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4 Orbitals and Bands in One Dimension

et's begin with a chain of equally spaced H atoms, 1, or the isomorphic
sstem of a non-bond-alternating, delocalized polyene 2, stretched out for
ne moment. And we will progress to a stack of Pe(Il) square planar
omplexes, 3, Pt(CN);2~ or a model PtH4* .

A digression here: every chemist would have an intuitive feeling for
what that model chain of hydrogen atoms would do if released from the
prison of its theoretical construction. At ambient pressure, it would form a
chain of hydrogen molecules, 4. This simple bond-forming process would be
analyzed by the physicist (we will do it soon) by calculating a band for the
equally spaced polymer, then seeing that it's subject to an instability, called
a Peierls distortion. Other words around that characterization would be
strong electron-phonon coupling, pairing distortion, or a 2k instability.
And the physicist would come to the conclusion that the initially equally
spaced H polymer would form 2 chain of hydrogen molecules. I mention
this thought process here to make the point, which I will do repeatedly
throughout this book, that the chemist’s intuition is really excellent. But we
must bring the languages of our sister sciences into correspondence.
Incidentally, whether distortion 4 will take place at 2 megabars is not
obvious and remains an open question.

Let’s return to our chain of equally spaced H atoms. It turas out to be
computationally convenient to think of that chain as an imperceptible bent
segment of large ring (this is called applying cyclic boundary conditions).

Bloch Functions, k, Band Structures 5

Th‘e orbitals of medium-sized rings on the way to that very large one are
quite well known. They are shown in 5. For a hydrogen molecule (or
ethylene) there is bonding g,(w) below an antibonding o, *(7*). For cyclic
H; or cyclopropenyl we have one orbital below two degenerate ones; for
cyclobutadiene the familiar one below two below one, and so on. Except for
the lowest (and occasionally the highest) level, the orbitals come in
degenerate pairs. The number of nodes increases as one rises in energy.
We'd expect the same for an infinite polymer—the lowest level nodeless,
the highest with the maximum number ‘of godes. In between the levels
should come in pairs, with a growing number of nodes. The chemist’s
representation of the band for the poly?ﬂg& is given at right in 5.
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BLOCH FUNCTIONS, k, BAND
STRUCTURES

Thcrc.is a better way to write out all these orbitals by making use of
thc_ translational symmetry. If we have a lattice whose points are labeled by
anindexn = 0, 1, 2, 3, 4 - -+ as shown in 6, and if on each lattice point



6 Bloch Functions, k, Band Structures

there is a basis function (a H 1s orbital), xo, X1, X2, €tc., then the appropriate
symmetry-adapted linear combinations (remember that translation is as
good a symmetry operation as any other we know) are given in 6. Here a is
the lattice spacing, the unit cell in one dimension, and k is an index that
labels which irreducible representation of the translation group ¥ trans-
forms as. We will see in a moment that k is much more, but for now k is just
an index for an irreducible representation, just as 2, €, €, in Cs are labels.
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In the solid state physics trade, the process of symmetry adapration is
called ‘‘forming Bloch functions.’’¢#!! To reassure chemists that one is
getting what one expects from 6, let’s see what combinations are generated
for two specific values of k: 0 and =/a. This is carried out in 7.
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Referring back to 5, we see that the wave function corresponding to k
= 0 is the most bonding one, the one for k = /2 the top of the band. For
other values of k we get a neat description of the other levels in the band. So
k counts nodes as well. The larger the absolute value of k, the more nodes
one has in the wave function. But one has to be careful—there is a range of k
and if one goes outside of it, one doesn’t get a new wave function, but
rather repeats an old one. The unique values of k are in the interval —7/a
< k < w/aor | k| < w/a. This is called the first Brillouin zone, the range of
unique k.

Band Width 7

How many values of k are there? As many as the number of
translations in the crystal or, alternatively, as many as there are microscopic
unit cells in the macroscopic crystal. So let us say Avogadro’s number, give
or take a few. There is an energy level for each value of k (actually a
degenerate pair of levels for each pair of positive and negative k values.
There is an easily proved theorem that E(k) = E(— k). Most representations
of E(k) do not give the redundant E(— k), but plot E(| k|) and label it as
E(k)). Also the allowed values of k are equally spaced in the space of k,
which is called reciprocal or momentum space. The relationship between k
= 2n/\ and momentum derives from the de Broglie relationship A = h/p.
Remarkably, k is not only a symmetry label and a node counter, but it is also
a wave vector, and so measures momentum.

So what a chemist draws as a band in 5, repeated at left in 8 (and the
chemist tires and draws ~ 35 lines or just a block instead of Avogadro’s
number), the physicist will alternatively draw as an E(k) vs. k diagram at
right. Recall that k is quantized, and there is a finite but large number of
levels in the diagram at right. The reason it looks continuous is that this is a
fine dot matrix printer; thete are Avogadro’s number of points jammed in
there, and so it’s no wonder we see a line.
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Graphs of E(k) vs. k are called band structures. You can be sure that
they can be much more complicated than this simple one. However, no
matter how complicated they are, they can still be understood.

BAND WIDTH

One very important feature of a band is its dispersion, or bandwidth,
the difference in energy between the highest and lowest levels in the band.
What determines the width of bands? The same thing that determines the



8 Band Width
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Figure 1 The band structure of a chain of hydrogen atoms spaced 3, 2, and 1 A
apart. The energy of an isolated H atom is —13.6 V.

splitting of levels in a dimer (ethylene or H?), namely, the overlap berween
the interacting orbitals (in the polymer the overlap is that between
neighboring unit cells). The greater the overlap between neighbors, the
greater the band width. Figure 1 illustrates this in detail for a chain of H
atoms spaced 3, 2, and 1 A apart. That the bands extend unsymmetrically
around their “‘origin,”’ the energy of a free H atom at —13.6 eV, is a
consequence of the inclusion of overlap in the calculations. For two levels, a
dimer
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The bonding E, combination is less stabilized than the antibonding one E_
is destabilized. There are nontrivial consequences in chemistry, for this is the

See How They Run 9

source of four-electron repulsions and steric effects in one-electron theo-
dies. 11 A similar effect is responsible for the bands *‘spreading up’ in Fig. 1.

SEE HOW THEY RUN

Another interesting feature of bands is how they “‘run.”” The lovely
mathematical algorithm 6 applies in general; it does not say anything about
the energy of the orbitals at the center of the zone (k = 0) relative to those
at the edge (k = /2). For a chain of H aroms it is clear that E(k = 0) <
E(k = w/a). But consider a chain of p functions, 9. The same combinations
as for the H case are given to us by the translational symmetry, but now itis
clearly k = 0 that is high energy, the most antibonding way to put together
a chain of p orbirals.
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The band of s functions for the hydrogen chain *‘runs up,”’ the band
of p orbitals **runs down’’ (from zone center to zone edge). In general, itis
the topology of orbital interactions that determines which way bands run.

Let me mention here an organic analogue to make us feel comfortable
with this idea. Consider the through-space interaction of the three = bonds
in 10 and 11. The threefold symmetry of each molecule says that there must
be an a and an e combination of the = bonds. And the theory of group
tepresentations gives us the symmetry-adapted linear combinations: fora, x,
+ x2 + x3; for e (one choice of an infinity), X1 — 2X2 + X3, X1 ~ X3 where
x1 is the 7 otbital of double bond 1, etc. But there is nothing in the group
theory that tells us whether a is lower than e in energy. For that one needs
chemistry or physics. It is easy to conclude from an evaluation of the orbital
topologies that a is below e in 10, but the reverse is true in 11,



10 An Eclipsed Stack of Pi(Il) Square Planar Complexes
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To summarize: band width is set by inter-unit-cell overlap, and the
way bands run is determined by the topology of that overlap.

