
Numerical methods for conservation laws

and related equations

Siddhartha Mishra, Ulrik Skre Fjordholm and Rémi Abgrall

About these notes

These notes present numerical methods for conservation laws and related time-dependent nonlinear
partial differential equations. The focus is on both simple scalar problems as well as multi-dimensional
systems.

The Matlab package Compack (COnservation law Matlab PACKage) has been developed as an
educational tool to be used with these notes. All the numerical experiments in the lecture notes have
been performed in Compack. The scripts used to generate figures and tables are all in the +Notes sub-
package. For instance, to generate the plots in Figure 2.3, run Notes.Chapter2.central() from the
Compack base folder. Figures are saved to the output folder. Compack can be downloaded from

https://github.com/ulriksf/compack

3

https://github.com/ulriksf/compack

Contents

About these notes 3

Chapter 1. Introduction 7
1.1. Examples for conservation laws. 8
1.2. Content and scope of these notes 10

Chapter 2. Linear Transport Equations 11
2.1. Method of characteristics 11
2.2. Finite difference schemes for the transport equation 12
2.3. An upwind scheme 15
2.4. Stability for the upwind scheme: L1, L2 and L∞ norms 16

Chapter 3. Scalar conservation laws 21
3.1. Characteristics for Burgers’ equation 22
3.2. Weak solutions 24
3.3. Entropy solutions 28
3.4. Solutions to the Riemann problem for general f 33
3.5. Summary 35

Chapter 4. Finite volume schemes for scalar conservation laws 37
4.1. Finite volume scheme 37
4.2. Approximate Riemann Solvers 42
4.3. Comparison of different finite volume schemes 46
4.4. Consistent, conservative and monotone schemes 48
4.5. Stability properties of monotone schemes 51
4.6. Convergence of monotone methods 55
4.7. A note on boundary conditions 58

Chapter 5. Second-order (high-resolution) finite volume schemes 59
5.1. Order of accuracy 61
5.2. The REA algorithm 64
5.3. The minmod limiter 68
5.4. Other limiters 70
5.5. Flux limiters and the TVD property. 72
5.6. High-resolution methods for nonlinear problems. 74
5.7. Second-order semi-discrete schemes. 74
5.8. Time stepping 75
5.9. High-resolution algorithm 76
5.10. Numerical experiments 76

Chapter 6. Very high-order finite volume methods for scalar conservation laws. 81
6.1. High-order accurate piecewise polynomial reconstructions 81
6.2. ENO reconstruction procedure 83
6.3. WENO Reconstruction 87
6.4. WENO Algorithm 89
6.5. Numerical flux calculation 91
6.6. Time-Stepping 91

5

6 CONTENTS

6.7. Numerical Experiments 92

Chapter 7. Linear hyperbolic systems in one space dimension 93
7.1. Examples of linear systems 93
7.2. Hyperbolicity and characteristic decomposition 94
7.3. Solutions of Riemann problems, waves 96
7.4. Finite volume schemes 97
7.5. Numerical experiments 99
7.6. High-order finite volume schemes 103
7.7. Numerical experiments 104

Chapter 8. Nonlinear hyperbolic systems in one space dimension 107
8.1. Structural properties 108
8.2. Simple solutions 109
8.3. Entropy conditions 111
8.4. The Riemann problem 114

Appendix A. Results from real analysis 115

Appendix. Bibliography 117

CHAPTER 1

Introduction

Many interesting problems in the physical, biological, engineering and social sciences are modeled by
a simple paradigm: Consider a domain Ω ⊂ Rn and a quantity of interest U, defined for all points x ∈ Ω.
The quantity of interest U may be the temperature of a rod, the pressure of a fluid, the concentration
of a chemical or a group of cells or the density of a human population. The evolution (in time) of this
quantity of interest U can be described by a simple phenomenological observation:

The temporal rate of change of U in any fixed sub-domain ω ⊂ Ω is equal to the total
amount of U produced or destroyed inside ω and the flux of U across the boundary ∂ω.

The above observation says that the change in U is due to two factors: the source or sink, representing
the quantity produced or destroyed, and the flux, representing the amount of U that either goes in or
comes out of the sub-domain, see Figure 1.1. This observation is mathematically rendered as

(1.1)
d

dt

∫
ω

U dx = −
∫
∂ω

F · ν dσ(x)︸ ︷︷ ︸
flux

+

∫
ω

S dx︸ ︷︷ ︸
source

,

where ν is the unit outward normal, dσ(x) is the surface measure, and F and S are the flux and the
source respectively. The minus sign in front of the flux term is for convenience. Note that (1.1) is an
integral equation for the evolution of the total amount of U in ω.

Ω

Ωδ

Figure 1.1. An illustration of conservation in a domain with the change being deter-
mined by the net flux.

We simplify (1.1) by using integration by parts (or the Gauss divergence theorem) on the surface
integral to obtain

(1.2)
d

dt

∫
ω

U dx +

∫
ω

div(F) dx =

∫
ω

S dx.

Since (1.2) holds for all sub-domains ω of Ω, we can use an infinitesimal ω to obtain the following
differential equation:

(1.3) Ut + div(F) = S ∀ (x, t) ∈ (Ω,R+).

7

8 1. INTRODUCTION

The differential equation (1.3) is often termed as a balance law as it is a statement of the fact that the
rate of change in U is a balance of the flux and the source. Frequently, the only change in U is from the
fluxes and the source is set to zero. In such cases, (1.3) reduces to

(1.4) Ut + div(F) = 0 ∀ (x, t) ∈ (Ω,R+).

Equation (1.4) is termed as a conservation law, as the only change in U comes from the quantity entering
or leaving the domain of interest.

The discussion so far is very general. We have not yet specified the explicit forms of U,F and
S. In fact, the conservation law (1.4) and the balance law (1.3) are generic to a very large number of
models. Explicit forms of the quantity of interest, flux and source depend on the specific model being
considered. The modeling of the flux F is the core function of a physicist, biologist, engineer or other
domain scientists. We will provides several examples to illustrate conservation laws.

1.1. Examples for conservation laws.

For simplicity of the exposition, we begin with scalar examples, i.e, the quantity of interest U is a
scalar U .

1.1.1. Scalar transport equation. Let U = U denote the concentration of a chemical (for ex-
ample, a pollutant in a river). Assume that the river flows with a velocity field a(x, t) and we know
the velocity field at all points in the river. The pollutant will clearly be transported in the direction of
the velocity and so the flux in this case is F = aU . Since there is no production or destruction of the
pollutant during the flow, the source term in (1.3) is set to zero. Consequently, the conservation law (1.4)
takes the form

(1.5) Ut + div
(
a(x, t)U

)
= 0.

This equation is linear. In the simple case of one space dimension and a constant velocity field a(x, t) ≡ a,
(1.5) reduces to

(1.6) Ut + aUx = 0.

The scalar one-dimensional equation (1.6) is often referred to as the transport or advection equation.

1.1.2. The heat equation. Another illustrative example of a conservation law is provided by heat
conduction. Assume that a hot material (like a metal block) is heated at one end and is left to cool
afterwards, without providing any additional source of heat. It is a common observation that the heat
spreads or diffuses out and the temperature of the material becomes uniform after some time. Let U be
the temperature of the material. Diffusion of heat is governed by Fourier’s or Fick’s law

F(U) = −k∇U.

Here, k is the conductivity tensor for the medium. The minus sign is due to the fact that heat flows
from hotter to cooler zones. Substituting Fourier’s law into the conservation law (1.4), we obtain the heat
equation

(1.7) Ut − div
(
k∇U

)
= 0.

If the conductivity is assumed to be unity and the material is one-dimensional (like a rod), (1.7) reduces
to the well-known one-dimensional heat equation

(1.8) Ut − Uxx = 0.

The scalar transport equation (1.5) and the heat equation (1.7) are both linear equations and deal
with the evolution of a single scalar quantity. As nature is too complicated to be described by scalar
linear equations, their utility is limited. Next, we present a nonlinear system of conservation laws.

1.1. EXAMPLES FOR CONSERVATION LAWS. 9

1.1.3. Euler equations of gas dynamics. A gas (as an example consider air) consists of a large
number of molecules. The motion of each molecule can be tracked individually. This description is
termed as the particle description and leads to a very large number of ODEs. The resulting system of
ODEs is too large to be computationally feasible. Instead, a more macroscopic description is used. In
a macroscopic model, the key variables of interest are: the density ρ, the velocity field u and the gas
pressure p. All these quantities can be measured experimentally. The relevant conservation laws are

• Conservation of mass: It is well-known in fluid dynamics that the total mass of the gas is
conserved. Mathematically, using Kelvin’s theorem, this translates into

ρt + div(ρu) = 0.

• Conservation of momentum: By Newton’s second law of motion, the rate of change of momen-
tum equals force. In the absence of external forces, the gas pressure is the only force acting on
the gas. The resulting conservation law is

(ρu)t + div(ρu⊗ u) +∇p = 0.

Note that the above conservation laws implies that the rate of change of the advective (material)
derivative of the momentum equals the gradient of pressure. This is a consequence of the
observation that gas flows from high to low pressure. In the above equation, the symbol ⊗ is
the tensor product

a⊗ b =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


for any two vectors a = (a1, a2, a3) and b = (b1, b2, b3).

• Conservation of energy: The total energy of a gas is a sum of its kinetic and internal (potential)
energy. The kinetic energy has the standard expression

Ek =
1

2
ρ|u|2,

whereas the internal energy is determined by an equation of state. If the gas is an ideal gas,
then the equation of state is

Ei =
p

γ − 1
,

where γ is the gas constant. It takes the values 5/3 and 7/5 for mono-atomic and diatomic
gases, respectively. Hence, the total energy of an ideal gas is

(1.9) E =
p

γ − 1
+

1

2
ρ|u|2.

The rate of change of total energy is computed as:

Et + div((E + p)u) = 0.

All the three conservation laws are combined together and written in divergence form to obtain the Euler
equations of gas dynamics:

(1.10)

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + pI) = 0,

Et + div((E + p)u) = 0,

where I denotes the 3×3 identity matrix. The above system is an example of a multi-dimensional nonlinear
system of conservation laws. This derivation of the Euler equations was very brief and details can be
found in fluid dynamics textbooks like [LL87]. We ignore fluid viscosity effects and heat conduction in
the gas while deriving (1.10).

The above examples already reveal a multitude of diverse physical phenomena that can be modeled
in terms of conservation laws. The flux F in (1.4) is often a function of U and its derivatives,

F = F(U,∇U,∇2U, . . .)

10 1. INTRODUCTION

For simplicity of the analysis, it is common to neglect the role of the higher than first-order derivatives.
Hence, the flux is of the form:

F = F(U,∇U).

If it is of the form F = F(U), then the conservation law (1.4) is a first-order PDE. It is usually classified
as hyperbolic. The notion of hyperbolicity will be described in detail in the sequel. The scalar transport
equation (1.5) and the Euler equations of gas dynamics (1.10) are examples for hyperbolic equations.

If we have F = F(∇U), then the conservation law (1.4) is a second-order PDE and is often classified
as parabolic. The heat equation (1.7) is an example of a parabolic equation. When the flux F depends on
both the function U and its first derivative, the conservation law (1.4) is termed as a convection-diffusion
equation. In these notes, we will consider hyperbolic equations and convection-diffusion equations with
the convection dominating the diffusion.

1.1.4. Other examples. Examples for conservation laws of both the hyperbolic and convection-
diffusion type abound in nature. In these notes, we will consider the scalar Burgers equation, the
Buckley-Leverett equation (modeling flows in oil and gas reservoirs), the wave equation, the shallow
water equations of meteorology and oceanography, the equations for linear and nonlinear elastic waves
that arise in materials science and the equations of magnetohydrodynamics (MHD) from plasma physics.

1.2. Content and scope of these notes

The reason for studying conservation laws extensively is obvious: They arise in many models in the
sciences, ranging from the design of aircraft (Euler equations) to the study of supernovas in astrophysics
(MHD equations). Since interesting conservation laws like the Euler equations are nonlinear, it is not
possible to obtain explicit solution formulas. Hence, numerical methods need to be developed for ap-
proximating or simulating the solutions of conservation laws. The design and implementation of efficient
numerical methods is the main focus of these notes.

In order to design efficient numerical methods, we need to understand the analytical structure of the
solutions of conservation laws. Therefore, we will briefly discuss theoretical properties of the solutions
that are relevant for the design and analysis of numerical schemes.

We begin with the study of one-dimensional scalar problems. Both linear and nonlinear equations are
considered, and efficient numerical schemes are described for them. Then, the focus shifts to linear and
nonlinear systems like the Euler equations of gas dynamics. Finally, we consider the multi-dimensional
versions of systems of conservation laws and describe efficient numerical schemes for them.

CHAPTER 2

Linear Transport Equations

In this chapter we consider the one-dimensional version of the linear transport equation,

(2.1) Ut + a(x, t)Ux = 0 ∀ (x, t) ∈ R× R+.

The simplest case of the scalar transport equation arises when the velocity field is constant, that is,
a(x, t) ≡ a. The resulting transport equation is

(2.2) Ut + aUx = 0.

The rather simple equation (2.2) has served as a crucible for designing highly efficient schemes for much
more complicated systems of equations. We concentrate on it for the rest of this chapter.

2.1. Method of characteristics

The initial value problem (or Cauchy problem) for (2.1) consists of finding a solution of (2.1) that
also satisfies the initial condition

(2.3) U(x, 0) = U0(x) ∀ x ∈ R.
It is well known that the solution of the initial value problem can be constructed by using the method of
characteristics. The idea underlying this method is to reduce a PDE like (2.1) to an ODE by utilizing
the structure of the equation. As an ansatz, assume that we are given some curve x(t), along which the
solution U is constant. This means that

0 =
d

dt
U(x(t), t) (as U is constant along x(t))

= Ut(x(t), t) + Ux(x(t), t)x′(t) (chain rule).

We also know that Ut(x(t), t) + Ux(x(t), t)a(x(t), t) = 0, since U is assumed to be a solution of (2.1).
Therefore, if x(t) satisfies the ODE

(2.4)
x′(t) = a(x(t), t)

x(0) = x0,

then x(t) is precisely such a curve. The solution x(t) of this equation is called a characteristic curve.
From ODE theory, we know that solutions of (2.4) exist provided that a is Lipschitz continuous in both
arguments. It may or may not be possible to find an explicit solution formula for (2.4).

The importance of characteristic curves lies in the property that U is constant along them:

U(x(t), t) = U(x(0), 0) = U0(x0).

The initial data U0(x) is already known, so if we can find characteristic curves that go through all points
(x, t) ∈ R × R+, then we have found the solution U at all points in the plane. (See Figure 2.1) for an
illustration.)

In the simple case of a constant velocity field a(x, t) ≡ a, the characteristic equation (2.4) is explicitly
solved as

x(t) = x0 + at.

Therefore, given some point (x, t), the unique characteristic that goes through (x, t) (so that x(t) = x)
has initial value x0 = x− at. Hence, the solution of (2.2) is

(2.5) U(x, t) = U0(x0) = U0(x− at)
for any (x, t) ∈ R× R+. The solution formula (2.5) implies that the initial data is transported with the
velocity a.

11

12 2. LINEAR TRANSPORT EQUATIONS

X0

X(t)

Figure 2.1. Characteristics curves x(t) for (2.1)

In the more general case of (2.1), the characteristic equation (2.4) may not be possible to solve
explicitly. Hence, it is essential that we obtain some information about the structure of solutions of (2.1)
from the equation itself. This is done by means of the following a priori energy estimate:

Lemma 2.1. Let U(x, t) be a smooth solution of (2.1) which decays to zero at infinity, i.e, lim
|x|→∞

U(x, t) =

0 for all t ∈ R+, and assume that a ∈ C1(R,R+). Then U satisfies the energy bound

(2.6)

∫
R
U2(x, t) dx 6 e‖a‖C1 t

∫
R
U2

0 (x) dx

for all times t > 0.

. The proof of the estimate (2.6) is based on multiplying (2.1) with U on both sides:

UUt + a (x, t)UUx = 0 (multiplying (2.1) by U)(
U2

2

)
t

+ a (x, t)

(
U2

2

)
x

= 0 (chain rule)(
U2

2

)
t

+

(
a (x, t)

U2

2

)
x

= ax (x, t)
U2

2
(product rule)

d

dt

∫
R

(
U2

2

)
dx+

∫
R

(
a (x, t)

U2

2

)
x

dx =

∫
R
ax (x, t)

U2

2
dx (integrating over space)

d

dt

∫
R

(
U2

2

)
dx =

∫
R
ax (x, t)

U2

2
dx (decay to zero at infinity)

6 ‖a‖C1

∫
R

U2

2
dx (regularity of a).

