MAT-IN3110, Autumn 2017, Compulsory assignment 1

Deadline 5 October, 14:30

Assignments should be submitted through the Devilry system.

1 LU

Write a routine, for example in Matlab, to compute the matrices L and U in the factorization $L U$, without pivoting, of an $n \times n$ matrix A. Test your routine on the matrices

$$
\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right], \quad\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 0 \\
1 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 2
\end{array}\right], \quad\left[\begin{array}{lllll}
2 & 1 & 1 & 1 & 1 \\
1 & 2 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 0 \\
1 & 0 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 2
\end{array}\right] .
$$

2 QR

Write a routine to compute the matrices Q and R of a $Q R$ factorization of a non-singular $n \times n$ matrix A, using the Gram-Schmidt algorithm (without pivoting). Test your routine on the matrices in the previous exercise.

3 Best fitting straight line

As the result of an experiment, five (x, y) data points were obtained,

$$
(1,6), \quad(2,5), \quad(3,7), \quad(4,11), \quad(5,8)
$$

We want to find the parabola $y=a+b x+c x^{2}$ that best fits this data in the sense of least squares. Formulate this problem as the minimization of $\|A \mathbf{x}-\mathbf{b}\|$ and find the solution, i.e., a, b, c, using the normal equations.

4 Positive-definiteness

Define what it means for a symmetric matrix to be positive definite. Show that all the diagonal elements of a positive definite matrix are positive.