AN ECLIPSED STACK OF Pt(Il) SQUARE
PLANAR COMPLEXES

Let us test the knowledge we have acquired on an example slightly
more complicated than a chain of hydrogen atoms. This is an eclipsed stack
of square planar d® Ptly complexes, 12. The normal platinocyanides [e.g.,
K,Pt(CN)4] indeed show such stacking in the solid state, at the relatively
uninteresting Pt- - - Pt separation of ~3.3 A More exciting are the partially
oxidized materials, such as K,Pt(CN)4Cly 5 and K,Pt(CN)y(FHF), 2s. These
are also stacked, but staggered, 13, with a much shorter Pt- - - Pt contact of
2.7 = 3.0 A. The Pt—Pt distance had been shown to be inversely related to
the degree of oxidation of the material. 2
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The real test of understanding is prediction. So let’s try to predict the
approximate band structure of 12 and 13 without a calculation, just using
the general principles at hand. Let's not wotry about the nature of the
ligand; it is usually CN~, but since it is only the square planar feature that is
likely to be essential, let’s imagine a theoretician’s generic ligand H~. We'll
begin with 12 because its unit cell is the chemical PtL, unit, whereas the unit
cell of 13 is doubled, (PtLy),.

One always begins with the monomer. What are its frontier levels?
The classical crystal field or molecular orbital picture of a square planar
complex (Fig. 2) leads to a 4 below 1 splitting of the d block.'" For 16
electrons we have z?, xz, yz, and xy occupied and x’-y? empty. Competing
with the ligand field-destabilized x*-y? otbital for being the lowest
unoccupied molecular orbital (LUMO) of the molecule is the metal z. These
two orbitals can be manipulated in understandable ways: 7 acceptors push z
down, 7 donors push it up. Better ¢ donors push x?-y? up.

We form the polymer. Each MO of the monomer generates a band.
There may (will) be some further symmetry-conditioned mixing between
orbitals of the same symmetry in the polymer (e.g., s and z and z? are of
different symmetry in the monomer, but certain of their polymer molecular
orbitals (MOs) are of the same symmetry). However, ignoring that secondary
mixing and just developing a band from each monomer level independently
represents a good start.

First, here is a chemist’s judgment of the band widths that will
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develop: the bands that will arise from 22 and z will be wide, those from xz,
yz of medium width, those from x2-y2, xy narrow, as shown in 14. This
characterization follows from the realization thac the first set of interactions
(z, z2) is o type, and thus has a large overlap between unit cells. The xz, yz
set has 2 medium 7 overlap, and the xy and x*-y* orbitals (of course, the
latter has a ligand admixture, but that doesn’t change its symmetry) are .
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It is also easy to see how the bands run. Let’s write out the Bloch
functions at the zone center (k = 0) and zone edge (k = 7/a). Only one of
the 7 and 6 functions is represented in 15. The moment one writes these
down, one sees that the z? and xy bands will run up from the zone center
(the k = 0 combination is the most bonding) whereas the z and xz bands X2,yz
will run down (the k = 0 combination is the most antbonding).

The predicted band structure, merging considerations of band width
and orbiral topology, is that of 16. To make a real estimate, one would need Xy
an actual calculation of the various overlaps, and these in wrn would
depend on the Pt- - - Pt separation. 7

The actual band structure, as it emetges from an extended Hiickel
calculation atr Pe-Pt = 3.0 A, is shown in Fig. 3. It matches our
expectations very precisely. There are, of course, bands below and above the = rw— psl
frontier orbitals discussed: these are Pe-H o and o* orbitals.

Here we can make a connection with molecular chemistry. The
construction of 16, an approximate band structure for a platinocyanide
stack, involves no new physics, no new chemistry, no new mathematics

m—

16
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Figure 3 Computed band structure
of an eclipsed PtHy?~ stack, spaced e
at 3 A. The orbital marked xz, yz
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beyond what every chemist already knows for one of the most beautiful ideas
of modern chemistry: Cotron’s construct of the metal-metal quadruple
bond. 3 If we are asked to explain quadruple bonding, €.g., in Re,Clg?~,
what we do is to draw 17. We form bonding and antibonding combinations
from the z%(a), xz, yz(r), and x?-y*(8) frontier orbitals of each ReCly~
fragment. And we split o from o* by more than = from 7*, which in wrn is
split more than & and 8*. What goes on in the infinite solid is precisely the
same thing. True, there are a few more levels, but the translational
symmetry helps us out with that. It's really easy to write down the
symmetry-adapted linear combinations, the Bloch functions.

The Fermi Level 15

THE FERMI LEVEL

It’s important to know how many electrons one has in one’s molecule.
Fe(Il) has a different chemistry from Fe(III), and CR;* carbocations are
different from CR; radicals and CR;~ anions. In the case of Re,Clg?~, the
archetypical quadruple bond, we have formally Re(Ill), d*, i.e., a total of
eight electrons to put into the frontier orbitals of the dimer level scheme,
17. They fill the o, two 7, and the § level for the explicit quadruple bond.
What about the [PtH;2~ ). polymer 12? Each monomer is d®. If there are
Avogadro’s number of unit cells, there will be Avogadro’s number of levels
in each bond. And each level has a place for two electrons. So the first four
bands are filled, the xy, xz, yz, z* bands. The Fermi level, the highest
occupied molecular orbital (HOMO), is at the very top of the 2? band.
(Strictly speaking, there is another thermodynamic definition of the Fermi
level, appropriate both to metals and semiconductors,® but here we will use
the simple equivalence of the Fermi level with the HOMO.)

Is there a bond between platinums in this [PtHy?~ ] polymer? We
haven't yet introduced a formal description of the bonding properties of an
orbital or a band, but a glance at 15 and 16 will show that the bottom of
cach band, be it made up of z2, xz, yz, or xy, is bonding, and the top
antibonding. Filling a band completely, just like filling bonding and
antibonding orbitals in a dimer (think of He;, and think of the sequence N,
0,, F,, Ne,), provides no net bonding. In fact, it gives net antibonding. So
why does the unoxidized PtL; chain stack? It could be van der Waals
artractions, not in our quantum chemistry at this primitive level. I think
there is also a contribution of orbital interaction, i.e., real bonding,
involving the mixing of the z2 and z bands. " We will return to this soon.

The band structure gives a ready explanation for why the
Pt- - - Pt separation decreases on oxidation. A typical degree of oxidation is
0.3 electron per Pt.1? These electrons must come from the top of the z?
band. The degree of oxidation specifies that 15% of that band is empty.
The states vacated are not innocent of bonding. They are strongly Pt-Pt o
antibonding. So it’s no wonder that removing these electrons results in the
formation of a partial Pt-Pt bond.

The oxidized material also has its Fermi level in a band, i.e., there isa
zero band gap between filled and empry levels. The unoxidized platino-
cyanides have a substantial gap—they are semiconductors or insulators. The
oxidized materials are good low-dimensional conductors, which is a
substantial part of what makes them interesting to physicists. .

In general, conductivity is not a simple phenomenen to explain, and
there may be several mechanisms impeding the motion of electrons in a
material.? A prerequisite for having a good electronic conductor is to have



16 More Dimensions, At Least Two

the Fermi level cut one or more bands (soon we will use the language of
density of states to say this more precisely). One must beware, however, of
(1) distortions that open up gaps at the Fermi level and (2) very narrow
bands cut by the Fermi level because these will lead to localized states, not to
good conductivity.?

