MAT-IN3110, Autumn 2017 Compulsory Assignment 2

Deadline 9 November, 14:30

Assignments should be submitted through the Devilry system.

1 Polynomial interpolation

Let $p(x)$ be the unique polynomial of degree $\leq n$ that interpolates the values $f_{i}=f\left(x_{i}\right), i=0,1, \ldots, n$, of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at the distinct points $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{R}$.
(a) Write down the Lagrange form of p.
(b) Consider the uniform and Chebyshev points, respectively,

$$
x_{i}=-1+\frac{2 i}{n}, \quad x_{i}=\cos \left(\frac{2 i+1}{n+1} \frac{\pi}{2}\right), \quad i=0,1, \ldots, n .
$$

For each degree $n=2,4,6, \ldots, 16$, find the interpolant p to the function $f(x)=1 /\left(1+25 x^{2}\right)$ for each of the two point sets. Is p a good approximation to f ? Plot the two polynomials p in the case $n=16$.
(c) For each degree $n=2,4,6, \ldots, 16$, choose random values $f_{0}, f_{1}, \ldots, f_{n}$ in the interval $[0,1]$ and find the interpolant p for each of the two point sets. What do you observe? Plot the two polynomials p in the case $n=16$.
(d) From the Lagrange form, derive the so-called barycentric form of p, i.e., express p in the form

$$
p(x)=\sum_{i=0}^{n} \frac{w_{i} f\left(x_{i}\right)}{x-x_{i}} / \sum_{i=0}^{n} \frac{w_{i}}{x-x_{i}}
$$

for weights $w_{0}, w_{1}, \ldots, w_{n}$. What are these weights when the points x_{i} are uniformly spaced?

2 Orthogonal polynomials

Recall that the Chebyshev polynomials are defined by

$$
T_{n}(x)=\cos (n \arccos (x)), \quad n \geq 0 .
$$

So, $T_{0}(x)=1$ and $T_{1}(x)=x$.
(a) Derive the three-term recurrence relation

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n \geq 1
$$

(b) Prove that the Chebyshev polynomials are orthogonal on $[-1,1]$ with respect to the weight function $w(x)=\left(1-x^{2}\right)^{-1 / 2}$, i.e., show that if $m \neq n$ then $\left\langle T_{m}, T_{n}\right\rangle=0$ where

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x)\left(1-x^{2}\right)^{-1 / 2} d x
$$

3 Bernstein polynomials

What are the Bernstein polynomials of degree n on the interval $[0,1]$? What important properties do they have that make them useful for designing curves (Bezier curves)?