The last inequality can be used together with Gronwall’s inequality (Theorem A.1) to obtain the bound
(2.6). �

The quantity
∫
U2/2 is commonly called the energy of the solution. The above lemma shows that

the energy of the solutions to the transport equation (2.1) are bounded. The energy estimate is going to
be used for designing robust schemes for the transport equation. We remark that the restriction that U
decays to zero at infinity may be relaxed by considering a different energy functional.

The solution is also bounded in L∞:

Lemma 2.2. If U is a smooth solution of (2.1) and U0 ∈ L∞(R), then for any t > 0, supx∈R |U(x, t)| 6
‖U0‖L∞ .

. We know that for any x ∈ R and t ∈ R+, there exists ξ ∈ R such that U(x, t) = U0(ξ). This shows that
|U(x, t)| 6 ‖U0‖L∞ for all x ∈ R. �

2.2. Finite difference schemes for the transport equation

It may not be possible to obtain an explicit formula for the solution of the characteristic equation
(2.4). For example, the velocity field a(x, t) might have a complicated nonlinear expression. Hence, we

2.2. FINITE DIFFERENCE SCHEMES FOR THE TRANSPORT EQUATION 13

have to devise numerical methods for approximating the solutions of (2.1). For simplicity, we consider
a(x, t) ≡ a > 0 and solve (2.2). It is rather straightforward to extend the schemes to the case of a more
general velocity field.

2.2.1. Discretization of the domain. The first step in any numerical method is to discretize both
the spatial and temporal parts of the domain. Since R is unbounded, we have to truncate the domain
to some bounded domain [xL, xR]. This truncation implies that suitable boundary conditions need to be
imposed. We discuss the problem of boundary conditions later on.

For the sake of simplicity, the domain [xL, xR] is discretized uniformly with a mesh size ∆x into a
sequence of N + 1 points xj such that x0 = xL, xN = xR and xj+1 − xj = ∆x for all j. A non-uniform
discretization can readily be considered.

For the temporal discretization, we choose some terminal time T and divide [0, T] into M points tn =
n∆t (n = 0, . . . ,M). The space-time mesh is shown in Figure 2.2. Our aim is obtain an approximation
of the form Unj ≈ U(xj , t

n). To get from the initial time step t0 to the terminal time step tM , we first set

the initial data U0
j = U0(x0) for all j. Then the solution U1

j at the next time step is computed using some

update formula, again for all j. This process is reiterated until we arrive at the final time step tM = T
with our final solution UMj .

2.2.2. A simple centered finite difference scheme. On the mesh, we need to approximate the
transport equation (2.2). We do so by replacing both the spatial and temporal derivatives by finite
differences. The time derivative is replaced with a forward difference and the spatial derivative with a
central difference. This combination is standard (see schemes for the heat equation in standard textbooks
like [TW09]). The resulting scheme is

(2.7)
Un+1
j − Unj

∆t
+
a(Unj+1 − Unj−1)

2∆x
= 0 for j = 1, . . . , N − 1.

Some special care must be taken when defining the boundary values. We have a consistent discretization
of (2.2) that is very simple to implement. We test it on the following numerical example.

2.2.3. A numerical example. Consider the linear transport equation (2.2) in the domain [0, 1]
with initial data

(2.8) U0(x) = sin(2πx).

Since the data is periodic, it is natural to assume periodic boundary conditions. We implement this
numerically by letting

Un0 = UnN−1, UnN = Un1 .

The exact solution is calculated by (2.5) as U(x, t) = sin(2π(x − at)). We set a = 1 and compute the
solutions with the central scheme (2.7) with 500 mesh points, and plot the solution at time t = 0.3
in Figure 2.3. The figure clearly shows that, despite being a consistent approximation, the scheme is
unstable, with very large oscillations.

_tn

tn+1

tn+ 2

X j X j + 1
Xj−1

U
n
j ∆

∆ t

X

Figure 2.2. A representation of the mesh in space-time

14 2. LINEAR TRANSPORT EQUATIONS

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

12

x

Figure 2.3. Approximate solution for (2.2) with the central scheme (2.7) at time t = 3
with 100 mesh points. [central.m]

2.2.4. A physical explanation. Why do the solutions computed with the central scheme (2.7)
blow up? After all, the central scheme seems a reasonable approximation of the transport equation. A
physical explanation can be deduced from the following argument: The exact solution moves to the right
(as a > 0) with a fixed speed. Therefore, information goes from left to right. However, the central scheme
(see Figure 2.4) takes information from both the left and the right, violating the physics. Consequently,
the solutions are unstable. This explanation seems intuitive but has to be backed by solid mathematical
arguments. We proceed to do so below.

X j
X j+ 1

Figure 2.4. The central scheme (2.7). Green arrows indicate numerical propagation
and magenta arrows physical propagation.

2.2.5. A mathematical explanation. The observed instability of the central scheme can be ex-
plained mathematically in terms of estimates. We recall that the exact solutions have a bounded energy
(see estimate (2.6)). It is reasonable to require that the scheme is energy stable like the exact solution,
that is, a discrete version of energy remains bounded. For a given ∆x, we define the discrete version of
energy as

(2.9) En =
1

2
∆x
∑
j

(
Unj
)2
.

Note that the integral in the energy for the continuous problem has been replaced with a Riemann sum.

Lemma 2.3. Let Unj be the solutions computed with the central scheme (2.7). Then the following estimate
holds:

(2.10) En+1 = En +
∆x

2

∑
j

(
Un+1
j − Unj

)2
.

Consequently, the energy grows at every time step for any choice of ∆x,∆t.

. We mimic the steps of continuous energy estimate (Lemma 2.1) and multiply both sides of the scheme
(2.7) by Unj to obtain

(2.11) Unj
(
Un+1
j − Unj

)
+
a∆t

2∆x

(
Unj U

n
j+1 − Unj Unj−1

)
= 0.

2.3. AN UPWIND SCHEME 15

We have the following elementary identity:

(2.12) d2(d1 − d2) =
(d1)2

2
− (d2)2

2
− 1

2
(d1 − d2)2

for any two numbers d1, d2. We denote

Hj+1/2 = a
Unj U

n
j+1

2

to reduce (2.11) to

(2.13)

(
Un+1
j

)2
2

=
(Unj)2

2
+

1

2

(
Un+1
j − Unj

)2 − ∆t

∆x
(Hj+1/2 −Hj−1/2).

Summing (2.13) over all j and using zero (or periodic) boundary conditions, the flux term H vanishes by
cancellation and we obtain the estimate (2.10). �

Although we assumed zero or periodic boundary conditions in the proof of this lemma, a variant of
the lemma holds for more general boundary conditions, as for the continuous setting in Lemma 2.1.

The above lemma provides a mathematical justification for our physical intuition. The central scheme
leads to a growth of energy at every time step and is unstable. We need to find schemes that posses a
discrete version of the energy estimate. This use of rigorous mathematical tools like energy analysis to
justify physical reasoning will be an essential ingredient of these notes.

2.3. An upwind scheme

The central scheme (2.7) does not respect the direction of propagation of information for the transport
equation (2.2). Hence, we must include the correct direction of information propagation and hope that it
stabilizes the scheme. This entails using one-sided differences instead of a central difference to approximate
the linear transport equation (2.2).

If a > 0 and the direction of information propagation is from left to right, then we can use a backward
difference in space to obtain the scheme

(2.14)
Un+1
j − Unj

∆t
+
a(Unj − Unj−1)

∆x
= 0 for j = 1, . . . , N − 1,

and if a < 0, we can use the forward difference to obtain:

(2.15)
Un+1
j − Unj

∆t
+
a(Unj+1 − Unj)

∆x
= 0 for j = 1, . . . , N − 1.

Using the notation
a+ = max{a, 0}, a− = min{a, 0}, |a| = a+ − a−,

(2.14) and (2.15) can be written together as

(2.16)
Un+1
j − Unj

∆t
+
a+(Unj − Unj−1)

∆x
+
a−(Unj+1 − Unj)

∆x
= 0.

The above scheme takes into account the direction of propagation of information – information is “carried
with the wind”. Hence, this scheme is termed as the upwind scheme.

Using the definition of the absolute value and some simple algebraic manipulations, the upwind
scheme (2.16) can be recast as

(2.17)
Un+1
j − Unj

∆t
+
a(Unj+1 − Unj−1)

2∆x
=
|a|

2∆x
(Unj+1 − 2Unj + Unj−1)

(compare to (2.7)). Note that in the above form, the spatial derivatives are the central term and a

diffusion term. The right hand side of (2.17) approximates ∆x|a|
2 Uxx. Hence, the upwind scheme (2.17)

adds numerical viscosity or diffusion to the unstable central scheme (2.7). Numerical viscosity is going
to play a crucial role later on.

Since the upwind scheme incorporates the correct direction of propagation of information (see Figure
2.5), we expect it to be more stable than the central scheme. This is endorsed by the numerical experiment
with initial data (2.8). We take a = 1 and compute approximate solutions for the linear transport equation
(2.2) on a uniform mesh with 100 mesh points up to t = 1. We use two different timesteps: ∆t = 1.3∆x

16 2. LINEAR TRANSPORT EQUATIONS

X j
X j+ 1

Figure 2.5. The upwind scheme (2.16). Green arrows indicate numerical propagation
and magenta arrows physical propagation.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

Upwind scheme

Exact solution

(a) ∆t = 1.3∆x

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Upwind scheme

Exact solution

(b) ∆t = 0.9∆x

Figure 2.6. Solution with initial data (2.8) at t = 1. The ratio ∆t/∆x is important for
stability. [upwind cfl.m]

and ∆t = 0.9∆x. As seen in Figure 2.6, the results with ∆t = 1.3∆x are still oscillatory and the scheme
continues to be unstable. In spite of the upwinding, stability stills seems to be elusive. However, results
with ∆t = 0.9∆x are stable. The approximation appears to be good in this case. Much better results
are obtained by refining the mesh, while keeping the ratio ∆t/∆x fixed, as is presented in Figure 2.7.

2.4. Stability for the upwind scheme: L1, L2 and L∞ norms

The numerical results indicate that stability for the upwind scheme is subtle. It is not unconditionally
unstable as the central scheme (2.7); instead, stability depends on the parameters ∆x,∆t. Numerical
results indicate the crucial role played by the ratio ∆t

∆x . It seems that one must not only take into account
the correct direction of propagation, but also the correct magnitude.

The quantification of stability will involve energy analysis as in the last section. We have the following
stability result:

Lemma 2.4. Let the mesh parameters satisfy the condition

(2.18) |a|∆t
∆x
6 1.

Then solutions computed with the upwind scheme (2.17) satisfy the energy estimate

(2.19) En+1 6 En,

where the energy is defined as in (2.9). The upwind scheme is thus conditionally stable.

2.4. STABILITY FOR THE UPWIND SCHEME: L1, L2 AND L∞ NORMS 17

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Upwind scheme

Exact solution

(a) 50 mesh points

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Upwind scheme

Exact solution

(b) 200 mesh points

Figure 2.7. Solution with initial data (2.8) at t = 10. Refining the mesh gives a more
accurate solution. [upwind refinement.m]

. For the sake of simplicity, we assume that a > 0. Hence the upwind scheme (2.17) reduces to

(2.20)
Un+1
j − Unj

∆t
+
a(Unj+1 − Unj−1)

2∆x
=

a

2∆x
(Unj+1 − 2Unj + Unj−1).

It is also equivalent to the scheme (2.14). As in the proof of the estimate (2.10) we multiply both sides
of the scheme (2.20) by Unj to obtain

(2.21)
Unj (Un+1

j − Unj) = − a∆t

2∆x
(Unj U

n
j+1 − Unj Unj−1)

+
a∆t

2∆x
(Unj (Unj+1 − Unj)) +

a∆t

2∆x
(Unj (Unj−1 − Unj)).

Now we use elementary identity (2.12) a couple of times and rewrite (2.21) as

(2.22)

(Un+1
j)2

2
=

(Unj)2

2
+

(Un+1
j − Unj)2

2
− a∆t

2∆x
(Unj U

n
j+1 − Unj Unj−1)

+
a∆t

4∆x

(
(Unj+1)2 − (Unj)2

)
− a∆t

4∆x

(
(Unj)2 − (Unj−1)2

)
− a∆t

4∆x
(Unj+1 − Unj)2 − a∆t

4∆x
(Unj − Unj−1)2.

Denoting

Kj+1/2 =
a

2
(Unj U

n
j+1)− a

4

(
(Unj+1)2 − (Unj)2

)
,

we may rewrite (2.22) as

(2.23)

(Un+1
j)2

2
=

(Unj)2

2
+

(Un+1
j − Unj)2

2
− a∆t

∆x
(Kj+1/2 −Kj−1/2)

− a∆t

4∆x
(Unj+1 − Unj)2 − a∆t

4∆x
(Unj − Unj−1)2.

Summing (2.23) over all j and using the definition of discrete energy (2.9) and either zero or periodic
boundary conditions, we obtain

(2.24) En+1 6 En +
∆x

2

∑
j

(Un+1
j − Unj)2 − a∆t

2

∑
j

(Unj − Unj−1)2.

18 2. LINEAR TRANSPORT EQUATIONS

Using the definition of the upwind scheme (2.14) in (2.24) yields

(2.25) En+1 6 En +

(
a2∆t2

2∆x
− a∆t

2

)∑
j

(Unj − Unj−1)2.

Since the term in the sum in (2.25) is positive, we obtain the energy bound (2.19), provided

a2∆t2

∆x
6 a∆t,

which is precisely the condition (2.18). �

The stability condition (2.18) is termed the CFL condition after Courant, Friedrichs and Lewy who
first proposed it. By a slightly different approach we can also show stability in L1 and L∞, as follows:

Lemma 2.5. Assume that the CFL condition (2.18) is satisfied. Then solutions computed with the upwind
scheme (2.17) satisfy the stability estimates

(2.26) ‖Un+1‖L1 6 ‖Un‖L1 , ‖Un+1‖L∞ 6 ‖Un‖L∞ ∀ n = 0, 1, 2, . . . ,

where ‖U‖L1 = ∆x
∑
j∈Z |Uj | and ‖U‖L∞ = supj∈N |Uj |.

. Denoting ν = ∆t
∆x , we can rewrite (2.17) as

Un+1
j = Unj+1

(
ν|a| − νa

2

)
+ Unj (1− ν|a|) + Unj−1

(
ν|a|+ νa

2

)
= Unj+1

(
−νa−

)
+ Unj (1− ν|a|) + Unj−1νa

+.

Thus, the CFL guarantees that Un+1
j is a convex combination of Unj−1, Unj and Unj+1 (i.e., a linear combi-

nation with positive coefficients which sum up to 1). This ensures that |Un+1
j | 6 max(|Unj−1|, |Unj |, |Unj+1|).

For the L1 bound, take the absolute value of the above and sum over j ∈ N:∑
j

|Un+1
j | =

∑
j

∣∣Unj+1

(
−νa−

)
+ Unj (1− ν|a|) + Unj−1νa

+
∣∣

6
∑
j

|Unj+1|
(
−νa−

)
+
∑
j

|Unj | (1− ν|a|) +
∑
j

|Unj−1|νa+

=
∑
j

|Unj |
(
(−νa−) + (1− ν|a|) + νa+

)
=
∑
j

|Unj |. �

Numerical experiment: Discontinuous data. Consider the transport equation (2.2) with a = 1
in the domain [0, 1] and initial data

(2.27) U0(x) =

{
2 if x < 0.5

1 if x > 0.5.

The initial data and consequently the exact solution (2.5) are discontinuous. We compute with the
upwind scheme using 50 and 200 mesh points and display the results in Figure 2.8. The results show
that the upwind scheme approximates the solution quite well, at least at a fine resolution. However the
errors on a coarse mesh are somewhat large. This issue will be addressed in later sections.