MORE DIMENSIONS, AT LEAST TWO

Most materials are two- or three-dimensional, and while one dimen-
sion is fun, we must eventually leave it for higher dimensionality. Nothing
much new happens, except that we must treat k as a vector, with
components in reciprocal space, and the Brillouin zone is now a two- or
three-dimensional area or volume.®!

To introduce some of these ideas, let’s begin with a square lattice, 18,
defined by the translation vectors 7, and ;. Suppose there is an H 1s orbital
on each lattice site. It turns out that the Schrodinger equation in the crystal
factors into separate wave equations along the x and y axes, each of them
identical to the one-dimensional equation for a linear chain. There is a k,
and a k, the range of cach is 0 < | k|, | k,| < w/a(a = || = |Z]). Some
typical solutions are shown in 19.

The construction of these is obvious. What the construction also
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shows, very clearly, is the vector nature of k. Consider the (k, k,) = (7/2a,
w/2a) and (7/a, 7/a) solutions. A look at them reveals that they are waves
running along a direction that is the vector sum of k. and k,, i.e., on a
diagonal. The wavelength is inversely proportional to the magnitude of that

vector.
The space of k here is defined by two vectors B, and B, and the range

More Dimensions, At Least Two 17
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of allowed k, the Brillouin zone, is a square. Certain special values of k are
given names: I' = (0, 0) is the zone center, X = (7/2, 0) = (0, 7/a), M =
(x/a, x/a). These are shown in 20, and the specific solutions for T', X, and
M wete so labeled in 19.
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18 More Dimensions, At Least Two

It is difficult to show the energy levels E(E) for all k. So what one
typically does is to illustrate the evolution of E along certain lines in the
Brillouin zone. Some obvious onesareI' = X, I' = M, X — M. From 19 it is
clear that M is the highest energy wave function, and that X is pretty much
nonbonding, since it has as many bonding interactions (along y) as it does
antibonding ones (along x). So we would expect the band structure to look
like 21. A computed band structure for a hydrogen lattice with a2 = 2.0 A
(Fig. 4) confirms our expectations.

The chemist would expect the chessboard of H atoms to distort into
one of H, molecules. (An interesting problem is how many different ways
there are to accomplish this.)

Let’s now put some p orbitals on the square lattice, with the direction
perpendicular to the lattice taken as z. The p, orbitals will be separated from
py and p, by their symmetry. Reflection in the plane of the lattice remains a
good symmetty operation at all k. The p,(z) orbitals will give a band
structure similar to that of the s orbiral, since the topology of the interaction
of these orbitals is similar. This is why in the one-dimensional case we could
talk at one and the same time about chains of H atoms and polyenes.

The p,, py (x, ) orbitals present a somewhat different problem. Shown
below in 22 are the symmetry-adapted combinations of each at T, X, Y, and
M. (Y is by symmetry equivalent to X; the difference is just in the
propagation along x or y.) Each crystal orbital can be characterized by the
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Figure 4 The band structure of a square lattice of H atoms, H-H separation 2.0
A

p.p ¢ or = bonding present. Thus at I the x and y combinations are o
antibonding and 7 bonding; at X they are ¢ and 7 bonding (one of them),
and ¢ and 7 antibonding (the other). At M they are both ¢ bonding, =
antibonding. It is also clear that the x, y combinations are degenerate at I’
and M (and, it turns out, along the line ' = M, but for that one needs a
little group theory**) and nondegenerate at X and Y (and everywhere else in
the Brillouin zone).

Putting in the estimate that ¢ bonding is more important than =
bonding, one can order these special symmetry points of the Brillouin zone
in energy and draw a qualitative band structure. This is Fig. 5. The actual
appearance of any real band structure will depend on the lattice spacing.
Band dispersions will increase with short contacts, and complications due to
s, p mixing will arise. Roughly, however, any square lattice—be it the P net
in GdPS, ' a square overlayer of S atoms absorbed on Ni(100),'7 the oxygen
and lead nets in litharge,’8 or a Si layer in BaPdSi;!°—will have these
orbitals.
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Setting Up A Surface Problem 21

Figure 5 Schematic band structure of a planar square lattice of atoms bearing ns
and np orbitals. The s and p levels have a large enough separation that the s and
P band do not overlap.

SETTING UP A SURFACE PROBLEM

The strong incentive for moving to at least two dimensions is that
obviously one needs this for studying surface-bonding problems. Let’s begin
to set these up. The kind of problems we want to investigate, for example,
are how CO chemisorbs on Ni; how H, dissociates on a metal surface; how
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orbital in the unit cell that gives rise to the band. Therefore, 3d bands lie
below 4s and 4p for Ni, and 50 below 27* for CO.

(4) Why some bands are steep, others flat: This is because there is
much inter-unit-cell overlap in one case, lictle in another. The CO
monolayer bands in Fig. 6 are calculated at two different CO-CO spacings,
corresponding to different coverages. It’s no surprise that the bands are
more dispersed when the COs are closer together. In the case of the Ni slab,
the s, p bands are wider than the d bands, because the 3d orbitals are more
contracted, less diffuse than the 4s, 4p.

(5) Why the bands are the way they are: They run up or down along
certain directions in the Brillouin zone as a consequence of symmetry and
the topology of orbital interaction. Note the phenomenological similarity of
the behavior of the ¢ and m bands of CO in Fig. 6 to the schemaric,
anticipated course of the s and p bands of Fig. 5.

There are more derails to be understood, of course. But, in general,
these diagrams are complicated not because of any mysterious phenomenon
but because of richness, the natural accumulation of understandable and
understood components.

We still have the problem of how to talk about all these highly
delocalized orbitals, and how to retrieve a local, chemical, or frontier orbital
language in the solid state. There is a way.

DENSITY OF STATES

In the solid, or on a surface, both of which are just very large
molecules, one has to deal with a very large number of levels or states. If
there are n atomic orbitals (basis functions) in the unit cell, generating n
molecular orbitals, and if in our macroscopic crystal there are N unit cells (N
is 2 number that approaches Avogadro’s number), then we will have Nn
crystal levels. Many of these are occupied and, roughly speaking, they are
jammed into the same energy interval in which we find the molecular or
unit cell levels. In a discrete molecule we are able to single out one orbital or
a small subgroup of orbitals as being the frontier, or valence orbitals of the
molecules, responsible for its geometry, reactivity, etc. There is no way in
the world that a single level among the myriad Nn orbitals of the crystal will
have the power to direct a geometry ot reactivity.

There is, however, a way to retrieve a frontier orbital language in the
solid state. We cannot think about a single level, but perhaps we can talk
about bunches of levels. There are many ways to group levels, but one pretty
obvious way is to look at all the levels in a given energy interval. The density
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of states (DOS) is defined as follows:
DOS(E)dE= number of levels between E and E+ dE

For a simple band of a chain of hydrogen atoms, the DOS curve takes on the
shape of 26. Note that because the levels are equally spaced along the k axis
and because the E(k) curve, the band structure, has a simple cosine curve
shape, there are more states in a given energy interval at the top and bottom
of this band. In general, DOS(E) is proportional to the inverse of the slope
of E(k) vs. k, or, to say it in plain English, the flatter the band, the greater
the density of states at that energy.

