of the concentration profile of a radioactive 

tracer when an electric field is applied during the diffusion anneal. The tracers 

are originally located at 0, but the concentration profile is displaced a distance ∆x 

= uiEt. 
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Problems 

 

1. Cobalt oxide: The electronic conductivity of Co1-xO at 1350°C and pO2 = 0.1 

atm is 25 S/cm. Thermogravimetric measurements show that y = 0.008 under the 

same conditions. It is assumed that singly charged cobalt vacancies are the 

dominating point defects. Identify the charge carriers responsible for the 

conductivity and calculate their charge mobility. (Assume that the density of CoO 

at 1350°C equals that at room temperature, 6.4 g/cm
3
. Atomic weights MCo = 

58.93, MO = 16.00.) 

  

2. Nickel oxide: Assume that doubly charged nickel vacancies and electron holes 

are the dominating defects in Ni1-xO under oxidising conditions. At 1245°C and 

pO2 = 1 atm we know the following for the compound:  

The self diffusion coefficient for nickel: DNi = 9*10
-11

 cm
2
/s 

Electrical conductivity:
7
 σ = 1.4 S/cm  

Nickel vacancy concentration,
8
 in site or mole fraction: [vNi’’] = 2.5*10

-4
 

i) Calculate the concentration of electron holes under the given conditions, given 

as site fraction and as volume concentration (e.g. number/cm
3
). (Atomic weights 

MNi = 58.71, MO = 16.00, density of NiO = 6.67 g/cm
3
.) 

ii) Calculate the charge mobility of the electron holes. 

iii) Calculate the diffusion coefficient of nickel vacancies. 

iv) Calculate the charge mobility of the nickel vacancies and the ionic 

conductivity under the conditions referred to above. 

 

3. Ca-stabilised ZrO2 (CSZ) 

We shall here consider a densely sintered ZrO2 doped with 15 mol% CaO 

(Zr0.85Ca0.15O1.85). 

                                                
7
 Data from M.L. Volpe and J. Reddy, J. Chem. Phys., 53 (1970) 1117. 

8
 Data from W.C. Tripp and N.M. Tallan, J. Am. Ceram. Soc., 53 (1970) 531. 
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i) Assume that the oxide contains doubly charged oxygen vacancies compensating 

the Ca dopant. What are the site-fractions of dopants and of oxygen vacancies? 

ii) Derive equations showing how the minority concentrations of defect electrons 

and electron holes vary with pO2 in this oxide under the given conditions. 

iii) The conductivity of this oxide is independent of pO2 from oxidising to very 

reducing conditions. What can we deduce from this? 

iv) Simpson and Carter (J. Am. Ceram. Soc. 49 (1966) 139) measured the self 

diffusion coefficient for oxygen in Zr0.85Ca0.15O1.85 and found it to be DO = 2.0*10
-

7
 cm

2
/s at 1100°C. Calculate the electrical conductivity based on this. 

v) Find also the diffusion coeffeicient and charge mobility for the oxygen 

vacancies. 

 

4. Intrinsic electronic conductor 

i) Equation 6.30, σel ≈ σel,0·exp(- 
Eg

2kT ), expresses the meain feature of the 

temperature dependency of an intrinsic electronic conductor. Write the expression 

more properly, assuming that electrons have a much larger mobility than holes, 

that the electrons are itinerant (move in the conduction energy band) and that the 

material is pure and the temperature high so that lattice scattering is dominating. 

ii) You measure the conducttivity and would like to find the band gap. What 

should you plot vs 1/T to extract the band gap from the slope? 
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Answers and hints to selected Problems, Ch. 6. 

 

to appear here… 