2.4. STABILITY FOR THE UPWIND SCHEME: L1, L2 AND L∞ NORMS 19

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

x

Upwind scheme

Exact solution

(a) Upwind 50 mesh points

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

x

Upwind scheme

Exact solution

(b) Upwind 200 mesh points

Figure 2.8. The upwind scheme (2.14) for the linear advection equation (2.2) with
discontinuous initial data (2.27). Results are at time t = 0.25.
[upwind disc refinement.m]

CHAPTER 3

Scalar conservation laws

In the previous chapter, we considered the scalar transport equation

(3.1) Ut + a(x, t)Ux = 0.

This equation is linear as the velocity field a is a given function. However, most natural phenomena are
nonlinear. In such models, the velocity field depends on the solution itself. The simplest example of such
a field is

a(x, t) = U(x, t).

Hence, the transport equation (3.1) becomes

(3.2) Ut + UUx = 0.

The transport equation (3.2) can be written in the conservative form

(3.3) Ut +

(
U2

2

)
x

= 0.

This is the inviscid Burgers equation. It serves as a prototype for scalar conservation laws, which in
general take the form

(3.4) Ut + f(U)x = 0,

where U is the unknown and f is the flux function. Apart from Burgers’ equation, scalar conservation
laws arise in a wide variety of models. We consider a couple of examples below.

Traffic flow model. For simplicity, consider a one-dimensional highway and denote the density of
cars (number of cars per square meter) as U(x, t). Assume that the cars are moving at a macroscopic
velocity (the speed of a traffic column) V (x, t). A simple requirement of conservation of the number of
cars lead to the following equation:

(3.5) Ut + (UV)x = 0.

The velocity V remains to be modeled. One very simple model is based on a couple of observations.
First, there exists a maximum velocity at which an individual car can drive, for example specified by the
speed limit. Second, the velocity of cars is inversely proportional to the car density. If there are a large
number of cars, each individual driver will drive slowly. However, on a remote stretch of the highway,
each driver speeds up. These simple observations are combined to yield the velocity

V = Vmax(1− U),

where Vmax is the maximum velocity for the cars. We use the convention that the maximum density or
road carrying capacity is 1. Hence, the traffic flow equation is

(3.6) Ut +
(
VmaxU(1− U)

)
x

= 0.

Enhanced oil recovery. Oil is generally found in sub-surface reservoirs, inside permeable rocks.
The primary stage of oil recovery consists of drilling into the rocks and extracting oil by applying pressure.
Only 20 to 30 percent of the available oil can be extracted in this manner. The secondary stage of oil
recovery consists of injecting water into the rock bed. The water displaces the oil (as water is heavier)
and the oil can then be extracted. This complex process is modeled by using two-phase flow (water and
oil) in a porous media (rock).

For simplicity, we assume that the reservoir is one-dimensional. The quantities of interest are the oil
and water volume fractions or saturations So and Sw, respectively. Being volume fractions, they satisfy

(3.7) So + Sw ≡ 1.

21

22 3. SCALAR CONSERVATION LAWS

Furthermore, the phases evolve according to the conservation laws

(3.8)

{
Sot + V ox = 0

Swt + V wx = 0.

The phase velocities V o, V w are modeled by Darcy’s law:

(3.9)

{
V o = −λo dP

o

dx

V w = −λw dP
w

dx ,

where λ and P are the phase mobility and the phase pressure, respectively. In the above constitutive
relation, we have neglected the role of gravity. Furthermore, we can assume that there is no capillary
pressure:

P o = Pw.

Adding the phase saturation equations (3.8) for each phase and using the requirement (3.7), we obtain

(V o + V w)x ≡ 0 ⇒ V o + V w = q,

for some constant q called the total flow rate. Substituting Darcy’s law (3.9) in the above identity and
using Pw = P o = P , we obtain

dP

dx
= − q

λo + λw
.

Applying this identity in the evolution of the oil saturation (3.9) and (3.8) yields

(3.10) Sot +

(
qλo

λw + λo

)
x

= 0.

The mobilities generally take the form

λo = (So)2, λw = (Sw)2 = (1− So)2.

Hence, the evolution of the oil saturation is governed by the scalar conservation law

(3.11) Sot +

(
q(So)2

(So)2 + (1− So)2

)
x

= 0.

The above examples demonstrate that scalar conservation laws do occur in many interesting models
in physics and engineering. Furthermore, the shape of the flux function f in (3.4) can be very general.
Note that it is convex for Burgers’ equation, concave for the traffic flow problem (3.6) and is neither
convex nor concave (contains inflection points) for the oil reservoir equation (3.11).

In this section, we embark on a systematic study of scalar conservation laws (3.4) from a theoretical
perspective.

3.1. Characteristics for Burgers’ equation

We start with Burgers’ equation (3.3) and attempt to construct solutions to the initial value problem
associated with it. As for the linear transport equation (3.1), we will use the method of characteristics
for this purpose. Since (3.2) and (3.3) are equivalent whenever U is smooth, the characteristics x(t) for
Burgers’ equation are given by

x′(t) = U(x(t), t)

x(0) = x0.
(3.12)

Note that these characteristics are different from the linear case (2.4) in that the velocity depends on the
solution. We start by considering the initial data

(3.13) U0(x) =

{
UL if x < 0

UR if x > 0.

Data of this form is quite simple and consists of constants separated by a discontinuity at the origin. The
initial value problem for a conservation law (3.4) with initial data of the form (3.13) is called a Riemann
problem.

3.1. CHARACTERISTICS FOR BURGERS’ EQUATION 23

By definition, the solution U is constant along characteristics, that is, U(x(t), t) = U0(x0). Therefore,
the solution of (3.12), (3.13) in constant parts of U0 is

x(t) = U0(x0)t+ x0.

Let UL = 1 and UR = 0 in (3.13). For x0 < 0 the characteristics have velocity U0(x0) = 1,
whereas for x0 > 0 they have velocity 0; see Figure 3.1. We see that the characteristics intersect almost
instantaneously. As observed in the last section, the solution should be constant (in time) along the
characteristics. What happens to the solution when the characteristics start to intersect? How can the
solution be defined in this case? Adding nonlinearity completely changes the situation from the linear
case.

Is the intersection of characteristics on account of discontinuous data (3.13)? Can using smooth
data lead to non-intersecting characteristics? It turns out that even smooth initial data can lead to the
intersection of characteristics after a small time interval. Consider the visual example in Figure 3.2.

Exercise 3.1. Let U0(x) be differentiable with at least one point x such that U ′0(x) < 0. Show that the
solution to Burgers’ equation with initial data U0 will develop a discontinuity at time

tmin = − 1

minx∈R U ′0(x)
.

(Hint: Start with the ansatz that two characteristics x(t) and x̃(t) intersect at some time t.)

The strange behavior of characteristics indicates that smooth solutions cannot be obtained for the
conservation law (3.4), even when the initial data is smooth. Consider the initial data

U0(x) = sin(πx)

in the interval [−1, 1]. A heuristic interpretation of the characteristic equation (3.12) is that the solution
at each point x moves with the velocity U0(x). Hence, the method of characteristics imply that the
solution behaves as shown in Figure 3.3. The wave compresses in one part and stretches in another. In
particular, the solution can be multi-valued. This is another indication that smooth solutions of (3.4) do
not exist.

A formal calculation by differentiating (3.2) with respect to x yields

(3.14) Vt + UVx = −V 2,

where V = Ux. Hence, along the characteristics x(t) given by (3.12), V varies as

d

dt
V (x(t), t) = −V 2(x(t), t).

This is a ODE with quadratic nonlinearity and it is well known that the resulting solution V can blow
up in finite time. Hence, the spatial derivative of the solution to Burgers’ equation can blow up, even if
the initial derivative is very small. This derivative blowup suggests that smooth solutions to (3.4) may
not exist.

0
1

Figure 3.1. Characterstics intersecting for the Riemann problem (3.13) with
(UL, UR) = (1, 0).

24 3. SCALAR CONSERVATION LAWS

X

U0
(X)

(a) Initial data (b) Characteristics

Figure 3.2. Characteristics can even intersect for smooth initial data.

3.2. Weak solutions

The previous section demonstrates that smooth or classical solutions of the conservation law (3.4)
may not exist. However, these models arise in physics and so some form of solution must exist. This type
of solution is a weak solution. To motivate the definition of weak solutions, assume for the moment that
smooth solutions of (3.4) exist and multiply both sides by a smooth test function ϕ ∈ C1

c (R×R+). (The
space C1

c (A) is the space of all continuously differentiable functions from A to R with compact support,
that is, the functions vanish outside a compact subset of A.) Integrating over x ∈ R and t ∈ R+ and
integrating by parts, we find that

(3.15)

∫
R+

∫
R
Uϕt + f(U)ϕx dx dt+

∫
R
U0(x)ϕ(x, 0) dx = 0.

This identity hold trues for all test functions ϕ ∈ C1
c (R × R+). We base the definition of weak solution

for (3.4) on the above identity.

Definition 3.2 (Weak solution). A function U ∈ L∞(R × R+) is a weak solution of (3.4) with initial
data U0 ∈ L∞(R) if the identity (3.15) holds for all test functions ϕ ∈ C1

c (R× R+).

Note that the identity (3.15) is well-defined as long as U ∈ L1
loc(R× R+).

Exercise 3.3. Show that if a weak solution U of (3.4) is also differentiable (so U ∈ C1(R× R+)), then
U satisfies (3.4) pointwise. Hence, the class of weak solutions contains, but is not restricted to, classical
solutions.

Our usual understanding of solutions of PDEs is classical—the solutions must be differentiable func-
tions. However, weak solutions are not necessarily differentiable, not even continuous. This implies that
the solutions can contain discontinuities. These discontinuities appear in nature as shock waves.

3.2.1. The Rankine–Hugoniot condition. As we will soon find out, shock waves in weak solu-
tions cannot be arbitrary curves in the x-t-plane, but must satisfy certain conditions. Assume that we

Figure 3.3. Smooth initial data leading to multi-valued solution.

3.2. WEAK SOLUTIONS 25

are given a weak solution U consisting of two smooth regions, separated by a shock wave, as depicted in
Figure 3.4. Let the shock wave be defined by the curve x = γ(t).

Let ϕ be a test function with support in Ω, for some open set Ω which intersects the curve x = γ(t);
see Figure 3.4. We assume that U ∈ C1(Ω−) and U ∈ C1(Ω+). Integrating (3.15) by parts and using the
compact support of the test function, we get∫

Ω

Uϕt + f(U)ϕx dΩ =

∫
Ω+

Uϕt + f(U)ϕx dΩ +

∫
Ω−

Uϕt + f(U)ϕx dΩ

= −
∫

Ω+

(Ut + f(U)x)ϕdΩ +

∫
∂Ω+

(
U+(t)νt + f(U+(t))νx

)
ϕdΩ

−
∫

Ω−
(Ut + f(U)x)ϕdΩ +

∫
∂Ω−

(
U−(t)νt + f(U−(t))νx

)
ϕdΩ

= 0.

Here, U+(t) and U−(t) are the trace values of U on the right and left of the discontinuity γ, and
ν = (νx, νt) is the unit outward normal of γ (see Figure 3.4). Up to a normalization factor, the normal is

(νx, νt) = (1, −s(t)),

where s(t) = γ′(t) is the speed of the shock curve. Since U is smooth in Ω− and Ω+, the equation (3.4)
is satisfied pointwise. Therefore, the above identities imply that∫

Ω−∪Ω+

(
Ut + f(U)x

)︸ ︷︷ ︸
= 0

ϕdΩ +

∫
∂Ω

(
s(t)

(
U+(t)− U−(t)

)
−
(
f(U+)− f(U−)

))
ϕdΩ = 0.

Since ϕ is an arbitrary test function, the integrand of the remaining integral must be identically equal to
zero. Hence, the shock speed must satisfy

(3.16) s(t) =
f(U+(t))− f(U−(t))

U+(t)− U−(t)
.

This condition is called the Rankine–Hugoniot condition. We summarize this as follows:

Theorem 3.4. Let γ ∈ C1(R+) and let U ∈ L∞(R× R+) be of the form

U(x, t) =

{
U−(x, t) if x < γ(t)

U+(x, t) if x > γ(t)

where both U− and U+ are continuously differentiable functions. Then U is a weak solution of (3.4) if
and only if both

• U− and U+ solve (3.4) in the classical sense, and
• the shock speed s(t) = γ′(t) satisfies the Rankine–Hugoniot condition (3.16) at x = γ(t).

Ω−
Ω+

− U U+

s(t)

Figure 3.4. What happens across a shock?

26 3. SCALAR CONSERVATION LAWS

x

t

Figure 3.5. Characteristics for the Riemann problem (3.17).

x

t

?

Figure 3.6. Characteristics for the Riemann problem (3.18).

3.2.2. Solutions to Riemann problems. Consider Burgers’ equation (3.3) with the Riemann
problem (3.13) with UL = 1 and UR = 0. We recall that the characteristics intersected in this case and
a smooth solution couldn’t be constructed. We construct a weak solution that consists of two constant
states UL and UR, separated by a shock moving at a speed given by the Rankine–Hugoniot condition
(3.16),

s(t) =
U2
R

2 −
U2
L

2

UR − UL
≡ 1

2
.

Hence, the weak solution takes the form

(3.17) U(x, t) =

{
1 if x < 1

2 t

0 if x > 1
2 t.

It is easy to check that (3.17) satisfies (3.15). The structure of the solution (see Figure 3.5) shows that
the characteristics flow into the shock. As a consequence, there are characteristics covering all points in
the plane, and for each point we can trace a characteristic back to the initial data. Hence, the entire
solution is prescribed by the initial data.

Next, we consider another Riemann problem with UL = 0 and UR = 1. If we follow characteristics
emanating from the x-axis, as for the previous problem, we now get an area without characteristics; see
Figure 3.6. The ”missing” information in this area may be ”filled” in several ways. Using the Rankine–
Hugoniot condition, we find that one possible weak solution is given by

(3.18) U(x, t) =

{
0 if x < 1

2 t

1 if x > 1
2 t,

see Figure 3.7(a). Note that this solution has one shock curve, drawn in red in the figure. However, this
solution is not the only possible weak solution. By adding an intermediate state with value, say, Um = 2

3
and using the Rankine–Hugoniot condition, we get the weak solution

(3.19) U(x, t) =


0, if x < 1

3 t
2
3 if 1

3 t < x < 5
6 t

1 if x > 5
6 t.

The characteristics are shown in Figure 3.7(b). In a similar manner one may construct arbitrarily many
weak solutions by using the Rankine–Hugoniot condition (3.16) with different intermediate states.

This problem of non-uniqueness is implicit in the definition of weak solutions. These solutions are
not necessarily unique, and therefore some extra conditions need to be imposed. For finding these extra

3.2. WEAK SOLUTIONS 27

x

t

(a) Solution (3.18)

x

t

(b) Solution (3.19)

Figure 3.7. Characteristics for different weak solutions the Riemann problem (3.18).
Discontinuities are marked in red.

criteria, we observe that characteristics for both (3.18) and (3.19) flow out from the shock (see Figure
3.7). This is in contrast to the solution (3.17) where the characteristics flow into the shock (see Figure
3.5). Characteristics represent the flow of information. For an evolution equation the information should
always flow from the initial data. This is clearly the case for the weak solution (3.17). However in the
case of weak solutions (3.18) and (3.19), information seems to be created at the shock.

This heuristic requirement, that information is taken from the initial data and is not created at a
shock, can be expressed in terms of conditions on the characteristics across a shock. Let U−(t), U+(t)
be the states on either side of a shock with speed s(t). The requirement that characteristics for Burgers’
equation flow into the shock and information is taken from the initial line can be enforced by the condition

(3.20) U−(t) > s(t) > U+(t).

It is simple to generalize (3.20) to the general scalar conservation law (3.4) for convex f :

(3.21) f ′(U−(t)) > s(t) > f ′(U+(t)).

This is the Lax entropy condition.
Consider the conservation law (3.4) with a convex flux function and Riemann data (3.13). It is easily

shown that

(3.22) U(x, t) =

{
UL if x < st

UR if x > st,

where the shock speed s is defined by the Rankine–Hugoniot condition, is a weak solution of (3.4). Now,
there are two cases: either UL > UR, or UL < UR. It turns out that the Lax entropy condition excludes
(3.22) as a solution in the latter case, but not in the former:

Exercise 3.5. Assume that f is strictly convex and that UL > UR. Show that (3.22) is a weak solution
that satisfies the entropy condition (3.21). Similarly, if UL < UR, show that (3.22) is a weak solution,
but does not satisfy Lax’ entropy condition.

It turns out that in the latter case, where UL < UR, a continuous (but not necessarily differentiable)
solution exists.