£k} DOS(£)
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The shapes of DOS curves are predictable from the band structures.
Figure 8 shows the DOS curve for the PtH,*~ chain, Fig. 9 for a two-
dimensional monolayer of CO. These could have been sketched from their
respective band structures. In general, the derailed construction of these is a
job best left to computers.

The DOS curve counts levels. The integral of DOS up to the Fermi
level is the total number of occupied MOs. Multiplied by 2, it’s the total
number of electrons, so that the DOS cutves plot the distribution of
electrons in energy.

One important aspect of the DOS curves is that they represent a return
from reciprocal space, the space of k, to real space. The DOS is an average
over the Brillouin zone, i.e., over all k that might give molecular orbitals at
the specified encrgy. The advantage here is largely psychological. If I may be
permitted to generalize, I think chemists (with the exception of crystallogra-
phers) by and large feel themselves uncomfortable in reciprocal space.
They’d rather return to, and think in, real space.

Thete is another aspect of the return to real space that is significant:
chemists can sketch the DOS of any material, approximarely, intuitively. All
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Figure 8 Band structure and density of states for an eclipsed PtH,2 " stack. The
DOS curves are broadened so that the two-peaked shape of the xy peak in the
DOS is not resolved.

that’s involved is a knowledge of the atoms, their approximate ionization
potentials and electronegativities, and some judgment as to the extent of
inter-unit-cell overlap (usually apparent from the structure).

Let’s take the PtH,?~ polymer as an example. The monomer units are
clearly intact in the polymer. At intermediate monomer—monomer separa-
tions (e.g., 3 A) the major inter-unit-cell overlap is between z? and z
orbitals. Next is the xz, yz m-type overlap; all other interactions are likely to
be small. Diagram 27 is a sketch of what we would expect. In 27 I haven't
been careful to draw the integrated areas commensurate to the actual total
number of states, nor have I put in the two-peaked nature of the DOS each
level generates; all [ want to do is to convey the rough spread of each band.
Compare 27 to Fig. 8.

This was easy, because the polymer was built up of molecular
monomer units. Let’s try something inherently three-dimensional. The
rutile structure of TiO; is a relatively common type. As 28 shows, the rutile
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Figure 9 The density of states (right) corresponding to the band structure (left) of
a square monolayer of CO’s, 3.52 A apart.
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30 Density of States

structure has a nice octahedral environment of each metal center, each
ligand (e.g., O) bound to three metals. There ate infinite chains of edge-
sharing MOy octahedra running in one direction in the crystal, but the
metal-metal separation is always relatively long.? There are no monomer
units here, just an infinite assembly. Yet there are quite identifiable
octahedral sites. At each, the meral d block must split into t;, and ¢,
combinations, the classic three-below-two crystal field splitting. The only
other thing we need is to realize that O has quite distinct 2s and 2p levels,
and that there is no effective O+ --O or Ti- - - Ti interaction in this crystal.
We expect something like 29.

mainly Ti s,p

' ) Ti-O antibonding

e, mainly on Ti
— 910 antibonding

[ ty, Ti=O = antibonding

) 0 2p, T+O bonding

m—

O2s

DOS —=
29

Note that the writing down of the approximate DOS curve bypasses
the ba:nd structure calculation per se. Not that that band structure is very
complicated; but it is three-dimensional, and our exercises so far have been
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R 0o0s —
(a) (]

Figure 10 Band structure and density of states for rutile, TiO,.

easy, in one or two dimensions. So the computed band structure in Fig. 10
will seem complex. The number is doubled (i.e., 12 O 2p, 6 t;; bands),
simply because the unit cell contains two formula units, (TiO,),. There is
not one reciprocal space variable, but several lines =X XM, ew)
that refer to directions in the three-dimensional Brillouin zone. If we glance
at the DOS, we see that it does resemble the expectations of 29. There are
well-separated O 2s, O 2p, Ti ty, and € bands.

Would you like to try something a little (but not much) more
challenging? Attempt to construct the DOS of the new superconductors
based on the La,CuQ; and YBa,Cu;0; structures. And when you have done
so and found that these should be conductors, reflect on how that doesn’t
allow you yet, did not allow anyone, to predict that compounds slightly off
these stoichiometries would be remarkable superconductors. %

The chemist’s ability to write down approximate DOS curves should
not be slighted. It gives us tremendous power, qualitative understanding,
and an obvious connection to local, chemical viewpoints such as the crystal
or ligand field model. I want to mention here one solid state chemist, John
B. Goodenough, who has shown over the yeats, and especially in his
prescient book Magnetism and Chemical Bonding, just how good the
chemist’s approximate construction of band structures can be.®

However, in 27 and 29, the qualitative DOS diagrams for PtH,2~ and
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TiO,, there is much more than a guess at a DOS. There is 2 chemical
characterization of the localization in real space of the states (are they on Pt?
on H? on Ti? on O?) and a specification of their bonding properties (Pt-H
bonding, antibonding, nonbonding, etc.). The chemist asks right away,
where in space are the electrons? Where are the bonds? There must be a way
that these inherently chemical, local questions can be answered, even if the
crystal molecular orbitals, the Bloch functions, delocalize the electrons over
the entire crystal.

WHERE ARE THE ELECTRONS?

One of the interesting tensions in chemistry is between the desire to
assign electrons to specific centers, deriving from an atomic, electrostatic
view of atoms in a molecule, and the knowledge that electrons are not as
localized as we would like them to be. Let’s take a two-center molecular
orbital:

¥Y=cx1+ax:

where x; is on center 1 and x; on center 2. Let’s assume that centers 1 and 2
are not identical, and that x, and x, are normalized but not orthogonal. The
distribution of an electron in this MO is given by |¥|2. ¥ should be
normalized, so

l=5 | ¥ |2 d'r=§ laxi+ax:|? dr=c*+ %+ 2065

where S, is the overlap integral between x, and x;. This is how one electron
in ¥ is distributed. Now it’s obvious that ¢;? is to be assigned to center 1, ¢;?
to center 2. 2¢,6; 51z is clearly a quantity that is associated with interaction.
1t’s called the overlap population, and we will soon relate it to the bond
order. But what are we to do if we persist in wanting to divide up the
electron density between centers 1 and 2? We want all the parts to add up to
1, and ¢ + ¢? won’t do. We must somehow assign the ‘‘overlap density’’
2¢,6, 5y, to the two centers. Mulliken suggested (and that’s why we call this a
Mulliken population analysis®®) a democratic solution, splitting 26,6, 51,
equally between centers 1 and 2. Thus center 1 is assigned ¢,* + €65,
center 2 ;2 + ¢;6;Sy; and the sum is guaranteed to be 1. It should be
realized that the Mulliken prescription for partitioning the overlap density,
while uniquely defined, is quite arbitrary.

What a computer does is just a little more involved, since it sums these
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S ~=r

-6 4 '.__.

Pt-H-o", Pt-—xz-yz

Pt-d-Band

= Pgure 11 The solid line is the Pt
. contribution to the total DOS
(dashed line) of an eclipsed
" PtH4?~ stack. What is not on Pt is
pDo0s — on the four H's.

contributions for each atomic orbital on a given center (there are several)
over each occupied MO (there may be many). In the crystal, it does that sum
for several k points in the Brillouin zone, and then returns to real space by
avetaging over these. The net result is a partitioning of the toral DOS into
contributions to it by either atoms or orbitals. We have also found very
useful a decomposition of the DOS into contributions of fragment
molecular orbitals (FMOs); i.e. the MOs of specified molecular fragments of
the composite molecule. In the solid state trade, these are often called
‘‘projections of the DOS’’ or “‘local DOS."" Whatever they’re called, they
divide up the DOS among the atoms. The integral of these projections up to
the Fermi level then gives the total electron density on a given atom or in a
specific orbital. Then, by reference to some standard density, a charge can
be assigned.

