Polymers: from plastic bags to advanced functional nanomaterials

Reidar Lund

Dept. of Chemistry (Ø 207, Kjemibygningen) University of Oslo Email: reidar.lund@kjemi.uio.no

Outlook

- What is a **polymer** ?
- What special properties do polymer materials possess?
- Nanostructures with polymers: self-assembly
- Nanocomposites: combining the best from the inorganic and organic world
- Drug delivery: nano-vehicles to the cell

Polymers

chain-like molecules

Example: polyisoprene (natural rubber)

What is a polymer?

What is a polymer?

Chain-like molecules

But how do they look like?

How does a polymer chain look like?

Rouse 1953 Flory: nobel prize 1974

We can see a single polymer chain with neutron scattering

Neutrons see deuterium (H^2/D) and hydrogen (H^1) very differently

Small-angle Neutron Scattering (SANS) at IFE, Kjeller

Institut Laue Langevin (ILL), Grenoble (France)

Conformation of single polymers with SANS

Example: polyisoprene

Neutrons see deuterium and hydrogen very differently

Polymers: example

Chain-like molecules

single polymers

Starch

PDMS or

silicone oil

many polymers: «spaghetti»

In general: polymers are long molecules (varying stiffness)

Classical applications of polymers

PI rubber

PVA as diapers

PP for food wrapping

PTFE (Teflon) coatings

PET bottles

Boeing Dreamliner 787: 50% composite, 20% aluminum, 15% titanium, 10% steel, 5% other.

Bullet-proof vest: Kevlar

Semi-conductor industry

Polymers in biomedical applications

polymers as drug carriers to cancer cells: targeted delivery- reduced side effects

N. Kamaly, et al Chem. Soc. Rev., 2012, 41, 2971.

polymers for tissue engineering: regeneration of tissue, implants etc.

What is a polymer? Biopolymers

Proteins are also polymers

Proteins are polymers with distinct sequences of amino acids- encodes the structures

What is a polymer? Biopolymers

DNA is also a polymer

Distinct sequences of four bases - dictate functions and action in the body- encodes life

Modern polymer science: nanomaterials for advanced technologies

colloids

polymers

structure, thermodynamics

Polymers: Basics

What is a polymer?

Chain-like molecules: synthetic poly(ethylene) as an example

Ethylene to poly(ethylene)

What is a polymer?

chain-like molecules: other topologies/branches

Polymers: when does a molecule become a polymer?

Example: n-alkanes C_n

 $C_n H_{2n+2}$

What is happening when the chain gets longer?

Polymers: n-alkanes

Example: n-alkanes

Increased chain-length leads to:

- increased van der Waals interactions (electrons/molecule)

 $C_n H_{2n+2}$

- increased melting point/crystallinity
- increased topological interactions (entanglement, knots..)
- decreased molecular mobility

change in viscosity and material properties

1. connectivity and chain entanglement- enhanced mechanical strength

2. **reduced configurational (mixing) entropy** - *different polymers tend to demix*

3. **Importance of conformational entropy** - *chain deformation leads to rubber-like restoring force*

4. enhanced intermolecular forces per molecule- high cohesion energies

5. **low mobility (slow dynamics)** - high viscosity and elasticity

Polymers: chain connectivity and entanglements

Connectivity and entanglement:

Entanglement - «tube model»

Physical cross-links: «molecular knots»

Other polymer chains entrap/limit a single chain- effectively a «tube»

Pierre-Gilles de Gennes Nobel Prize 1991

Polymers: rheological properties of linear chains

Polymers: chemical cross-links

Connectivity: chemical cross-links

1. Polymerization with radicals / multifunctional monomers (branched and cross-linked polymers)

2. Post-polymerization treatment- i.e. oxidation of sulphur- «vulcanization»

MATTER, The University of Liverpool

Crystallinity in polymers

Nanocrystallinity:

Kevlar

Crystallinity in polymers

Nanocrystallinity:

Natural composites: «spider web»

Polymers: effect of cross-links on tensile strength

Temperature behaviour

Figure 8.2 Five regions of viscoelastic behavior for a linear, amorphous polymer. Also ill trated are effects of crystallinity (dashed line) and cross-linking (dotted line).

Gert Strobl

The Physics of Polymers

Polymers: nanostructrures

Nanocomposites: polymers and nanoparticles

= polymer + nanoparticles (inorganic/organic)

- 1. Light weight materials with high strength
- 2. High resistance to fracture polymers absorb and dissipate energy
- 3. Functional materials with engineered properties : for e.g. photovoltaics

Nanocomposites: polymers and nanoparticles

Natural composites: «nacre»- CaCO₃ platelets with biopolymers

H. D. Espinosa, A. L. Juster, F. J. Latourte, O. Y. Loh, D. Gregoire, and P. D. Zavattieri, Nature Communications, 2011, 2, 173-9.

Artificial nacre composites: clay with poly(vinyl alcohol)

Wide range of parameters control the properties

- dispersibility and distribution
- interactions between particle/polymers
- nanostructure and crystallinity
- humidity
- >Etc..

T. Verho, M. Karesoja, P. Das, L. Martikainen, R. Lund, A. Alegría, A. Walther, and O. Ikkala, Adv. Mater., 2013, 25, 5055–5059. Reidar Lund, Polymers, MENA1000, 6 Nov. 2013.

Nanostructured polymers: self-assembly

Hierarchical self-assembly

Enthalpy

(favours demixing)

Driven by incompatibility: enthalpy proportional to number of A/B contacts

-Flory-Huggins (chi-) parameter

$$\chi \equiv (\epsilon_{AB} - \frac{1}{2}(\epsilon_A + \epsilon_B)Z/(k_BT)$$

energy per lattice point

lattice coordination number

$$\Delta H = n_A \Phi_B \cdot k_B \, T \cdot \chi$$

number of A-segments Concentration of B-segments

Nanostructured polymers: self-assembly

Entropy of mixing polymers: (favours random mixing)

Connectivity (restricts the phase separation)

nanoseparation governed by:

 $\Delta H/\Delta S$

Block copolymer melts: nanostructures

Morphology and size can be accurately tuned via block copolymer composition (\mathbf{f}_{A}), chemistry (χ) and molecular weight (N).

Block copolymer melts: applications

As masks and scaffolds-nanolitography

Natural size region:1-10 nm

data storage capacity

Limit: bits/per area to smaller and smaller areas Current standard lithographic methods provide absolute limit of 10-20 nm

Block copolymers provide higher storage density down to 1 nm!

Polymers: self-assembly

proteins

Driven by the unfavourable contact between water and hydrophobic parts of the molecule

amphiphilic block copolymer

Block Copolymer Micelles: thermodynamics

Driven by interfacial tension (F_{int}) - growth is limited by (F_{corona}/F_{core})

Polymers as nano-capsules for drug delivery

EPR-effect: enhanced accumulation of nanoparticles in cancer cells

Polymer micelles can deliver therapeutical loads to cancer tissues

Polymers as nano-capsules for drug delivery

Responsive polymers:

E.g. thermoresponsive poly (N-isopropyl acryl amide) PNIPAAM

stimuli-responsive micelles:

- polymers are long chain-like molecules:

Some key words: connectivity, entanglements, slow dynamics, high viscosity

- Polymers provide flexibility, elasticity, strength, light-weight

- **Polymers can make nanomaterials through self-assembly**- precise size and shape. Nanolitography masks, nanofilters etc.

- Nanocomposites are dispersed nanoparticles in polymer matrices: flexible, strong lightweight materials. Photovoltaics, photonic crystals, tunable optical and electronic properties

- Polymer materials can be used for drug delivery and tissue engineering