3.2.3. Rarefaction waves. For the remainder of this section, assume that the flux function f is
strictly convex. In order to construct a continuous solution to (3.4), we note that replacing x, t by
λx, λt keeps the equation invariant, in the sense that a solution of one is a solution of the other. Since
Riemann initial data (3.13) is also invariant with respect to the scaling x 7→ λx, it is natural to assume
self-similarity—that solutions of the Riemann problem only depend on the ratio x/t:

(3.23) U(x, t) = V (x/t) .

28 3. SCALAR CONSERVATION LAWS

Define the symmetry variable ξ = x/t. We substitute the ansatz (3.23) into (3.4) and use the chain rule
repeatedly to obtain

0 = Ut + f(U)x = V (ξ)t + f ′(V (ξ))V (ξ)x

= V ′ξt + f ′(V (ξ))V ′ξx

= − x
t2
V ′ + f ′(V (ξ))

1

t
V ′

so (
f ′(V (ξ))− ξ

)
V ′ = 0.

In the nontrivial case of V ′ 6= 0, the above identity and the fact that f ′ is strictly increasing (recall that
f is assumed to be strictly convex) leads to the expression

(3.24) V (x/t) = (f ′)−1(x/t).

A self-similar solution of this form is called a rarefaction wave.
The rarefaction wave can be employed to construct weak solutions for conservation laws. Consider

the Riemann problem (3.4), (3.13). If UL < UR, then the weak solution is given by

(3.25) U(x, t) =


UL if x 6 f ′(UL)t

(f ′)−1(x/t) if f ′(UL)t < x 6 f ′(UR)t

UR if x > f ′(UR)t.

Clearly (3.25) is a weak solution that satisfies Lax’ entropy condition (3.21). For the particular case of
Burgers’ equation with Riemann data UL = 0 and UR = 1, the solution (3.25) is shown in Figure 3.8.
Note how the characteristics are parallel to the rarefaction wave and contrast this to Figure 3.7.

x

t

Figure 3.8. The rarefaction solution (3.25)

We now have a recipe to construct weak solutions for the Riemann problem (3.13) for a conservation
law (3.4) with a strictly convex f . The solution depends on whether UL < UR or UL > UR. If UL > UR,
then the entropy satisfying weak solution (3.22) consists of a shock between the two states. If UL < UR,
then the weak solution (3.25) consists of the two states, separated by a rarefaction wave. In both cases,
the wave speed is bounded in absolute value by the maximum of |f ′(UL)| and |f ′(UR)|.

We return to the solution of the Riemann problem for nonconvex fluxes in Section 3.4.

3.3. Entropy solutions

As we saw in Section 3.2.2, the Lax entropy condition (3.21) acts as a selection principle—it excludes
certain weak solution, while admitting others. However, it is a local condition, referring only to the
behavior of solutions at shocks, and therefore might be difficult to apply in a proof of global stability
estimates. In this section we derive an alternative entropy condition which is equivalent to Lax’ condition.
As we will see, this condition guarantees stability and uniqueness of solutions to the Cauchy problem for
the conservation law (3.4).

3.3. ENTROPY SOLUTIONS 29

3.3.1. The entropy condition. A common technique in the study of PDEs is to add a viscous
term to the PDE, study this new PDE, and then let the viscosity parameter go to zero. To this end we
consider the following viscous approximation of the scalar conservation law (3.4):

(3.26) Uεt + f(Uε)x = εUεxx,

where ε > 0 is a small parameter. The second-order term Uxx is termed the viscous or diffusion term,
and adding this term turns the conservation law into a (parabolic) convection-diffusion equation. Such
equations are similar to the heat equation (1.8), and as for the heat equation, the solutions to (3.26) are
smooth, in fact C∞ functions. See e.g. [HR15, Appendix B] or [GR91, Section II.2] for a rigorous study
of (3.26).

Passing ε → 0 in (3.26) formally gives back the scalar conservation law (3.4). A weak solution U
which is the limit of solutions of the viscous equation, U = limε→0 U

ε, is called a vanishing viscosity
solution of (3.4). Instead of studying (3.26) in the limit ε→ 0, however, we derive some properties which
such a limit would satisfy.

Let η : R→ R be any strictly convex function, and construct the function q : R→ R,

q(U) =

∫ U

0

f ′(s)η′(s)ds.

Note that η and q satisfy the relation

(3.27) q′ = η′f ′.

Multiplying both sides of (3.26) by η′(U) and using the chain rule and the relation (3.27), we obtain

η′(Uε)Uεt + η′(Uε)f ′(Uε)Uεx = εη′(Uε)Uεxx

⇒ η′(Uε)Uεt + q′(Uε)Uεx = εη′(Uε)Uεxx

⇒ η(Uε)t + q(Uε)x = εη(Uε)xx − εη′′(Uε)(Uεx)2.

Since η is a convex function, the second term on the right-hand side is nonpositive. Therefore, we obtain

(3.28) η(Uε)t + q(Uε)x 6 εη(Uε)xx.

Therefore, any vanishing viscosity solution U = limε→0 U
ε satisfies

(3.29) η(U)t + q(U)x 6 0.

As usual, this expression must be interpreted in the sense of distributions: For all test functions ϕ ∈
C1
c (R× [0,∞)) with ϕ > 0, U satisfies

(3.30)

∫
R+

∫
R
η(U(x, t))ϕt(x, t) + q(U(x, t))ϕx(x, t) dx dt+

∫
R
η(U0(x))ϕ(x, 0) dx > 0.

The function η is called an entropy function and the corresponding function q is called an entropy flux.
The pair (η, q) is called an entropy pair. The inequality (3.29) is referred to as the entropy condition,
and holds for every entropy pair (η, q). Note here that every convex function yields an entropy pair for a
scalar conservation law. This is in stark contrast to systems of conservation laws, where there is usually
only one entropy pair.

Definition 3.6. A function U ∈ L∞(R×R+) is an entropy solution of (3.4) if it satisfies the following
conditions:

(i) U is an weak solution of (3.4)
(ii) U satisfies (3.29) for all entropy pairs (η, q).

Any convex function η serves as an entropy function for a scalar conservation law. Of particular
importance are the so-called Kruzkhov entropy pairs:

(3.31) η = η(u, c) = |u− c|, q = q(u, c) = sign(u− c)(f(u)− f(c))

for constants c ∈ R. The function η(u, c) is clearly convex, and it is easy to check that (η, q) is an entropy
pair. We say that a function U satisfies the Kruzkov entropy condition if it satisfies

(3.32) |U − c|t +
(
sign(U − c)(f(U)− f(k))

)
x
6 0

30 3. SCALAR CONSERVATION LAWS

in the weak sense for all constants c ∈ R, i.e., if (3.30) holds with the pairs η = η(U, c), q = q(U, c). It is
straightforward to see that this guarantees that U is an entropy solution:

Lemma 3.7. A function U ∈ L∞(R × R+) is an entropy solution of (3.4) if and only if it satisfies the
Kruzkov entropy condition.

. By definition, any entropy solution satisfies the Kruzkov entropy condition, so we only need to prove
the opposite implication. Let a, b ∈ R be such that a 6 U(x, t) 6 b for almost every (x, t) ∈ R × R+.
Selecting c = a in (3.32) shows that

Ut + f(U)x 6 0

(in the sense of distributions), while selecting c = b gives the opposite inequality. This proves that U is
a weak solution.

It is straightforward to check that any convex function η(u) can be approximated by a linear combina-
tion of functions like η(u, k) for u ∈ [a, b]. More precisely, given δ > 0, there exist N ∈ N, c1, . . . , cN ∈ R,
α1, . . . , αN ∈ R+ and β ∈ R such that

∣∣η(u)− ηδ(u)
∣∣ 6 δ for all u ∈ [a, b], where ηδ(u) := β +

N∑
k=1

αk|u− ck|

Since the coefficients αk are positive, the function U satisfies the entropy condition (3.30) also for ηδ, and
by passing δ → 0, we obtain (3.30) for an arbitrary entropy function η. �

Just as with the Rankine–Hugoniot condition, which guarantees that a piecewise C1 function is a
weak solution, it is possible to simplify the entropy condition further:

Theorem 3.8. Let γ ∈ C1(R+), define s(t) = γ′(t) and let U ∈ L∞(R×R+) be a weak solution of (3.4)
which is of the form

U(x, t) =

{
U−(x, t) if x < γ(t)

U+(x, t) if x > γ(t)

where both U− and U+ are continuously differentiable functions. Then the following are equivalent:

(i) U is an entropy solution of (3.4), i.e. it satisfies the entropy condition (3.29) for all entropy
pairs (η, q)

(ii) At x = γ(t), U satisfies

(3.33) [[q(U)]]− s[[U]] 6 0

for every entropy pair (η, q)
(iii) For all numbers v between U− = U−(γ(t), t) and U+ = U+(γ(t), t),

(3.34)
f(v)− f(U−)

v − U−
> s >

f(v)− f(U+)

v − U+

(iv) If f is convex or concave, then at x = γ(t),

(3.35) f ′(U−) > s > f ′(U+).

Remark 3.9. The equivalence between (i) and (ii) is due to Eberhard Hopf [Hop69]. The condition in
(iii) is called Oleinik’s condition E and was used by Olga Oleinik in [Ole59] to prove uniqueness and
L1 stability of piecewise smooth solutions of scalar, one-dimensional conservation laws. It is an easy
exercise to check that (3.34) is equivalent to the following: The chord connecting the points (U−, f(U−))
and (U+, f(U+)) lies

• below the graph of f if U− < U+

• above the graph of f if U− > U+.

The condition in (iv) is the Lax entropy condition, due to Peter Lax [Lax57]. It has the physical
interpretation that characteristics can only move into, not out of, a shock.

Proof of Theorem 3.8. The equivalence between (i) and (ii) follows, mutatis mutandis, the proof of the
Rankine–Hugoniot condition (Theorem 3.4), and is left as an exercise to the reader.

3.3. ENTROPY SOLUTIONS 31

For the equivalence of (ii) and (iii) we apply the fundamental theorem of calculus to the quantities
[[η(U)]] and [[q(U)]] and integrate by parts:

[[η(U)]] =

∫ U+

U−
η′(v) dv = η′(v)(v − U−)

∣∣∣U+

v=U−
−
∫ U+

U−
η′′(v)(v − U−) dv

= η′(U+)[[U]]−
∫ U+

U−
η′′(v)(v − U−) dv

and

[[q(U)]] =

∫ U+

U−
η′(v)f ′(v) dv = η′(v)(f(v)− f(U−))

∣∣∣U+

v=U−
−
∫ U+

U−
η′′(v)(f(v)− f(U−)) dv

= η′(U+)[[f(U)]]−
∫ U+

U−
η′′(v)(f(v)− f(U−)) dv.

Hence,

[[q(U)]]− s[[η(U)]] = η′(U+)
(
[[f(U)]]− s[[U]]

)
+

∫ U+

U−
η′′(v)

(
s(v − U−)− (f(v)− f(U−))

)
dv.

The first term vanishes because of the Rankine-Hugoniot condition (3.16). If the remaining integral is to
be nonpositive for all convex entropies η, then we must have

s(v − U−)− (f(v)− f(U−)) 6 0

for all v between U− and U+, which using the Rankine-Hugoniot condition is precisely (3.34).
Finally, for the equivalence between (iii) and (iv) we assume that f is convex; the concave case follows

similarly. Then the left- and right-hand sides of (3.34) are monotone functions of v, so it suffices to check
(3.34) in the limits v → U− and v → U+, respectively. But taking these limits reduces (3.34) to (3.35),
so we are done. �

3.3.2. Stability estimates. The entropy inequality (3.29) can be used to obtain stability estimates
on solutions. To see this, we do the following formal computation: Integrate (3.29) in space and integrate
by parts to obtain

(3.36)
d

dt

∫
R
η(U) 6 0 ⇒

∫
R
η(U(x, t)) dx 6

∫
R
η(U0(x)) dx.

Since the function η may be any convex function, we can choose η(U) = U2 and obtain a bound on
entropy solutions in L2. This estimate is a nonlinear analogue of the energy estimate (2.6) for the linear
transport equation. Choosing η as η(U) = |U |p will lead to the Lp estimate ‖U(t)‖Lp(R) 6 ‖U0‖Lp(R) for
any p ∈ [1,∞). Taking the limit p→∞ yields the uniform bound ‖U(t)‖L∞(R) 6 ‖U0‖L∞(R).

The above Lp estimates give bounds on the amplitude of U , but we can also use the entropy condition
to derive bounds on the derivative. This will give a restriction on the amount of oscillations in U , and
will be important for the stability and convergence analysis of numerical schemes. Let g be a function
defined on an interval [a, b]. The total variation of g is defined as

(3.37) ‖g‖TV ([a,b]) = sup
P

N−1∑
j=1

|g(xj+1)− g(xj)|,

where the supremum is taken over all partitions P = {a = x1 < x2 < · · · < xN = b} of the interval [a, b].
It is straightforward to check that if g is differentiable, then

‖g‖TV ([a,b]) =

∫ b

a

∣∣∣∣dgdx
∣∣∣∣ dx.

The total variation is only a semi-norm, because the total variation of any constant function is zero. We
turn it into a norm by defining

(3.38) ‖g‖BV ([a,b]) = ‖g‖L1([a,b]) + ‖g‖TV ([a,b]).

We define the space of functions with bounded variation (BV) on R as

(3.39) BV (R) =
{
g ∈ L1(R) : ‖g‖BV (R) <∞

}
.

32 3. SCALAR CONSERVATION LAWS

We are now in a position to state the main well-posedness results for scalar conservation laws:

Theorem 3.10. Assume that f ∈ C1(R) and U0 ∈ L1(R) ∩ L∞(R). Then there exists a unique entropy
solution U of (3.4), and U satisfies the following:

• L1 bound:

(3.40) ‖U(·, t)‖L1 6 ‖U0‖L1

• L∞ bound:

(3.41) ‖U(·, t)‖L∞ 6 ‖U0‖L∞ ,

• TV bound: If ‖U0‖TV <∞ then

(3.42) ‖U(·, t)‖TV 6 ‖U0‖TV .

• Time continuity: If ‖U0‖TV <∞ then

(3.43) ‖U(t)− U(s)‖L1(R) 6 |t− s|M‖U0‖TV (R)

where

M = M(U0) := max
u6u6u

|f ′(u)|, u := ess inf
x∈R

U0(x), u := ess sup
x∈R

U0(x).

Furthermore, if U and V are the entropy solutions of (3.4) with initial U0 and V0, respectively, then the
following hold:

• L1 stability:

(3.44) ‖U(·, t)− V (·, t)‖L1(R) 6 ‖U0 − V0‖L1(R) for all t > 0.

• Local L1 stability: For any a < b,

(3.45)

∫ b

a

|U(x, t)− V (x, t)| dx 6
∫ b+Mt

a−Mt

|U0(x)− V0(x)| dx for all t > 0

where M = max(M(U0),M(V0)).
• Monotonicity: If U0(x) 6 V0(x) for all x ∈ R, then

(3.46) U(x, t) 6 V (x, t) ∀ x ∈ R.

Sketch of proof. The existence of entropy solutions follow from the vanishing viscosity approximation:
Let Uε be solutions of (3.26) for ε > 0. From the computations in Section 3.3.1, the vanishing viscosity
solution U = limε→0 U

ε satisfies the entropy condition (3.29). By the maximum principle for (3.26), we
have ‖Uε(t)‖L∞(R) 6 ‖U0‖L∞(R) for every t > 0 and ε > 0. Taking the limit ε→ 0, we conclude that the
vanishing viscosity solution U is an entropy solution which satisfies the L∞ bound (3.41).