Figures 11 and 12 give the pattitioning of the electron density between
Ptand H in the PtH,?- stack, and between Ti and O in rutile. Everything is
as 27 and 29 predict, as the chemist knows it should be; the lower orbitals
are localized in the more electronegative ligands (H or O), the higher ones
on the meral.

Do we want more specific information? In TiO, we might want to see
the crystal field argument upheld. So we ask for the conttibutions of the
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36 The Detective Work of Tracing Molecule-Surface Interactions

symmetry group of ¥ is isomorphic to Cy,", and both z and z? Bloch
functions transform as z;. So they mix. Some small bonding is provided by
this mixing, but it is very small. When the stack is oxidized, the loss of this
bonding (which would lengthen the Pe-Pt contact) is overcome by the loss of
PPt antibonding that is a consequence of the vacated orbitals being at the
top of the z? band.

30

THE DETECTIVE WORK OF TRACING
MOLECULE-SURFACE INTERACTIONS:
DECOMPOSITION OF THE DOS

For another illustration of the utility of DOS decompositions, let’s
turn to a surface problem. We saw in a previous section the band structures
and DOS of the CO overlayer and the Ni slab separately (Figs. 6, 7, 9). Now
let’s put them together in Fig. 14. The adsorption geomerry is that shown
earlier in 24, with Ni-C 1.8 A. Only the densities of states are shown, based
on the band structures of Figs. 7 and 9.% Some of the wriggles in the DOS
curves also are not real, but a result of insufficient k-point sampling in the
computation.

It's clear that the composite system c(2 X 2)CO-Ni(100) is roughly a
superposition of the slab and CO layers. Yet things have happened. Some of
them are clear—the 5o peak in the DOS has moved down. Some are less
clear—where is the 27*, and which orbitals on the metal are active in the
interaction?

Let's see how the partitioning of the total DOS helps us to trace down
the bonding in the chemisorbed CO system. Figure 15 shows the 50 and 27*
contributions to the DOS. The dotted line is a simple integration of the
DOS of the fragment of contributing orbital. The relevant scale, 0-100%, is
to be read at top. The integration shows the total percentage of the given
orbital that’s occupied at a specified energy. It is clear that the 5¢ orbital,
though pushed down in energy, remains quite localized. Its occupation (the
integral of this DOS contribution up to the Fermi level) is 1.62 electrons.
The 27* orbital obviously is much more delocalized. It is mixing with the
metal d band and, as a result, there is a total of 0.74 electron in the 27*
levels together.
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Ni (100) slab ¢(2x2) CO-Ni{l00) CO monolayer
-
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Figure 14 The total density of states of a modél c® x 2)CO-Ni(100) system
(center), compared to its isolated four-layer Ni slab (left) and CO monolayer com-
ponents. N

-
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Figure 15 For the ¢(2 X 2)CO-Ni(100) model this shows the 50 and 2x* contri-
butions to the total DOS. Each contribution is magnified. The position of each
level in isolated CO is marked by a line. The integration of the DOS contribution
is given by the dotted line.
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Which levels on the metal surface are responsible for these interac-
tions? In discrete molecular systems we know that the important contribu-
tions to bonding are forward donation, 31a, from the carbonyl lone pair 50
to some appropriate hybrid on a partner metal fragment, and back
donation, 31b, involving the 27* of CO and a d, orbital xz, yz of the metal.
We would suspect that similar interactions are operative on the surface.

O *
¢ 2w
50 ()
} t
ML,
2 b

31

These can be looked for by setting side by side the d,(z?) and 5o
contributions to the DOS, and d.(xz, yz) and 27* contributions. In Fig. 16
the r interaction is clearest: note how 27* picks up density where the d,
states are, and vice versa, the d, states have a ‘‘resonance’’ in the 2m*
density. I haven’t shown the DOS of other metal levels, but were I to do so,
it would be seen that such resonances are not found between those metal
levels and 50 and 27*. The reader can confirm at least that 5¢ does not pick
up density where d, states are, not 27* where d, states are mainly found.?’
There is also some minor interaction of CO 27* with metal p, states, 2
phenomenon not analyzed here.

Let’s consider another system in order to reinforce our comfort with
these fragment analyses. In 25 we drew several acetylene-Pt(111) structures
with coverage = 1/4. Consider one of these, the dibridged adsorption site
alternative 25b redrawn in 32. The acetylene brings to the adsorption
process a degenerate set of high-lying occupied 7 orbitals, and also an
important unoccupied 7* set. These are shown at the top of 33. In all known
molecular and surface complexes, the acetylene is bent. This breaks the
degeneracy of = and %, some s charactet mixing into the 7, and 7*
components that lie in the bending plane and point to the surface. The
valence orbirals are shown at the bottom of 33. In Fig. 17 we show the
contributions of these valence orbitals to the total DOS of 33. The sticks
mark the positions of the acetylene orbitals in the isolated molecule. It is
clear that  and 7* interact less than 7, and m,* of CO.%

J
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Figure 16 Interaction diagrams for 5¢ and 27* of ¢(2 x 2)C)
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%, __Integration  150%, %, _Integration  100%
R et Tt S

Energy (eV)

Projected DOS of o™ — Projected DOS of o*—

Figure 18 That part of the total DOS (dashed line) which is in the H; g,* (solid
line) at various approach distances of a frozen H, to a Ni(111) surface model. The
dotted line is an integration of the H, density.

helps one to understand this. o,* is more in resonance in energy, at least
with the metal s, p band. In addition, its interaction with an appropriate
symmetry metal orbital is greater than that of o, at any given energy. This is
the consequence of including overlap in the normalization:

1
V,s——o—x (1 ¢,
= Niz5y) (1 £92)

The 0,* coefficients are substantially greater than those in ;. This has been
pointed out by many individuals, but in the present context importantly
emphasized by Shustorovich and Baetzold. -3

We have seen that we can locate the electrons in the crystal. But...

WHERE ARE THE BONDS?

Local bonding considerations (see 27, 29) trivially lead us to assign
bonding characteristics to certain orbitals and, therefore, bm.ds. There must
be a way to find these bonds in the bands that a fully delocalized calculation

ives.
. It's possible to extend the idea of an ovetlap population to a crystal.
Recall that in the integration of ¥? for a two-center orbiral, 2¢,¢; 5, was a
characteristic of bonding. If the overlap integral is taken as positive (and it
can always be arranged so), then this quantity scales as we expect of a bond
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order: it is positive (bonding) if ¢; and ¢, are of the same sign, and negative
if ¢ and ¢, are of opposite sign. And the magnitude of the ‘“Mulliken
overlap population,” for that is what 2¢,¢,S;; (summed over all orbitals on
the two atoms, over all occupied MOs) is called, depends on c;, €5 095

Before we move into the solid, let's take a look ar how these overlap
populations might be used in 2 molecular problem. Figure 19 shows the
familiar energy levels of a diatomic, N, a density-of-states plot of these (just
sticks proportional to the number of levels, of length 1 for @, 2 for =), and
the contributions of these levels to the overlap population. 10, and 10, (not
shown in the figure) contribute little because §; is small between tight 1s
orbitals. 20, is strongly bonding, 2¢, and 30, are essentially nonbonding.
These are best characterized as lone pair combinations. ., is bonding, =,
antibonding, 30, the o* level. The tight-hand side of Fig. 19 characterizes
the bonding in N, at 2 glance. It tells us that maximal bonding is there for
seven electron pairs (counting lo; and 10,); more or fewer electrons will
lower the N-N overlap population. It would be nice to have something like
this for extended systems.

A bond indicator is easily constructed for the solid. An obvious
procedure is to take all the states in a cerrain energy interval and interrogate
them as to their bonding proclivities, measured by the Mulliken overlap
population, 2¢;¢;S;. What we are defining is an overlap population-
weighted density of states. The beginning of the obvious acronym
(OPWDOS) has unfortunately been preempted by another common usage
in solid state physics. For that reason, we have called this quantity COOP,
for crystal orbital overlap population.* It’s also nice to think of the
suggestion of orbitals working together to make bonds in the crystal, so the
word is pronounced ‘‘co-op."’

To get a feeling for this quantity, let’s think about whar a COOP curve
for a hydrogen chain looks like. The simple band structure and DOS were
given earlier, 26; they are repeated with the COOP curve in 35.

To calculate 2 COOP curve, one has to specify a bond. Let's take the
nearest neighbor 1, 2 interaction. The bottom of the band is 1, 2 bonding,
the middle nonbonding, the top antibonding. The COOP cutve obviously
has the shape shown at right in 35. But not all COOP curves look that way.
If we specify the 1, 3 next nearest neighbor bond (silly for a linear chain, not
so silly if the chain is kinked), then the bottom and the top of the band are
1, 3 bonding, the middle antibonding. That curve, the dashed line in the
drawing 35, is different in shape. And, of course, its bonding and
antibonding amplitude is much smaller because of the rapid decrease of S
with distance.

Note the general characteristics of COOP curves: positive regions that
ate bonding, negative regions that are antibonding. The amplitudes of these
curves depend on the number of states in that epergy interval, the
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magnitude of the coupling overlap, and the size of the coefficients in the
MOs.

=-bonding bonding —=

The integral of the COOP curve up to the Fermi level is the total

ovetlap population of the specified bond. This points us to another way of
thinking of the DOS and COOP curves. These are the differential versions
of electronic occupation and bond order indices in the crystal. The integral
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of the DOS to the Fermi level gives the total number of electrons; the

oD-&o

o
f éf‘ integral of the COOP curve gives the total overlap population, which is not
i = : _:ia' identical to the bond order, but which scales like it. It is the closest a
o E - E . e 85 theoretician can get to that ill-defined but fantastically useful, simple
.-P; ) 5 ~|o s E concept of a bond ord:r._ . _
I I = To move to something a little more complicated than the hydrogen or
I 0 I . a5 polyene chain, let’s examine the COOP curves for the PtH;?~ chain. Figure
ol i iR o v'g 20 shows both the Pt~H and Pt-Pt COOP curves. The DOS curve for the
T 5 7 &E polymer is also drawn. The characterization of certain bands as bonding or
e O

(A®) ABusu3 antibonding is obvious, and matches fully the expectations of the
approximate skeich 27. The bands at — 14, — 15 eV are Pt-H ¢ bonding,
the band at —6 eV Pt-H antibonding (this is the crystal field destabilized
x’-y? orbital). It is no surprise that the mass of d-block levels between — 10
and — 13 eV doesn’t contribute anything to Pt-H bonding. But, of course,
it is these otbitals that are involved in Pt-Pt bonding. The rather complex
structure of the — 10 to — 13-€V region is easily understood by thinking of it
as a superposition of o (z’-z%), 7 (xz, yz)~(xz, yz), and & (xy—xy) bonding
and antibonding, as shown in 36. Each type of bonding generates a band,
the bottom of which is bonding and the top antibonding (see 35 and Fig. 3).
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The & contribution to the COOP is small because of the poor overlap

¢)Pt-Pt-COOP

b} Pt-H-COOP

a)bos (6)

L 5 . p s
S involved. The large Pt-Pt bonding region at — 7 €V is due to the borrom of
8 the Pt z band.
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o
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a = We now have a clear representation of the Pt-H and Pt-Pt bonding
o 8 & properties as a function of energy. If we arc presented with an oxidized
o g4 material, then the consequences of the oxidation on the bonding are crystal
= clear from Fig. 20. Removing electrons from the top of the z2 band at — 10
b €V takes them from orbitals that are Pt—Pt antibonding, Pt-H nonbonding.
o - . . .
: 3 So we expect the Pt-Prt separation, the stacking distance, to decrease as it
‘g does.
ot The tuning of electron counts is one of the strategies of the solid state
rS.“ chemists. Elements can be substituted, atoms intercalated, nonstoichiome-
o tries enhanced. Oxidation and reduction, in solid state chemistry as in
= . 2 - e
& ordinary molecular solution chemistry, are about as characteristic (but
ey experimentally not always trivial) chemical activities as one can conceive.
%) . . . .
1 = The conclusions we reached for the Pt-Pt chain were simple, easily
s . .
g anticipated. Other cases ate guaranteed to be more complicated. The COOP
v 6
Q = curves allow one, at z glance, to reach conclusions about the local effects on
= = bond length (will bonds be weaker, stronger) upon oxidation or reduction.
§ 4 Earlier we showed a band structure for rutile. The corresponding
KT COOQP cutve for the Ti-O bond (Fig. 21) is extremely simple. Note the
. bonding in the lower oxygen bands and antibonding in the e, crystal field
- age - . . - .
e o & destabilized orbitals. The t,, band is, as expected, Ti-O antibonding.
oy < _‘:; Let’s try our hand at predicting the DOS for something quite different
g ‘é from PtH,;2~ ot TiO,, namely, a bulk transition metal, the face-centered-
E)T:S cubic Ni structure. Each metal atom has as its valence orbitals 3d, 4s, 4p,

ordered in energy approximately as at the left in 37. Each will spread out
into a band. We can make some judgment as to the width of the bands from
the overlap. The s, p orbitals are diffuse, their overlap will be large, and a
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Figure 21 DOS and Ti-O COOP for rutile.

wide band will result. They also mix with each other extensively. The d
orbitals are contracted, and so will give rise to 2 relatively narrow band.

The computed DOS for bulk Ni (bypassing the actual band structure)
is shown in Fig. 22, along with the Ni s and p contributions to that DOS.
What is not s or p is a d contribution. The general features of 37 are
reproduced. At the Fermi level, a substantial part of the s band is occupied,
so that the calculated® Ni configuration is d%!3s%62p?2,

=)
F s, pBond
43
3 =
d-Band
DOS —

37
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MORE THAN ONE ELECTRONIC UNIT IN
THE UNIT CELL. FOLDING BANDS

Do you remember the beautiful platinocyanide stack? It has not yet
exhausted its potential as 2 pedagogic tool. The oxidized platinocyanides are
not eclipsed, 69a, but staggered, 69b. A polyene is not a simple linear
chain, 70a, but, of course, at least s-trans, zig-zag 70b. Or it could be s—cis,
70c. Obviously, there will be still other feasible arrangements; indeed,
nature always seems to find one we haven’t thought of.

In 69a and 70a, the unit cell contains one basic electronic unit,
PtH,?~, a CH group. In 69b and 70b, the unit is doubled, approximarely so
in unit cell dimension, exactly so in chemical composition. In 70¢, we have
four CH units per unit cell. A physicist might say that each is a case unto
itself. A chemist is likely to say that probably not much has changed on
doubling or quadrupling or multiplying by 17 the contents of a unit cell. If
the geometric distortions of the basic electronic unit thar is being repeated
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are not large, it is likely that any electronic characteristics of that unit are
preserved.