Let U and V be entropy solutions of (3.4) with initial data U0 and V0. By Lemma 3.7, this is
equivalent to stating that the following inequalities hold (in the sense of distributions):

∂tη(U, c) + ∂xq(U, c) 6 0 ∀ c ∈ R
∂tη(d, V) + ∂xq(d, V) 6 0 ∀ d ∈ R

(3.47)

(here we have used the fact that η and q are symmetric in both variables; cf. (3.31)). We now compute
the time derivative of η(U, V) = |U − V |:

∂tη(U, V) = ∂tη(U, c)
∣∣
c=V

+ ∂tη(d, V)
∣∣
d=U

6 −∂xq(U, c)
∣∣
c=V
− ∂xq(d, V)

∣∣
d=U

= −∂xq(U, V),

where we have first used the chain rule, then (3.47) and then the chain rule again. Thus,

(3.48) ∂t|U − V |+ ∂xq(U, V) 6 0

holds in the sense of distributions. Now integrate this inequality over the trapezoid{
(x, t) : 0 6 t 6 T, a−M(T − t) 6 x 6 b+M(T − t)

}

3.4. SOLUTIONS TO THE RIEMANN PROBLEM FOR GENERAL f 33

for some a < b and T > 0. After applying the divergence theorem we get the inequality∫ b

a

|U − V |(x, t) dx−
∫ b+MT

a−Mt

|U0 − V0|(x)) dx

−
∫ T

0

(
q(U, V)−Mη(U, V)

)
(xL(t), t) +

(
q(U, V)−Mη(U, V)

)
(xR(t), t) dt 6 0

(3.49)

where xL(t) = a −M(T − t) and xR(t) = b + M(T − t). From the definition (3.31) of η and q, it is
straightforward to see that

q(U, V)−Mη(U, V) = |U − V |
(
q(U, V)

|U − V |
−M

)
6 0.

Applying this to (3.49) we conclude that (3.45) holds. Passing a→ −∞, b→∞ yields (3.44).
The L1 stability property (3.44) now implies the remaining properties. If we set U0 = V0 we find that

U(·, t) = V (·, t) for all times t > 0, and hence the entropy solution is unique (and so must correspond
to the vanishing viscosity solution). If V0 ≡ 0 then the corresponding entropy solution is V ≡ 0, which
yields (3.40). If V0(x) = U0(x + h) then V (x, t) = U(x + h, t) is the corresponding entropy solution, so
that (3.44) implies ∫

R
|U(x+ h, t)− U(x, t)| dx 6

∫
R
|U0(x+ h)− U0(x)| dx.

Dividing by h and passing h→ 0 yields (3.42).
To prove the monotonicity property (3.46), we observe that (3.44), together with the facts that∫

R U(x, t) dx =
∫
R U0(x) dx and

∫
R V (x, t) dx =

∫
R V0(x) dx, implies that∫

R

(
U(x, t)− V (x, t)

)+
dx 6

∫
R

(
U0(x)− V0(x)

)+
dx,

where a+ = max(a, 0) = |a|+a
2 . If U0 6 V0 then

(
U0(x) − V0(x)

)+ ≡ 0 for all x ∈ R, so
∫
R
(
U(x, t) −

V (x, t)
)+
dx = 0, whence (3.46) follows.

We will not prove the time continuity property (3.43) here. However, we will see in Section 4.5 that
it is straightforward to prove a discrete version of time continuity for monotone finite volume schemes.
The convergence of these schemes to the entropy solution then implies the same property for the entropy
solution. �

Remark 3.11. The above is admittedly only a formal proof, but it contains all of the essential features
of the full, rigorous proof. For a rigorous study of the viscous regularization (3.26) and its ε → 0 limit,
consult e.g. [HR15, Appendix B] or [GR91, Section II.2]. The rigorous proof of the essential estimate
(3.48) is based on the ingenious doubling of variables idea of Kruzkhov [Kru70], which is well-worth a
closer study for anyone interested in PDE techniques.

The stability bound (3.45) can be interpreted as follows: Information propagates at a finite speed,
which can be bounded by M = maxu |f ′(u)|. This is in contrast with e.g. parabolic PDEs, which have an
infinite speed of propagation.

3.4. Solutions to the Riemann problem for general f

Armed with Oleinik’s condition E (3.34) we can now tackle the Riemann problem when f ∈ C1(R)
is a general, not necessarily convex, function. Recall (see Remark 3.9) that Oleinik’s condition E can
equivalently be formulated as follows: The chord joining (UL, f(UL)) and (UR, f(UR)) must lie below the
graph of the function f between these points when UL < UR, and should lie above the graph if UL > UR.

We have the following recipe for constructing a weak solution for the Riemann problem (3.13) for the
conservation law (3.4), that satisfies Oleinik’s condition E. Without loss of generality, we may assume
that UL < UR. In order to satisfy Oleinik’s condition E, we have to consider the lower convex envelope fc
of f between UL and UR. The lower convex envelope of a function f is the largest convex function (largest
in the pointwise sense) that is everywhere smaller than or equal to f (see Figure 3.10). Analogously, the
upper concave envelope of f is the smallest concave function that is larger than or equal to f .

34 3. SCALAR CONSERVATION LAWS

U

f(U)

(Ur, f(Ur))

(Ul, f(Ul))

(a) Admissible

U

f(U)

(Ul, f(Ul))

(Ur, f(Ur))

(b) Inadmissible

Figure 3.9. Admissible and inadmissible shocks under Oleinik’s condition E.

(Ul, f(Ul)) (Ur, f(Ur))

U

f(U)

Figure 3.10. The solution of the Riemann problem with a non-convex flux. The lower
convex envelope is the thick red curve. Solutions are constructed as shocks, followed by
rarefactions.

The domain [UL, UR] is divided into two sets of regions, one in which fc = f and another with fc 6= f .
In the second region, fc is affine. The strategy for constructing an entropy solution is to join UL and UR
by rarefaction waves and shocks. Shocks are used in the affine region and rarefactions in the complement.
The solution of the Riemann problem is then (3.25) with f replaced by fc. An illustration is provided in
Figure 3.10.

(a) Solutions in x-t-plane (b) U(·, t)

Figure 3.11. Entropy solutions for the Riemann problem with a non-convex flux. Left:
Solutions in space-time. Right: A snapshot of the solution illustrating compound shocks.

When UL > UR, the upper concave envelope can be analogously used. Details of this construction
can be obtained from [GR91, Section II.6]. A wave consisting of rarefaction, followed immediately by a
shock (or vice versa) is termed a compound shock (see Figure 3.11).

3.5. SUMMARY 35

3.5. Summary

Summarizing the theoretical discussion of this section, we have the following results:

• Solutions of the conservation law (3.4) may develop discontinuities or shock waves, even for
smooth initial data. Consequently, weak solutions are sought. Shock speeds are computed with
the Rankine–Hugoniot condition (3.16).

• Weak solutions are not necessarily unique. Entropy conditions like Oleinik’s condition E have
to be imposed. Self-similar continuous solutions or rarefaction waves have to be considered.

• Explicit solutions for the Riemann problem (even for non-convex fluxes) can be constructed in
terms of shocks, rarefaction waves and compound shocks.

• Entropy solutions exist, are unique and are stable in L1 with respect to the initial data. Fur-
thermore, the entropy solutions satisfy an L∞ estimate, Lp estimates and are Total Variation
Diminishing (TVD)—that is, the total variation decreases in time.

CHAPTER 4

Finite volume schemes for scalar conservation laws

In this chapter we will design efficient schemes for the scalar conservation law

(4.1) Ut + f(U)x = 0.

The discussion on the linear transport equation

(4.2) Ut + aUx = 0

shows that central differences cannot be used to approximate the conservation law, even in the simplest
case of linear transport. For linear transport equations, the crucial step in designing an efficient scheme
was to upwind it by taking derivatives in the direction of information propagation. For a linear equation
with constant coefficients like (4.2), the direction of information propagation is given by the constant
velocity field. For a nonlinear conservation law like (4.1), the wave speeds depend on the solution itself
and can not be determined a priori. Thus, it is not clear how differences can be upwinded.

Another issue is the very nature of finite difference approximations like (2.16). The key idea under-
lying finite difference schemes is to replace the derivatives in equations like (4.1) with a finite difference.
This procedure requires the solutions to be smooth and the equation to be satisfied point-wise. However,
the solutions to the scalar conservation law (4.1) are not necessarily smooth and so the Taylor expansion
– essential for replacing derivatives with finite differences – is no longer valid. Hence, the finite difference
framework is not suited for approximating conservation laws. Instead, we need to develop a new paradigm
for designing numerical schemes for scalar conservation laws.

4.1. Finite volume scheme

The first step in any numerical approximation is to discretize the computational domain in both
space and time.

4.1.1. The grid. For simplicity, we consider a uniform discretization of the domain [xL, xR]. The
discrete points are denoted as xj = xL+(j+ 1/2)∆x for j = 0, . . . , N , where ∆x = xR−xL

N+1 . We also define
the midpoint values

xj−1/2 = xj −∆x/2 = xL + j∆x

for j = 0, . . . , N + 1. These values define computational cells or control volumes

Cj =
[
xj−1/2, xj+1/2

)
.

As we will see soon, the finite volume method uses the control volumes Cj instead of the mesh points xj .
We use a uniform discretization in time with time step ∆t. The time levels are denoted by tn = n∆t.
See Figure 4.1 for an illustration of the grid.

4.1.2. Cell averages. A finite difference method is based on approximating the point values of the
solution of a PDE. This approach is not suitable for conservation laws as the solutions are not continuous
and point values may not make sense. Instead, we change the perspective and use the cell averages

(4.3) Unj ≈
1

∆x

∫ xj+1/2

xj−1/2

U(x, tn) dx

at each time level tn as the main object of interest for our approximation.

37

38 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

Figure 4.1. A typical finite volume grid displaying cell averages and fluxes.

The cell average (4.3) is well defined for any integrable function, hence also for the solutions of the
conservation law (4.1). The aim of the finite volume method is to update the cell average of the unknown
at every time step, starting with

(4.4) U0
j =

1

∆x

∫ xj+1/2

xj−1/2

U0(x) dx.

4.1.3. Integral form of the conservation law. Assume that the cell averages Unj at some time

level tn are known. How do we obtain the cell averages Un+1
j at the next time level tn+1? A finite volume

method computes the cell average at the next time level by integrating the conservation law (4.1) over
the domain [xj−1/2, xj+1/2)× [tn, tn+1). This gives∫ tn+1

tn

∫ xj+1/2

xj−1/2

Ut dxdt+

∫ tn+1

tn

∫ xj+1/2

xj−1/2

f(U)x dxdt = 0.

Using the fundamental theorem of calculus gives∫ xj+1/2

xj−1/2

U
(
x, tn+1

)
dx−

∫ xj+1/2

xj−1/2

U
(
x, tn

)
dx

= −
∫ tn+1

tn
f
(
U(xj+1/2, t)

)
dt+

∫ tn+1

tn
f
(
U(xj−1/2, t)

)
dt.

(4.5)

Defining

(4.6) F̄nj+1/2 =
1

∆t

∫ tn+1

tn
f
(
U(xj+1/2, t

)
dt

and dividing both sides of (4.5) by ∆x, we obtain

(4.7) Un+1
j = Unj −

∆t

∆x

(
F̄nj+1/2 − F̄

n
j−1/2

)
.

Equation (4.7) is a statement of conservation: The change of the cell average is given by the difference
in fluxes across the boundary of the cell. See Figure 4.1 for an illustration. Note that the relation (4.7)
is not explicit as F̄ need a priori knowledge of the exact solution. The main ingredient in a finite volume
scheme is a clever procedure to approximate these fluxes.

4.1.4. Godunov method. Godunov [God59] came up with an ingenious idea for approximating
the numerical fluxes in (4.7). We wish to approximate

F̄nj+1/2 =
1

∆t

∫ tn+1

tn
f
(
U(xj+1/2, t)

)
dt

4.1. FINITE VOLUME SCHEME 39

Figure 4.2. Cell averages define Riemann problems at every interface.

at each interface xj+1/2. As the cell averages Unj are constant in each cell Cj at each time level, Godunov
observed that they define at each cell interface xi+1/2 a Riemann problem

(4.8)


Ut + f(U)x = 0

U(x, tn) =

{
Unj if x < xj+1/2

Unj+1 if x > xj+1/2.

Thus at every time level, the cell averages define a superposition of Riemann problems of the form (4.8)
at each interface (see Figure 4.2). In the previous chapter, we have solved Riemann problems like (4.8)
explicitly. The solution consists of shock waves, rarefactions and compound waves. Hence, the Riemann
problem at every time level can be solved explicitly in terms of waves, emanating from each interface
(Figure 4.3). Furthermore, the solution of each Riemann problem in (4.8) is self-similar, that is, the

solution Ūj(x, t) of (4.8) can be written as a function Ū(ξ) of a single variable ξ =
x−xj+1/2

t−tn ,

(4.9) Ūj(x, t) = Ūj

(
x− xj+1/2

t− tn

)
.

Waves from neighboring Riemann problems can intersect after some time (Figure 4.3(a)). However,
each wave has a finite speed of propagation and the maximum wave speed of any Riemann problem is
bounded by

max
j
|f ′(Unj)|

(see Chapter 3). Hence, imposing the CFL condition

(4.10) max
j
|f ′(Unj)|∆t

∆x
6

1

2

ensures that waves from neighboring problems do not interact before reaching the next time level (see
Figure 4.3(b))1 . Assume now that this condition is satisfied. By (4.9), the solution is constant when ξ is
constant, so in particular, at the cell interface ξ = 0, the flux across the interface is given by the constant
value

f
(
U(xj+1/2, t)

)
= f

(
Ūj(0)

)
.

At ξ = 0 (corresponding to the curve x = xj+1/2 ∀ t > tn), the function Ūj(ξ) is either continuous or

discontinuous. If Ūj is continuous at ξ = 0, we obviously have

(4.11) f
(
Ūj(0+)

)
= f

(
Ūj(0−)

)
.

On the other hand, if Ūj is discontinuous at ξ = 0, then we have a discontinuity along the line x = xj+1/2

for all t > tn, in other words, a stationary shock located at the cell interface. Since the discontinuity
must satisfy the Rankine–Hugoniot condition (3.16), we have

f
(
Ūj(0+)

)
− f

(
Ūj(0−)

)
= 0 ·

(
Ūj(0+)− Ūj(0−)

)
= 0,

1In fact, we can use the less strict requirement maxj |f ′(Un
j)| ∆t

∆x
6 1, but to keep some arguments simple, we stick to

the strict version.

40 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

X j −1/2
X j + 1 / 2

tn

tn+1

(a) Interacting Riemann waves.

X j −1/2
X j + 1 / 2

tn

tn+1

(b) Non-interacting waves.

Figure 4.3. Left: Waves of Riemann problems from neighboring interface can interact
after some time. Right: The waves can be prevented from interacting before time ∆t by
the CFL condition (4.10)

and so (4.11) holds also in this case. Hence, the term f(Ūj(0)) is well-defined, and we may define the
edge-centered flux value

(4.12) Fnj+1/2 := f
(
Ūj(0+)

)
= f

(
Ūj(0−)

)
.

In conclusion, the approximate flux in (4.6) is constant in time and can be explicitly computed as

(4.13) F̄nj+1/2 =
1

∆t

∫ tn+1

tn
f
(
U(xj+1/2, t)

)
dt = Fnj+1/2,

with Fnj+1/2 being the Riemann flux (4.12). Substituting (4.13) in (4.7) leads to the finite volume scheme

(4.14) Un+1
j = Unj −

∆t

∆x

(
Fnj+1/2 − F

n
j−1/2

)
.

The form (4.14) is the standard form of a finite volume scheme for conservation laws. The numerical flux
F is given in terms of the Riemann solution and can be explicitly computed for scalar conservation laws.

4.1.5. Godunov flux. It turns out that we can compute explicit formulas for the numerical flux in
(4.14). To this end, we need to obtain the value of the flux of the Riemann problem (4.8) at the interface
xj+1/2. A lengthy computation based on a case by case analysis leads to the formula

(4.15) Fnj+1/2 = F
(
Unj , U

n
j+1

)
=


min

Unj 6θ6Unj+1

f(θ) if Unj 6 U
n
j+1

max
Unj+16θ6U

n
j

f(θ) if Unj > Unj+1.

This formula is valid also for non-convex flux functions. The Godunov scheme is (4.14) with the Godunov
flux (4.15).

Exercise 4.1. Computing the flux (4.15) can be complicated, since an optimization problem has to be
solved. Show that in the special case where the flux function f has a single minimum at the point ω and
no local maxima, the formula (4.15) can be simplified to

(4.16) Fnj+1/2 = F (Unj , U
n
j+1) = max

(
f
(
max

(
Unj , ω

))
, f
(
min

(
Unj+1, ω

)))
.

Note that strictly convex functions have this property. The formulas for the case of a flux with a single
maximum and no minima are obtained analogously.