MB 7

69

70

The number of bands in a band structure is equal to the number of
molecular orbitals in the unit cell. So if the unit cell contains 17 times as
many atoms as the basic unit, it will contain 17 times as many bands. The
band structure may look messy. The chemist’s feeling that the 17-mer is a
small perturbation on the basic electronic unit can be used to simplify a
complex calculation. Let's see how this goes, first for the polyene chain, then
for the PtH4?~ polymer.

Conformation 70a, b, ¢ differ from each other not just in the number
of CH entities in the unit cell but also in their geometry. Let’s take these one
at 2 time. First prepare for the distortion from 70a to 70b by doubling the
unit cell. Then, subsequently, distort. This sequence of actions is indicated
in 71.

Suppose we construct the orbitals of 71b, the doubled unit cell
polymer, by the standard prescription: (1) get MOs in unit cell, (2) form
Bloch functions from them. Within the unit cell the MOs of the dimer are &
and 7*, 72. Each of these spreads out into a band, that of the 7 “‘running

]

‘i
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up,”’ that of the 7* ‘‘running down,”” 73. The orbitals are written out
explicitly at the zone boundaries. This allows one to see that the top of the =
band and the bottom of the =* band, both at k = w/2a, are precisely
degenerare. There is no bond alternation in this polyene (yet), and the two
orbitals may have been constructed in a different way, but they obviously
have the same nodal structure—one node every two centers.

71

[e] k—=
73

w/{la)

If we now detach ourselves from this viewpoint and go back and
construct the orbitals of the one CH per unit cell linear chain 71a, we get 74.
The Brillouin zone in 71b (73) is half as long as it is here because the unit
cell is twice as long.
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At this point, we are hit by the realization that, of course, the orbitals enlargement of the unit cell. By reversing, in our minds in a model
of f-h'{“ po!ymers are the same. The polymers are identical; it is only some . calculation, the folding process by unfolding, we can go back to the most
peculiar quirk that made us choose one CH unit as the unit cell in one case, i % fundamental electronic act—the true monomer.
two CH units in the other. I have presented the two constructions 1
independently to make explicit the identity of the orbitals.

What we have is two ways of presenting the same orbitals. Band oo
structure 73, with two bands, is identical to 74, with one band. All that has ] <
happened is that the band of the minimal polymer, one CH per unit cell, ’
has been “‘folded back’ in 74. The process is shown in 75.5 ‘ f
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To illustrate this point, let me show the band structure of the

’ Trﬂim i i . staggered PtH,*~ chain, 69b. This is done in Fig. 35, left. There are twice as
74 © many bands in this region as there are in the case of the eclipsed monomer
i (the xy band is doubly degenerate). This is no surprise; the unit cell of the
T ¢ staggered polymer is [PtH,2~ ],. But it’s possible to understand Fig. 35 asa
! 3+ small perturbation on the eclipsed polymer. Imagine the thought process
{ : / "7 77a = b = ¢ i.e., doubling the unit cell in an eclipsed polymer and then
E : / ) rotating every other unit by 45° around the z axis.
i i
]
E - }
0  w/l2a) w/a s} w/a' ,
a'=2a ) a i
75 {
i *
The process can be continued. If the unit cell is tripled, the band will :‘ ) \ P
fold as in 76a. If it is quadrupled, we get 76b, and so on. However, the ' b A o T

point of all this is not just redundancy, seeing the same thing in different
ways. There are two important consequences or utilizations of this folding.
First, if 2 unit cell contains more than one electronic unit (and this happens
often), then a realization of that fact, and the attendant multiplication of c
bands (remember 74 — 73 — 76a — 76b), allows a chemist to simplify the
analysis in his or her mind. The multiplicity of bands is a consequence of an

77
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Figure 35 The band structure of a staggered PrH 2~ stack (left), compared with
Eh.c ]fo)ldcd-back band structure of an eclipsed stack, two PtH,2~ in a unit cell
right).

To go from 77a to b is trivial, a simple folding back. The result is
shown at the right of Fig. 35. The two sides of the figure are nearly identical.
There is a small difference in the xy band, which is doubled, nondegenerate,
in the folded-back eclipsed polymer (right-hand side of Fig. 35), but
degenerate in the staggered polymer. What happened here could be stated
in two ways, both the consequence of the fact thar a real rotation intervenes
berween 77b and ¢. From a group theoretical point of view, the staggered
polymer has a new, higher symmetry element, an eightfold roration-
reflection axis. Higher symmetry means more degeneracies. It is easy to see
that the two combinations, 78, are degenerate.

Except for this minor wrinkle, the band structures of the folded-back
eclipsed polymer and the staggered one are extremely similar. That allows us
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to reverse the argument, to understand the staggered one in terms of the
eclipsed one plus the here minor perturbation of rotation of every second
unit.

The chemist’s intuition is that the eclipsed and staggered polymers
can’t be very different—at least, not until the ligands start bumping into
each other, and for such steric effects there can be, in turn, much further
intuition. The band structures may look different, since one polymer has
one, the other two basic electronic units in the cell. Chemically, however,
they should be similar, and we can see this by returning from reciprocal
space to real space. Figure 36, which compares the DOS of the staggered and
eclipsed polymers, shows just how alike they are in their distribution of
levels.

There is another reason to feel at home with the folding process. The
folding-back construction may be a prerequisite to understanding a
chemically significant distortion of the polymer. To illustrate this point, we
return to the polyene 71. To go from 71a (the linear chain, one CH per unit
cell) to 71b (linear chain, two CH’s per unit cell) involves no distortion.
However, 71b is a way point, a preparation for a real distortion to the more
realistic ‘‘kinked’’ chain, 71c. It behooves us to analyze the process stepwise,
71a = 71b — 71c, if we are to understand the levels of 71c.

Of course, nothing much happens to the 7 system of the polymer on
going from 71a, b to c. If the nearest-neighbor distances are kept constant,
then the first real change is in the 1, 3 interactions. These are unlikely to be
large in a polyene, since the w ovetlap falls off very quickly past the bonding
region. We can estimate what will happen by writing down some explicit
points in the band, and deciding whether the 1, 3 interaction that is turned
on is stabilizing ot destabilizing. This is done in 79. Of course, in a real CH
polymer this kinking distortion is significant, but that has nothing to do
with the 7 system, but rather is a result of strain.

However, there is another distortion that the polyene can and does
undergo. This is double-bond localization, an example of the very
important Peierls distortion, i.e., the solid state analogue of the Jahn-Teller
effect.
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Figure 36 A comparison of the DOS of staggered (left) and eclipsed (right)
PtH4?~ stacks.
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stable state is a compromise; some bonding may have to be weakened to
strengthen some other bonding. But, in general, a system will distort so as to
make bonds out of radical sites. Or, to translate this into the language of
densities of states, maximizing bonding in the solid state is connected to
lowering the DOS ar the Fermi level, moving bonding states to lower energy
and antibonding ones to high energy.

THE PEIERLS DISTORTION

In considerations of the solid state, 2 natural starting point is high
symmetry—a linear chain, a cubic or close-packed three-dimensional lattice.
The orbirals of the highly symmetrical, idealized structutes are easy to
obtain, but they do not correspond to situations of maximum bonding.
These are less symmerrical deformations of the simplest, archetype structure.

The chemist's experience is usually the reverse, beginning from
localized structures. However, thete is one piece of experience we have that
matches the thinking of the solid state physicisc. This is the Jahn-Teller
effect,*” and it’s worthwhile to show how it works by a simple example.

The Hiickel = MOs of a square planar cyclobutadiene are well known.
They are the one below two below one set shown in 81. We have 2 typical
Jahn-Teller situation, i.e., two electrons in a degenerate orbital. (Of course,
we need worry about the various states that arise from this occupation, and
the Jahn-Teller theorem really applies to only one.%) The Jahn-Teller
theorem says that such a situation necessitates a large interaction of
vibrational and electronic motion. It states that there must be ar least one
normal mode of vibration that will break the degeneracy and lower the
energy of the system (and, of course, lower its symmetry). It even specifics

which vibrations would accomplish this.
Yy
¥ ¥

i

o

81
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In the case at hand, the most effective normal mode is illustrated in
82. It lowers the symmetry from Dy;, to Dy, and, to use chemical language,
localizes double bonds.

The orbital workings of this Jahn-Teller distortion are easy to see. In
83, ¥, is stabilized: the 1-2, 3-4 interactions that were bonding in the
square are increased; the 1-4, 2-3 interactions that were antibonding are
decreased by the deformation. The reverse is true for ¥;—it is destabilized
by the distortion at right. If we follow the opposite phase of the vibration, to
the left in 82 or 83, ¥; is stabilized, ¥, destabilized.

5
R

The essence of the Jahn-Teller theorem is revealed here: a symmetry-
lowering deformation breaks an orbital degeneracy, stabilizing one orbital,
destabilizing another. Note the phenomenological correspondence to 80 in
the previous section.

One doesn’t need a real degeneracy to benefit from this effect.
Consider a nondegenerate two-level system, 84, with the two levels of
different symmetry (here labeled A, B) in one geometry. If a vibration
lowers the symmetry so that these two levels transform as the same
itreducible representation, call it C, then they will interact, mix, and repel
each other. For two electrons, the system will be stabilized. The technical
name of this effect is a second order Jahn-Teller deformation. 5’

The essence of the first or second order Jahn-Teller effect is that a
high-symmetry geometry generates a real or near degeneracy, which can be
broken with stabilization by a symmetry-lowering deformarion. Note a



94 The Peierls Distortion

further point: the level degeneracy is not enough by itself—one needs the
righe electron count. The cyclobutadiene (or any square) situation of 83 will
be stabilized by a D, deformation for 3, 4, or 5 electrons, but not for 2 or 6
(Se2+ ) .

—A—-C/
wijm B—=C
N

We can apply this framework to the solid. There is degeneracy and
near degeneracy for any partially filled band. The degeneracy is that already
mentioned, since E(k) = E(~ k) for any kin the zone. The near degeneracy
is, of course, for k's just above or just below the specified Fermi level. For
any such partially filled band there is available, in principle, a deformation
that will lower the energy of the system. In the jargon of the trade, one says
that the partial filling leads to an electron-phonon coupling that opens up a
gap just at the Fermi level. This is the Peierls distortion, % the solid state
counterpart of the Jahn-Teller effect.

Let’s see how this works on a chain of hydrogen atoms (or a polyene).
The original chain has one orbital per unit cell, 852, and an associated
simple band. We prepare it for deformation by doubling the unit cell, 85b.
The band is typicaily folded. The Fermi level is halfway up the band; the
band has room for two electrons per orbital, but for H or CH we have one
electron per orbital.

— C

€
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The phonon or lattice vibration mode that couples most effectively
with the electronic motions is the symmetrical pairing vibration, 86. Let’s
examine what it does to typical orbitals at the bottom, middle (Fermi level),
and top of the band, 87. At the bottom and top of the band nothing
happens. What is gained (lost) in increased 1-2, 3-4, 5-6, etc., bonding
(antibonding) is lost (gained) in decreased 2-3, 4-5, 6-7 bonding
(antibonding). But in the middle of the band, at the Fermi level, the effects
are dramatic. One of the degenerate levels there is stabilized by the
distortion, the other destabilized. Note the phenomenological similarity to
what happened for cyclobutadiene.

i R R

(o] k—=  7/(2a)
87

The action does not just take place at the Fermi level, but in a second
order way the stabilization ‘‘penettates’” into the zone. It does fall off with
k, a consequence of the way perturbation theory works. A schematic
representation of what happens is shown in 88. A net stabilization of the
system occurs for any Fermi level, but obviously it is maximal for the half-
filled band, and it is at that e that the band gap is opened up. If we were
to summarize what happens in block form, we'd get 89. Note the
resemblance to 80.
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The polyene case (today it would be called polyacetylene) is especially
interesting, for some years ago it occasioned a great deal of discussion.
Would an infinite polyene localize, 90? Eventually, Salem and Longuet-
Higgins demonstrated that it would. ® Polyacetylenes are an exciting field of
modetn research. ™® Pure polyacetylene is not a conductor. When it is doped,
either partially filling the upper band in 89 or emptying the lower, it
becomes a superb conductor.

%W\\@\/\/\/\
90

There are many beautiful intricacies of the first and second order and
low- or high-spin Peierls distortion, and for these the reader is referred to the
very accessible review by Whangbo. 8

The Peierls distortion plays a crucial role in determining the structure
of solids in general. The one-dimensional pairing distortion is only one
simple example of its workings. Let’s move up in dimensionality.
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An interesting three-dimensional instance of a Peierls distortion at
work (from one point of view) is the derivation of the obsetved structures of
elemental arsenic and black phosphorus from a cubic lattice. This treatment
is due to Burdett and coworkers.®? The two structures are shown in their
usual representation in 96. It turns out that they can be easily related to a
simple cubic structure, 97.

£ G
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The DOS associated with the band structure of 97, with one main
group element of group 15 per lattice site, must have the block form 98.
There are five electrons per atom, so if the s band is completely filled, we
have a half-filled p band. The detailed DOS is given elsewhere.” What is
significant here is what we see without calculations, namely, a half-filled
band. This system is a good candidate for a Peierls distortion. One pairing
up all the atoms along x, y, and z directions will provide the maximum
stabilization indicated schematically in 99.
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Burdett, McLarnan, and Haaland74¢ showed that there are no less
than 36 different ways to so distort. Two of these correspond to black
phosphorus and arsenic, 100. There ate other possibilities as well.

There is one aspect of the outcome of a Peietls distortion—the creation
of a gap at the Fermi level—that might be taken from the last case as being
typical, but which is not necessarily so. In one dimension one can always
find a Peierls distortion to cteate a gap. In three dimensions, atoms are
much more tightly linked together. In some cases a stabilizing deformation
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leads to the formation of a real band gap, i.e., to an insulator or a
semiconductor. In other cases, a deformation is effective in producing
bonds, thereby pulling some states down from the Fermi level region. But
because of the three-dimensional linkage it may not be possible to remove
all the states from the Fermi level region. Some DOS remains there; the
material may still be a conductor.

100

One final comment that is relevant to the ThCr,Si, structure. The
reader will note that we did not use a Peierls distortion argument in the
resolution of the P-P pairing problem in that common structural type when
we discussed it earlier. We could have done so, somewhat artificially, by
choosing a structure in which the interlayer P- - <P separation was so large
that the P-P o and o* DOS came right at the Fermi level. Then a pairing
distortion could have been invoked, yielding the observed bond. That,
however, would have been a somewhat artificial approach. Peierls distor-
tions are ubiquitous and important, but they're not the only way to
approach bonds in the solid.