Exercise 4.2. Show that for the linear transport equation (4.2), the Godunov scheme (4.14), (4.15) is
identical to the standard upwind scheme (2.16). Thus, the Godunov scheme can be viewed as a general-
ization of the upwind scheme to nonlinear scalar conservation laws.

4.1. FINITE VOLUME SCHEME 41

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Exact
Godunov

(a) Initial data (4.17) at time t = 1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Godunov

(b) Initial data (4.18) at time t = 0.5.

Figure 4.4. Approximate solution for Burgers equation with the Godunov scheme with
50 mesh points. [burgers disc.m]

4.1.6. Numerical experiments. Consider Burgers’ equation (3.3) with Riemann data

(4.17) U(x, 0) =

{
1 if x < 0

0 if x > 0.

In this case, the exact solution is given by a single shock connecting 1 and 0, traveling at speed of 1/2
(see Chapter 3). Numerical solutions with the Godunov scheme (4.14), (4.15) with 50 mesh points are
plotted in Figure 4.4 (a). The results show that the solution is approximated very well, with the shock
being resolved sharply. The numerical solutions do not oscillate or show any anomalies or instabilities.

Next, we test Burgers’ equation with initial data

(4.18) U(x, 0) =

{
−1 if x < 0

1 if x > 0.

The exact solution in this case is given by a rarefaction wave (3.25). The approximate solutions using the
Godunov scheme are plotted in Figure 4.4 (b). Again the results demonstrate that the Godunov scheme
is stable and robust.

As a final test case, we consider Burgers’ equation with initial data

(4.19) U(x, 0) = sin(4πx) for − 1 6 x 6 1.

The initial data is a sine wave and it is much more difficult to write down an explicit formula for the
solution. Instead, we compute this configuration with the Godunov scheme using periodic boundary
conditions. The results are shown in Figure 4.5. A reference solution computed on a very fine mesh (5000
points) is also shown for the sake of comparison. The behavior of the solution is quite complicated. The
initial sine wave compresses in some parts and expands in some other parts, leading to a combination
of shocks and rarefactions. The solution finally decays into a so-called N-wave. The Godunov scheme
provides a good approximation to this complicated solution.

4.1.7. Beyond the Godunov Scheme. The Godunov scheme (4.14), (4.15) has many desirable
properties as demonstrated by numerical experiments. However, it does present a few problems:

• It relies on the availability of an explicit formula for the solutions of the Riemann problem. In
the case of scalar conservation law (4.1), we are lucky to have such formulas at hand. However,
more complicated systems of conservation laws may not yield such formulas.
• The only information needed in the numerical flux (4.12) is the value of the flux at the interface.

Solving the entire Riemann problem for the sake of this value seems unnecessary.

42 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

−1 −0.5 0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

Exact
Godunov

Figure 4.5. Approximate solution for Burgers’ equation with the Godunov scheme at
time t = 0.5 with 50 mesh points with initial data (4.19). [burgers godunov sine.m]

• At the level of implementation, the formula (4.16) provides a simple characterization of the
Godunov flux for a large class of flux functions. However, more complicated flux functions with
a large number of extremal points need the solution of an optimization problem. Such a problem
might be very computationally costly.

These factors encourage the search for alternative numerical fluxes in (4.14).

4.2. Approximate Riemann Solvers

Since we are interested in approximating the solutions of the conservation law (4.1), it seems rea-
sonable to replace the exact solutions of the Riemann problem (4.8) (used in the Godunov scheme) with
approximate solutions. These approximate solutions can then be used to define the numerical flux F as in
(4.13). Such schemes which replace the exact solutions of the Riemann problem (4.8) with approximations
called approximate Riemann solvers. We present some of them below.

4.2.1. Linearized (Roe) solvers. Our aim is to approximate the solutions of the Riemann problem
(4.8). A common method for solving nonlinear equations is to linearize them. Linearization entails
replacing the nonlinear flux function in (4.1) with a locally linearized version,

(4.20) f(U)x = f ′(U)Ux ≈ Âj+1/2Ux,

where Â ≈ f ′ is a constant state around which the nonlinear flux function is linearized. There are many
possible candidates for the linearizing state, one simple choice being

Âj+1/2 = f ′
(
Unj + Unj+1

2

)
,

the flux of the arithmetic average of the two constant states. We will use a more sophisticated Roe
average:

(4.21) Âj+1/2 =

{
f(Unj+1)−f(Unj)

Unj+1−Unj
if Unj+1 6= Unj

f ′(Unj) if Unj+1 = Unj .

Note that the Roe average also represents a linear approximation of f ′. The numerical flux F is obtained
by replacing the Riemann problem (4.8) with a linearized Riemann problem,

(4.22)


Ut + Âj+1/2Ux = 0

U(x, tn) =

{
Unj if x < xj+1/2

Unj+1 if x > xj+1/2.

This Riemann problem is very simple to solve as it involves a linear transport equation with a constant
velocity field. Solving it explicitly we obtain the formula

(4.23) Fnj+1/2 = FRoe
(
Unj , U

n
j+1

)
=

{
f(Unj) if Âj+1/2 > 0

f(Unj+1) if Âj+1/2 < 0.

4.2. APPROXIMATE RIEMANN SOLVERS 43

The finite volume scheme (4.14) with the Roe flux (4.23) is termed the Roe or Murman-Roe scheme. It
is simpler to implement when compared to the Godunov scheme as no optimization problem needs to be
solved.

Numerical results with the Roe scheme for Burgers’ equation with Riemann data (4.17) are shown
in Figure 4.6(a). They show that the Roe scheme approximates the shock as accurately as the Godunov
scheme.

Figure 4.6 (b) shows numerical results for the Riemann data (4.18). In this case, the Roe scheme fails
completely and approximates the wrong stationary shock solution. The same stationary solution persists
even when the mesh is refined. Thus, the Roe scheme leads to numerical artifacts for some problems.
This failure will be analyzed in detail in the sequel.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Exact
Roe

(a) Shock solution with initial data (4.17) at t = 1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Roe

(b) Rarefaction wave solution initial data (4.18) at t =

0.5.

Figure 4.6. Approximate solutions for Burgers equation with the Roe scheme with 50
mesh points. [burgers disc.m]

4.2.2. Central schemes. The Roe scheme fails at resolving rarefactions. Due to linearization, the
solution of the approximate Riemann problem (4.22) only consists of a single wave that travels to the

right or to the left, depending on the sign of the Roe average Â. When the exact solutions of Riemann
problems for the conservation law consists of shocks, then the solution is a single, either left- or right-
going, wave. However, the situation with rarefactions is very different. The rarefaction wave that solves
(4.18) can travel in both directions (see Figure 4.7). As we have seen, the Roe scheme may be unable to
capture such behavior.

U
n
j

U
n
j + 1

U*
j + 1/2

s l
j + 1/2

s r
j + 1/2

f *
j + 1/2

Figure 4.7. An approximate Riemann solver with bi-directional waves.

Instead of linearizing the conservation law, we approximate the solutions of the Riemann problem by
replacing the exact solution with two waves, one traveling to the left of the interface with speed slj+1/2

and another to the right with speed srj+1/2 (see Figure 4.7). The speeds will be specified later on.

44 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

We approximate the solution of (4.8) with

(4.24) U(x, t) =


Unj if x < slj+1/2t

U∗j+1/2 if slj+1/2t < x < srj+1/2t

Unj+1 if x > srj+1/2t.

Thus, the exact solution is replaced by two waves separated by a middle state. The middle state can be
determined by local conservation using the Rankine–Hugoniot conditions (3.16):

(4.25)
f(Unj+1)− f∗j+1/2 = srj+1/2

(
Unj+1 − U∗j+1/2

)
,

f(Unj)− f∗j+1/2 = slj+1/2

(
Unj − U∗j+1/2

)
,

where f∗j+1/2 is the intermediate flux (see Figure 4.7). Observe that we require f∗ to be an independent

variable. Thus, (4.25) represents a system of two linear equations for two unknowns that can be solved
exactly to obtain

(4.26) f∗j+1/2 =
srj+1/2f

(
Unj
)
− slj+1/2f

(
Unj+1

)
+ srj+1/2s

l
j+1/2

(
Unj+1 − Unj

)
srj+1/2 − s

l
j+1/2

.

In particular, if we choose the speeds to be equal but of opposite sign, so sr = −sl = s, then (4.26)
reduces to

(4.27) f∗j+1/2 =
f(Unj) + f(Unj+1)

2
−
sj+1/2

2

(
Unj+1 − Unj

)
.

In either case, the numerical flux is given by

(4.28) Fnj+1/2 = F
(
Unj , U

n
j+1

)
= f∗j+1/2.

We have yet to specify the local wave speeds sl, sr. Different choices of the speeds lead to different
schemes; presently we describe three of the most important ones.

4.2.3. Lax–Friedrichs scheme. To ensure that waves from neighboring Riemann problems (4.24)
do not interact, the maximum allowed wave speeds are

(4.29) slj+1/2 = −∆x

∆t
, srj+1/2 =

∆x

∆t
.

These wave speeds substituted in (4.27) lead to the Lax–Friedrichs flux

(4.30) Fnj+1/2 = FLxF
(
Unj , U

n
j+1

)
=
f(Unj) + f(Unj+1)

2
− ∆x

2∆t

(
Unj+1 − Unj

)
.

The Lax–Friedrichs scheme (4.14), (4.30) is very simple to implement. Numerical results for Burgers’
equation with initial data (4.17) and (4.18) are shown in Figure 4.8 (compare to figure 4.4). The results
show that the approximate solutions are stable and nonoscillatory and approximate the entropy solution,
unlike the Roe scheme. However, the computed solutions are diffusive. The shocks are smeared to a
considerable extent. The numerical results are inferior to those obtained with the Godunov scheme.

4.2.4. Rusanov scheme (1961). The Lax–Friedrichs scheme was quite diffusive around shocks. A
possible explanation lies in the choice of the wave speeds (4.29). These speeds were the maximum allowed
speeds and did not take into the account the speeds of propagation of the problem under consideration.
A better, locally selected, choice of speeds is given by

(4.31) srj+1/2 = sj+1/2, slj+1/2 = −sj+1/2,

where

sj+1/2 = max
(
|f ′(Unj)|, |f ′(Unj+1)|

)
.

The resulting flux (4.27), called the Rusanov (or Local Lax–Friedrichs) flux, is given by

Fnj+1/2 = FRus
(
Unj , U

n
j+1

)
=
f(Unj) + f(Unj+1)

2
−

max
(
|f ′(Unj)|, |f ′(Unj+1)|

)
2

(
Unj+1 − Unj

)
.

(4.32)

4.2. APPROXIMATE RIEMANN SOLVERS 45

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Exact
Lax−Friedrichs

(a) Shock solution with initial data (4.17) at t = 1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Lax−Friedrichs

(b) Rarefaction wave solution with initial data (4.18) at
t = 0.5.

Figure 4.8. Approximate solution for Burgers’ equation with the Lax–Friedrichs scheme
with 50 mesh points. [burgers disc.m]

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Exact
Rusanov

(a) Shock solution with initial data (4.17) at t = 1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Rusanov

(b) Rarefaction wave solution with initial data (4.18) at

t = 0.5.

Figure 4.9. Approximate solution for Burgers’ equation with the Rusanov scheme using
50 mesh points. [burgers disc.m]

The Rusanov scheme (4.14), (4.32) leads to a considerable improvement in results over the Lax–Friedrichs
scheme, as shown in Figure 4.9.

4.2.5. Engquist–Osher scheme. A related scheme is the Engquist–Osher scheme, which has flux

Fnj+1/2 = FEO
(
Unj , U

n
j+1

)
=
f(Unj) + f(Unj+1)

2
− 1

2

∫ Unj+1

Unj

|f ′(θ)| dθ.
(4.33)

Although it is difficult to write the Engquist–Osher flux as an approximate Riemann solver, it shares
several features of approximate Riemann solvers. When the flux function has a single minimum at a
point ω and no maxima (which is the case for most convex functions), the Engquist–Osher flux can be

46 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Exact
Engquist−Osher

(a) Shock solution with initial data (4.17) at t = 1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Engquist−Osher

(b) Rarefaction wave solution with initial data (4.18) at
t = 0.5.

Figure 4.10. Approximate solution for Burgers’ equation with the Engquist–Osher
scheme using 50 mesh points. [burgers disc.m]

explicitly computed as

(4.34) FEO
(
Unj , U

n
j+1

)
= f

(
max

(
Unj , ω

))
+ f

(
min

(
Unj+1, ω

))
− f(ω).

For convex fluxes with minimum at ω, we denote

(4.35) f+(U) = f
(
max (U, ω)

)
, f−(U) = f

(
min (U, ω)

)
,

as the positive (increasing) and negative (decreasing) parts of f . As only the flux difference appear in
(4.14), we can neglect the constant term f(ω) in (4.34) and rewrite the Engquist–Osher scheme for convex
fluxes as

(4.36) FEO
(
Unj , U

n
j+1

)
= f+

(
Unj
)

+ f−
(
Unj+1

)
.

Hence, the Engquist–Osher scheme is a flux splitting scheme, as it separates the flux into its positive and
negative parts and takes the direction of propagation into account.

Exercise 4.3. Prove that the Engquist–Osher flux (4.33) can be written as (4.34) when the flux function
has a single minimum at a point ω.

4.3. Comparison of different finite volume schemes

We compare all the numerical fluxes presented in this section for two sets of initial data. First,
we consider the initial data (4.17) and compare the different numerical fluxes for a mesh consisting of
50 mesh points in Figure 4.11. The results show that the Godunov, Roe and Engquist–Osher schemes
agree in this case. In fact, simple calculations show that in this case these three fluxes are equivalent.
The Godunov scheme is clearly more accurate than the Rusanov scheme. The Lax–Friedrichs scheme
leads to the largest amount of error as it smears the shock wave. We perform a convergence study of the
schemes and present the results in Figure 4.12 (a). The solutions for initial data (4.17) are computed on a
sequence of meshes and the error (with respect to the exact solution) in L1 is computed and plotted with
respect to the number of mesh points (decreasing mesh sizes). The plot indicates that all the schemes
converge as the mesh is refined. The convergence for the Godunov scheme is faster than the Rusanov
and Lax–Friedrichs schemes, although the rate of convergence is similar for all the schemes. The results
clearly show that the Godunov scheme is superior to the Rusanov and Lax–Friedrichs scheme. However,
we must consider the fact that both the Lax–Friedrichs and Rusanov schemes have faster run times than
the Godunov scheme. Hence, a fair comparison requires us to plot the computational efficiency. To do
so, we compute with all the schemes on a sequence of meshes and plot the L1 error with respect to the
runtime for each scheme in Figure 4.12 (b). The figure shows the obvious: Decreasing the mesh size

4.3. COMPARISON OF DIFFERENT FINITE VOLUME SCHEMES 47

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Exact
Godunov
Roe
Lax−Friedrichs
Rusanov
Engquist−Osher

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact
Godunov
Roe
Lax−Friedrichs
Rusanov
Engquist−Osher

Figure 4.11. Approximate solution for Burgers’ equation with the Godunov, Lax–
Friedrichs, Rusanov, Roe and Engquist–Osher schemes at time t = 1.5 with 50 mesh
points for initial data (4.17). [burgers disc.m]

10
2

10
3

10
−3

10
−2

10
−1

nx

L1 e
rr

or

Godunov
Roe
Lax−Friedrichs
Rusanov
Engquist−Osher

(a) L1 error vs. number of mesh points

10
−1

10
0

10
−3

10
−2

10
−1

Runtime (s)

L1 e
rr

or

Godunov
Roe
Lax−Friedrichs
Rusanov
Engquist−Osher

(b) L1 error vs. runtime

10
2

10
3

10
−2

10
−1

nx

L1 e
rr

or

Godunov
Roe
Lax−Friedrichs
Rusanov
Engquist−Osher

(c) L1 error vs. number of mesh points

10
−1

10
0

10
−2

10
−1

Runtime (s)

L1 e
rr

or

Godunov
Roe
Lax−Friedrichs
Rusanov
Engquist−Osher

(d) L1 error vs. runtime

Figure 4.12. Convergence study for Burgers’ equation with the Godunov, Lax–
Friedrichs, Rusanov, Roe and Engquist–Osher schemes. Top row: initial data (4.17);
bottom row: initial data (4.18). [burgers disc error.m]

48 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

gives more accurate approximations, but also leads to a higher run-time. The Enquist–Osher scheme
turns out to be the most efficient in this case, at least for coarser meshes. We recall that the Godunov,
Engquist–Osher and Roe schemes give the same numerical approximation on this problem. However,
their run times are different. We point out that the schemes agree in terms of runtimes for highly refined
meshes. Despite being the fastest on a given mesh, the Lax–Friedrichs continues to be the most inefficient
scheme in this example.

Next, we repeat the experiments with the rarefaction initial data (4.18). The error vs. number of mesh
points and error vs. run time is plotted in Figure 4.12 (c) and (d), respectively. The figures show that the
Roe scheme does not converge in this case to the entropy solution. The Godunov and Engquist–Osher
schemes are equivalent and lead to smaller errors than the Rusanov scheme, at least for coarse meshes.
The Lax–Friedrichs scheme leads to the largest errors among the converging schemes. The computational
efficiency plot shows that the Rusanov scheme is the most efficient in this case. Thus, the optimal scheme
is a problem dependent concept.

4.4. Consistent, conservative and monotone schemes

The numerical results (particularly convergence results, Figures 4.12) show that most of the schemes
of the previous section converge to the entropy solution of the scalar conservation law (4.1). However, the
Roe scheme (4.23) may not converge to the entropy solution in some cases. It is easy to design schemes
that lead to incorrect or unstable solutions. One example is the scheme with the flux function

(4.37) Fnj+1/2 = FCen
(
Unj , U

n
j+1

)
=
f(Unj) + f(Unj+1)

2
.

This flux gives the standard central difference scheme for the conservation law (4.1). As shown before, it
ends up being unconditionally unstable, even for linear equations. Another possible flux is the one-sided
flux

(4.38) Fnj+1/2 = F (Unj , U
n
j+1) = f(Unj).

If we consider Burgers’ equation with initial data (4.17), then the one-sided scheme (4.38) reduces to
the Godunov scheme and will provide a good approximation of the solution. However, with initial data
(4.18), the scheme (4.38) reduces to the Roe scheme and provides an incorrect approximation.

The above examples show that certain fluxes are stable whereas others are unstable. Furthermore,
some fluxes converge to the correct entropy solutions whereas others converge to wrong solutions. The
natural question is what the criteria are for the schemes to be stable and to converge to the entropy
solutions of the scalar conservation law (4.1). We provide answers in this and the following sections.

First, we will identify certain features of the schemes presented so far.

4.4.1. Conservative schemes. A numerical scheme for approximating (4.1) can be written in the
generic form

(4.39) Un+1
j = H

(
Unj−p, . . . , U

n
j+p

)
for some update function H and constant p ∈ N. The update function H depends on 2p+ 1 points. This
set of points

{
Unj−p, . . . , U

n
j+p

}
is called the stencil of the scheme. All the schemes presented so far have

p = 1 and are three-point schemes. More general (2p+ 1)-point schemes will be presented in the sequel.

Definition 4.4 (Conservative scheme). Ignoring boundary conditions, a numerical scheme of generic
form (4.39) approximating (4.1) is conservative if it satisfies

(4.40)
∑
j

Un+1
j =

∑
j

Unj for all n.

Conservation is a natural requirement from a scheme as the solutions to the continuous problem (4.1)
are conservative, in the sense that the integral of the solution is preserved over time.

Theorem 4.5. Assume that H(0, . . . , 0) = 0. Then (4.39) is conservative if and only if there exists a
function Fnj+1/2 = F (Unj−p+1, . . . , U

n
j+p) such that (4.39) can be written in the finite volume form (4.14).

4.4. CONSISTENT, CONSERVATIVE AND MONOTONE SCHEMES 49

. Necessity is straightforward: if (4.39) can be written as (4.14), then∑
j

Un+1
j =

∑
j

Unj −
∆t

∆x

∑
j

(
Fnj+1/2 − F

n
j−1/2

)
=
∑
j

Unj ,

since the second sum is a telescoping sum.
For sufficiency, define

G(U−p, . . . , Up) :=
∆x

∆t
(U0 −H(U−p, . . . , Up))

(we drop the time dependence for the moment). By conservation, we have∑
j

G(Uj−p, . . . , Uj+p) = 0.

We want to show that there is an Fj+1/2 = F (Uj−p+1, Uj+p) such that

(4.41) Fj+1/2 − Fj−1/2 = G(Uj−p, . . . , Uj+p).

If will suffice to construct Fj+1/2 for j = 0. Since the assumption holds for any sequence, select first Uj
such that Uj = 0 whenever j 6 −p or j > p. Then

0 =
∑
j

G(Uj−p, . . . , Uj+p)

= G(0, . . . , 0, U−p+1) + · · ·+G(0, U−p+1, . . . , Up)

+G(U−p+1, . . . , Up, 0) + · · ·+G(Up, 0, . . . , 0)

= F1/2 +B

where we have defined F1/2 := G(0, . . . , 0, U−p+1)+· · ·+G(0, U−p+1, . . . , Up) andB := G(U−p+1, . . . , Up, 0)+
· · ·+G(Up, 0, . . . , 0). Next, select Uj such that Uj = 0 whenever j < −p or j > p. Then

0 =
∑
j

G(Uj−p, . . . , Uj+p)

= G(0, . . . , 0, U−p) + · · ·+G(0, U−p, . . . , Up−1) +G(U−p, . . . , Up)

+G(U−p+1, . . . , Up, 0) + · · ·+G(Up, 0, . . . , 0)

= F−1/2 +G(U−p, . . . , Up) +B.

Subtracting these two identities, we get the desired identity (4.41). �

The definition of conservation needs to be modified when boundaries are included in the discussion.

4.4.2. Consistent schemes. Another crucial requirement is consistency. Let some (2p + 1)-point
scheme (4.39) be given with numerical flux

(4.42) Fnj+1/2 = F (Unj−p+1, . . . , U
n
j+p).

Definition 4.6 (Consistency). A finite volume scheme (4.14) with numerical flux function (4.42) is
consistent if

(4.43) F (U, . . . , U) = f(U) for all U ∈ R.

It is straightforward to check that all the two-point numerical flux functions presented so far are
consistent. Consistency is a natural requirement to ensure that the scheme approximates the correct
conservation law.

Conservation and consistency are shared by all the schemes discussed until now. However, these
criteria do not ensure either stability or convergence; for instance, the central scheme (4.37) is both
consistent and conservative, but fails to be stable. Similarly, the Roe scheme (4.23) is consistent and
conservative, but does not converge to the entropy solution in certain numerical experiments. We need
another criterion.

50 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

4.4.3. Monotone schemes. Recall from Theorem 3.10 that the conservation law (4.1) is mono-
tonicity preserving, meaning that if U and V are entropy solutions of (4.1) with initial data U0 and V0,
respectively, then

U0(x) 6 V0(x) for all x ⇒ U(x, t) 6 V (x, t) for all x, t.

It is desirable for numerical schemes to posses this property. At the discrete level, it is defined by the
following.

Definition 4.7. A numerical scheme (4.39) is monotone if the update function H is non-decreasing in
each of its arguments.

If (4.39) can be written in the finite volume form (4.14) with a two-point flux function (so p = 1 in
(4.42)), then a sufficient condition for monotonicity is given by

Lemma 4.8. Consider the finite volume scheme (4.14) with a locally Lipschitz continuous two-point flux
F = F (a, b). Then the method (4.14) is monotone if and only if

(4.44)
a 7→ F (a, b) is non-decreasing for fixed b,

b 7→ F (a, b) is non-increasing for fixed a,

and the following CFL-type condition holds:

(4.45)

∣∣∣∣∂F∂a (v, w)

∣∣∣∣+

∣∣∣∣∂F∂b (u, v)

∣∣∣∣ 6 ∆x

∆t
∀ u, v, w.

The proof of this lemma is left as an exercise to the reader.

4.4.4. Examples of monotone schemes. Assume that the flux function f in (4.1) is a differen-
tiable function. Then the following schemes are monotone:

• The Lax–Friedrichs scheme (4.30) has a smooth C1 numerical flux function. Explicit computa-
tions result in

∂F

∂a
=

1

2

(
f ′(a) +

∆x

∆t

)
∂F

∂b
=

1

2

(
f ′(b)− ∆x

∆t

)
.

The condition (4.45) then follows from the CFL condition (4.10).
• The Rusanov scheme (4.32) is monotone. The proof follows as above.
• The Engquist–Osher scheme (4.33) has a smooth numerical flux. A direct calculation shows

that

∂F

∂a
=

1

2
(f ′(a) + |f ′(a)|)

∂F

∂a
=

1

2
(f ′(b)− |f ′(b)|) .

Furthermore, the CFL condition (4.45) is a consequence of (4.10). Hence, the Engquist–Osher
scheme is monotone.
• The Godunov scheme (4.15) has a Lipschitz continuous flux function and is monotone. If e.g.
Uj 6 Uj+1 then increasing Uj will shrink the interval over which the minimum in (4.15) is taken,
while increasing Uj+1 will expand it.

On the other hand, it is easy to check that the central flux (4.37), the one-sided flux (4.38) and the Roe
flux (4.23) are not monotone. Thus, monotonicity of the scheme provides a demarcation between robust
and potentially non-robust schemes.

4.5. STABILITY PROPERTIES OF MONOTONE SCHEMES 51

4.5. Stability properties of monotone schemes

The numerical experiments indicate that monotone schemes are stable and converge to the entropy
solution, whereas the non-monotone schemes may be unstable or may converge to the incorrect solution.
A crucial step in proving convergence is to obtain stability estimates on the approximate solutions,
computed by the schemes.

From our study of the continuous problem in the previous section, the entropy solutions of the
continuous problem (4.1) satisfy the following stability estimates:

(i) L∞ estimate (3.41) as a consequence of a maximum principle
(ii) Lp estimates (3.30) for 1 6 p <∞ as a consequence of the entropy inequality (3.29)

(iii) The TV estimate (3.42) showing that the solutions are TVD
(iv) The time continuity estimate (3.43).

The central philosophy of numerical analysis is to devise numerical schemes that preserve stability prop-
erties of the underlying continuous problem. Hence, it is natural to examine whether the finite volume
schemes presented in this section satisfy discrete versions of the above stability estimates.

4.5.1. L∞ bounds. A consistent three point finite volume scheme (4.14) can be written as

(4.46) Un+1
j = H(Unj−1, U

n
j , U

n
j+1),

with the consistency of the fluxes F in (4.14) implying that

H(U,U, U) = U.

The scheme (4.46) is monotone if H is non-decreasing in each of its three arguments. The Godunov,
Engquist–Osher, Lax–Friedrichs and Rusanov schemes (under a CFL condition like (4.10)) are examples
of three-point monotone schemes. These schemes satisfy the following discrete maximum principle.

Lemma 4.9. Let Unj be the approximate solutions generated by a three-point consistent monotone scheme
of the form (4.46). Then the solutions satisfy

(4.47) min
(
Unj−1, U

n
j , U

n
j+1

)
6 Un+1

j 6 max
(
Unj−1, U

n
j , U

n
j+1

)
for all n, j.

In particular, we have

(4.48) min
i
U0
i 6 U

n
j 6 max

i
U0
i for all n, j.

. Let Ūnj = max
(
Unj−1, U

n
j , U

n
j+1

)
. By definition,

Unj−1, U
n
j , U

n
j+1 6 Ū

n
j .

Since the scheme (4.46) is monotone, the update function H is monotone non-decreasing in each of its
arguments. Therefore

Un+1
j = H(Unj−1, U

n
j , U

n
j+1) 6 H(Ūnj , U

n
j , U

n
j+1) (monotonicity)

6 H(Ūnj , Ū
n
j , U

n
j+1) (monotonicity)

6 H(Ūnj , Ū
n
j , Ū

n
j) (monotonicity)

= Ūnj (consistency).

The minimum principle follows analogously. Iterating the maximum principle (4.47) over all time levels
up to tn yields the L∞ bound (4.48). �

4.5.2. Entropy inequalities and Lp bounds. The key to obtaining Lp bounds and characterizing
the correct entropy solution is to obtain a discrete version of the entropy inequality (3.29). As we have
seen in Chapter 3, it is enough to obtain a discrete version of the Kruzkhov entropy inequality (3.32).
We proceed to do so below.

For a constant k ∈ R, define the Crandall–Majda numerical entropy flux as

Qnj+1/2 = Q(Unj , U
n
j+1)

= F (Unj ∨ k, Unj+1 ∨ k)− F (Unj ∧ k, Unj+1 ∧ k),
(4.49)

where we use the notation
a ∨ b = max(a, b), a ∧ b = min(a, b).

52 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

Note that this numerical entropy flux is consistent with the Kruzkhov entropy flux (3.31) whenever the
numerical flux F is consistent, as

Q(U,U) = F (U ∨ k, U ∨ k)− F (U ∧ k, U ∧ k)

= f(U ∨ k)− f(U ∧ k)

= sign(U − k)(f(U)− f(k))

= q(U, k).

In the following lemma we obtain a discrete version of (3.32).

Lemma 4.10 (Crandall–Majda [CM80]). Let Unj be an approximate solution computed by a consistent,
conservative and monotone three-point scheme (4.46). Then U satisfies the discrete entropy inequality

(4.50) |Un+1
j − k| − |Unj − k|+

∆t

∆x

(
Qnj+1/2 −Q

n
j−1/2

)
6 0

for all n, j. In particular, if U0 ∈ L1(R) then

(4.51)
∑
j

|Unj |∆x 6 ‖U0‖L1(R) ∀ n ∈ N.

. By definition of the scheme (4.46) and (4.14), we have

H
(
Unj−1 ∨ k, Unj ∨ k, Unj+1 ∨ k

)
= Unj ∨ k −

∆t

∆x

(
F
(
Unj ∨ k, Unj+1 ∨ k

)
− F

(
Unj−1 ∨ k, Unj ∨ k

))
and

H
(
Unj−1 ∧ k, Unj ∧ k, Unj+1 ∧ k

)
= Unj ∧ k −

∆t

∆x

(
F
(
Unj ∧ k, Unj+1 ∧ k

)
− F

(
Unj−1 ∧ k, Unj ∧ k

))
.

Using the definition of Qnj+1/2, we obtain

(4.52)

H
(
Unj−1 ∨ k, Unj ∨ k, Unj+1 ∨ k

)
−H

(
Unj−1 ∧ k, Unj ∧ k, Unj+1 ∧ k

)
= Unj ∨ k − Unj ∧ k −

∆t

∆x

(
Qnj+1/2 −Q

n
j−1/2

)
= |Unj − k| −

∆t

∆x

(
Qnj+1/2 −Q

n
j−1/2

)
.

By monotonicity and the definition of H (4.46),

(4.53)
H
(
Unj−1 ∨ k, Unj ∨ k, Unj+1 ∨ k

)
> H

(
Unj−1, U

n
j , U

n
j+1

)
= Un+1

j ,

H
(
Unj−1 ∧ k, Unj ∧ k, Unj+1 ∧ k

)
6 H

(
Unj−1, U

n
j , U

n
j+1

)
= Un+1

j .

Similarly, by monotonicity and consistency of H,

(4.54)
H
(
Unj−1 ∨ k, Unj ∨ k, Unj+1 ∨ k

)
> H(k, k, k) = k,

H
(
Unj−1 ∧ k, Unj ∧ k, Unj+1 ∧ k

)
6 H(k, k, k) = k.

By subtracting (4.54) from (4.53) and using (4.52), we obtain

|Unj − k| −
∆t

∆x

(
Qnj+1/2 −Q

n
j−1/2

)
> |Un+1

j − k|,

which proves (4.50). Setting k = 0 and summing (4.50) over j and n gives (4.51). �

Remark 4.11. The discrete entropy inequality (4.50) can be used with an approximation argument for
Kruzkhov entropies (3.31) to obtain discrete entropy inequalities for any convex function q. This implies
Lp bounds on the solution by summing over all mesh points.

4.5. STABILITY PROPERTIES OF MONOTONE SCHEMES 53

4.5.3. TV bounds. Another essential stability estimate for scalar conservation laws (4.1) is the BV
estimate (3.42), which provides control over the oscillations in the solution. This estimate says that the
entropy solutions of (4.1) are TVD, meaning that the TV norm does not increase in time. We need to
obtain a discrete version of this total variation. The total variation of a piecewise constant function at
time level tn is given by

‖Un‖TV (R) =
∑
j

|Unj+1 − Unj |.

The first step for obtaining a TV bound is rewriting the finite volume scheme in the incremental
form

(4.55) Un+1
j = Unj + Cnj+1/2

(
Unj+1 − Unj

)
−Dn

j−1/2

(
Unj − Unj−1

)
with incremental coefficients

(4.56) Cnj+1/2 =
∆t

∆x

f(Unj)− Fnj+1/2

Unj+1 − Unj
, Dn

j+1/2 =
∆t

∆x

f(Unj+1)− Fnj+1/2

Unj+1 − Unj
.

A straightforward calculation shows that the incremental form (4.55) is equivalent to the standard finite
volume form (4.14). The advantage of the incremental form lies in the following useful lemma.

Lemma 4.12 (Harten’s Lemma [Har83]). Consider the scheme (4.55).

(i) If the coefficients satisfy

(4.57) Cnj+1/2, D
n
j+1/2 > 0 and Cnj+1/2 +Dn

j+1/2 6 1 for all n, j

then solutions computed with (4.55) are TVD, i.e. they satisfy

(4.58)
∑
j

|Un+1
j+1 − U

n+1
j | 6

∑
j

|Unj+1 − Unj | for all n.

(ii) If the coefficients satisfy

(4.59) Cnj+1/2, D
n
j+1/2 > 0 and Cnj+1/2 +Dn

j−1/2 6 1 for all n, j

then ‖Un+1‖L∞ 6 ‖Un‖L∞ for all n.

. Using the incremental form (4.55), we obtain

Un+1
j+1 − U

n+1
j =

(
1− Cnj+1/2 −D

n
j+1/2

)(
Unj+1 − Unj

)
+ Cnj+3/2

(
Unj+2 − Unj+1

)
+Dn

j−1/2

(
Unj − Unj−1

)
.

Taking absolute values on both sides of the above equation and using (4.57) yields∣∣Un+1
j+1 − U

n+1
j

∣∣ 6 (
1− Cnj+1/2 −D

n
j+1/2

) ∣∣Unj+1 − Unj
∣∣

+ Cnj+3/2

∣∣Unj+2 − Unj+1

∣∣+Dn
j−1/2

∣∣Unj − Unj−1

∣∣ .
Summing over j and identifying equal terms, we obtain the TVD estimate (4.58).

For the L∞ bound, rewrite Un+1
j as

Un+1
j = Cnj+1/2U

n
j+1 +

(
1− Cnj+1/2 −D

n
j−1/2

)
Unj +Dn

j−1/2U
n
j−1.

The condition (4.59) ensures that Un+1
j is a convex combination of Unj+1, Unj and Unj−1, which proves the

L∞ bound. �

Harten’s lemma allows us to check whether a scheme in incremental form is TVD or not. It turns
out that consistent monotone schemes are TVD.

Lemma 4.13. Any consistent and conservative monotone three-point finite volume scheme (4.14) is TVD
under the CFL condition (4.45), i.e., it satisfies (4.58).

54 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

. We need to check if the scheme satisfies the conditions (4.57) of Harten’s lemma. By explicit computa-
tions we obtain

Cnj+1/2 =
∆t

∆x

f(Unj)− F (Unj , U
n
j+1)

Unj+1 − Unj
(definition (4.56))

=
∆t

∆x

F (Unj , U
n
j)− F (Unj , U

n
j+1)

Unj+1 − Unj
(consistency)

> 0 (monotonicity).

The correct sign of D can be similarly checked. We also have

Cnj+1/2 =
∆t

∆x

f(Unj)− F (Unj , U
n
j+1)

Unj+1 − Unj
(definition (4.56))

=
∆t

∆x

F (Unj , U
n
j)− F (Unj , U

n
j+1)

Unj+1 − Unj
(consistency)

6
∆t

∆x

∣∣∣∣∂F∂b
∣∣∣∣ (Lipschitz flux).

Similarly,

Dn
j+1/2 6

∆t

∆x

∣∣∣∣∂F∂a
∣∣∣∣ .

Therefore,

1− Cnj+1/2 −D
n
j+1/2 > 1− ∆t

∆x

(∣∣∣∣∂F∂b
∣∣∣∣+

∣∣∣∣∂F∂a
∣∣∣∣)

> 0

by the CFL condition (4.45). �

4.5.4. Time continuity. The entropy solution of (4.1) satisfies the time continuity property

‖U(t)− U(s)‖L1(R) 6 |t− s|‖f‖Lip‖U0‖TV (R),

where ‖f‖Lip is the Lipschitz constant of f over the range of U . We can easily prove a similar estimate
for conservative and consistent schemes.

Lemma 4.14. Let {Unj } be computed with a consistent and conservative monotone scheme (4.1) with
a Lipschitz continuous numerical flux function F = F (a, b). Then {Unj } satisfies the time continuity
property

(4.60)
∑
j∈Z

∣∣Unj − Umj ∣∣∆x 6 |tn − tm|CF ‖U0‖TV (R)

where CF is the Lipschitz constant of F .

. Take absolute values of (4.14) and sum over all j ∈ Z to obtain

∆x
∑
j

∣∣Un+1
j − Unj

∣∣ = ∆t
∑
j

∣∣Fnj+1/2 − F
n
j−1/2

∣∣
(add and subtract F (Unj , U

n
j) and apply the triangle inequality)

6 ∆t
∑
j

∣∣F (Unj , U
n
j+1)− F (Unj , U

n
j)
∣∣+

∆t

∆x

∑
j

∣∣F (Unj , U
n
j)− F (Unj−1, U

n
j)
∣∣

(use the intermediate value theorem)

6 ∆t
∑
j

∥∥∥∥∂F∂a
∥∥∥∥
L∞

∣∣Unj+1 − Unj
∣∣+

∆t

∆x

∑
j

∥∥∥∥∂F∂b
∥∥∥∥
L∞

∣∣Unj − Unj−1

∣∣

4.6. CONVERGENCE OF MONOTONE METHODS 55

(apply Lipschitz continuity of F)

6 ∆tCF
∑
j

∣∣Unj+1 − Unj
∣∣

= ∆tCF ‖Un‖TV (R).

Summing over n, . . . ,m and applying the TVD property from Lemma 4.13 yields the desired result. �

4.6. Convergence of monotone methods

In the previous sections, we have established that monotone consistent conservative schemes are stable
in L∞, are TVD and satisfy a discrete entropy condition (4.50). These stability estimates pave the way
for showing that the approximate solutions computed by any monotone consistent conservative scheme
converge to the entropy solution of (4.1). The following famous theorem, due to Lax and Wendroff, says
that if the approximate solutions Unj computed by a consistent and conservative scheme converge, then
the limit is a weak solution of the conservation law. For ease of notation, we will identify the approximate
solutions with a piecewise constant function,

(4.61) U∆x(x, t) = Unj for (x, t) ∈ [xj−1/2, xj+1/2)× [tn, tn+1).

Theorem 4.15 (Lax–Wendroff). Let Unj be approximate solutions of (4.1), computed by a conservative
and consistent finite volume scheme (4.14) with a differentiable (or Lipschitz) numerical flux function F ,
where U0

j is given by (4.4). Assume that U0 ∈ L∞(R) and that the approximating functions U∆x

• are uniformly bounded, i.e,

(4.62) ‖U∆x‖L∞(R×R+) 6 C ∀ ∆x > 0

for some constant C > 0;
• converge in L1

loc(R× R+) as ∆x,∆t→ 0 to some function U .

Then U is a weak solution of (4.1), with initial data U0.

. Let ϕ ∈ C∞c (R× [0,∞)) be a given test function and denote ϕnj = ϕ(xj , t
n). By multiplying (4.14) by

∆xϕnj and summing over j ∈ Z and n ∈ N0, we obtain

0 = ∆x∆t

∞∑
j=−∞

∞∑
n=0

(
Un+1
j − Unj

∆t
+
Fnj+1/2 − F

n
j−1/2

∆x

)
ϕnj

(summation by parts)

= −∆x

∞∑
j=−∞

U0
j ϕ

0
j −∆x∆t

∞∑
j=−∞

∞∑
n=0

(
Un+1
j

ϕn+1
j − ϕnj

∆t
+ Fnj+1/2

ϕnj+1 − ϕnj
∆x

)
.

Note that since ϕ has compact support, only finitely many of the summands in the above expression
are nonzero, and so all the sums are well-defined. As with U∆x, define ϕ∆x(x, t) = ϕnj for (x, t) ∈
[xj−1/2, xj+1/2)× [tn, tn+1). Recognizing the above expression as a Riemann sum of step functions, it can
be written as ∫

R
U∆x(x, 0)ϕ∆x(x, 0) dx+

∫
R

∫ ∞
0

U∆x(x, t+ ∆t)
ϕ∆x(x, t+ ∆t)− ϕ∆x(x, t)

∆t
dt dx

+

∫
R

∫ ∞
0

F
(
U∆x(x, t), U∆x(x+ ∆x, t)

) ϕ∆x(x+ ∆x, t)− ϕ∆x(x, t)

∆x
dt dx = 0.

(4.63)

Both U∆x and ϕ∆x converge boundedly a.e. to U and ϕ, respectively, so by Lebesgue’s dominated
convergence theorem, the first two terms converge to∫

R
U(x, 0)ϕ(x, 0) dx+

∫
R

∫ ∞
0

U(x, t)ϕt(x, t)dt dx

56 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

as ∆x,∆t → 0. It is slightly more tricky to pass to the limit in the third term in (4.63), as U∆x occurs
inside the (possibly nonlinear) function F . However, using (4.62) and the fact that F is differentiable,

there is some C̃ > 0 such that

|F
(
U∆x(x, t), U∆x(x+ ∆x, t)

)
− F

(
U∆x(x, t), U∆x(x, t)

)
| 6 C̃

∣∣U∆x(x+ ∆x, t)− U∆x(x, t)
∣∣ .

Furthermore, by the consistency of F , we have F
(
U∆x(x, t), U∆x(x, t)

)
= f(U∆x(x, t)). Adding and

subtracting f(U∆x(x, t)), we have∫
R

∫ ∞
0

F
(
U∆x(x, t), U∆x(x+ ∆x, t)

) ϕ∆x(x+ ∆x, t)− ϕ∆x(x, t)

∆x
dx

=

∫
R

∫ ∞
0

f
(
U∆x(x, t)

) ϕ∆x(x+ ∆x, t)− ϕ∆x(x, t)

∆x
dt dx

+

∫
R

∫ ∞
0

(
F
(
U∆x(x, t), U∆x(x+ ∆x, t)

)
− f

(
U∆x(x, t)

))ϕ∆x(x+ ∆x, t)− ϕ∆x(x, t)

∆x
dt dx.

The first term converges towards
∫
R
∫∞

0
f (U(x, t))ϕx(x, t) dt dx, while the second term is bounded by

C̃‖ϕx‖L∞
∫
R

∫ ∞
0

∣∣U∆x(x+ ∆x, t)− U∆x(x, t)
∣∣ dt dx,

which through approximation by C∞ functions may be shown to converge to zero. In conclusion, the
left-hand side of (4.63) converges to∫

R

∫ ∞
0

Uϕt + f(U)ϕx dt dx+

∫
R
U(x, 0)ϕ(x, 0) dx,

thus proving that U is a weak solution. �

By applying the same technique as for the Lax–Wendroff theorem, we can easily prove the following
result.

Lemma 4.16. Assume that the conditions of the Lax–Wendroff theorem hold, and in addition that the
discrete entropy inequality (4.50) holds. Then U = lim∆x→0 U

∆x is the entropy solution of (3.4).

By the above lemma, all that remains in order to prove convergence to the entropy solution is to
show that the sequence of computed solutions actually converge to some function U . For the sake of
completeness we carry out the full proof in the remainder of this section. Although the details are
somewhat technical, the main idea is as follows: The uniform L1 and TV bounds (4.51) and (4.58),
together with the time continuity (4.60), is enough to guarantee the existence of a convergent subsequence

U∆x′ → U . The uniqueness of the entropy solution U then implies that the whole sequence U∆x converges.
To carry out the above strategy we use the following two theorems from functional analysis.

Theorem 4.17 (Ascoli’s theorem). Let (X, dX) be a metric space and let K ⊂ X be a relatively compact
subset. Let uk : [0, T] → K be a sequence of functions which are uniformly Lipschitz, i.e. there exists a
constant C > 0 such that

(4.64) dX(uk(t), uk(s)) 6 C|t− s| ∀ k ∈ N ∀ t, s ∈ [0, T].

Then there exists a subsequence k(l) and a Lipschitz continuous function u : [0, T] → X such that
uk(l) → u uniformly as l→∞.

(Recall that a relatively compact set is a set whose closure is compact). The above version of Ascoli’s
theorem is a straightforward generalization of the standard Ascoli theorem, and the proof is very similar
to the result for real-valued functions (see [DS88, p. 382]).

Theorem 4.18 (Helly’s theorem). Let [a, b] be a bounded interval and let K ⊂ L1([a, b]). If there is an
M > 0 such that

(4.65) sup
U∈K

‖U‖BV 6M

then K is relatively compact in L1([a, b]). If K ⊂ L1(R) and, in addition to (4.65),

(4.66) lim
R→∞

sup
U∈K

∫
R\[−R,R]

|U(x)| dx = 0

4.6. CONVERGENCE OF MONOTONE METHODS 57

then K is relatively compact in L1(R).

(Recall that the BV norm is defined as ‖U‖BV = ‖U‖L1 + ‖U‖TV .) The first part of Theorem 4.18
is what is usually referred to as Helly’s theorem (see [Giu84, Theorem 1.19]). The uniform integrability
assumption (4.66) is a standard assumption in order to go from convergence in L1

loc(R) to convergence in
L1(R).

We are now ready to state the main convergence theorem of monotone schemes for scalar conservation
laws.

Theorem 4.19. Consider the scalar conservation law (4.1) with f ∈ C1(R) and U0 ∈ BV (R). Consider
a consistent, conservative and monotone finite volume method (4.14) with a locally Lipschitz continuous
flux F . Assume, in addition to the CFL condition (4.45), that there is some c > 0 such that

(4.67)
∆t

∆x
> c.

Define the piecewise linear function

U∆x(x, t) =
tn+1 − t

∆t
Unj +

t− tn

∆t
Un+1
j for x ∈ Cj , t ∈ [tn, tn+1).

Then U∆x → U in L1(R× [0, T]) as ∆x,∆t→ 0 for any T > 0, where U is the entropy solution of (3.4)

. We only need to prove that the sequence U∆x converges to some function U , because the Lax–Wendroff-
type Lemma 4.16 guarantees that the limit U is the entropy solution. (The fact that the function U∆x

defined above is piecewise linear and not piecewise constant, as in (4.61), is merely out of convenience
and does not change the validity of the Lax–Wendroff theorem.) Define

K =
{
U = U∆x(·, t) : t ∈ [0, T],∆x > 0

}
,

i.e. the set of all functions U : R→ R attained at some time by the numerical scheme. By the Crandall–
Majda lemma 4.10 and the TVD bound in Lemma 4.13, the set K satisfies (4.65) with M = ‖U0‖BV .

To show (4.66), let ε > 0 and let r > 0 be such that both |U0(x)| 6 ε for all |x| > r and∫
R\[−r,r] |U0(x)| dx < ε. Recall that monotonicity implies that

min
(
Unj−1, U

n
j , U

n
j+1

)
6 Un+1

j 6 max
(
Unj−1, U

n
j , U

n
j+1

)
for all n, j.

By iterating over t0, . . . , t
N = T and using (4.67), we find that

(4.68) |U∆x(x, t)| 6 ε for any |x| > R, t ∈ [0, T]

where R = r + T
c . Let J ∈ N be such that R ∈ CJ . By summing the discrete entropy inequality (4.50)

with k = 0 over |j| > R and t0, . . . , tN , we find that∫
R\[−R,R]

|U∆x(x, t)| dx 6
∫
R\[−R,R]

|U0(x)| dx+ ∆t

N∑
n=0

|QnJ+1/2|+ |Q
n
−J−1/2|.

By the definition of the Crandall–Majda numerical entropy flux Q, we can bound |QnJ+1/2| 6 CF (|UnJ |+
|UnJ+1|) 6 2CF ε, where CF is the Lipschitz constant of F . Continuing from above, we see that∫

R\[−R,R]

|U∆x(x, t)| dx 6 ε+ ∆t

N∑
n=0

4CF ε = ε(1 + 4TCF).

The right-hand side is independent of t and ∆x, so it follows that K also satisfies the uniform integrability
condition (4.66).

Helly’s theorem now implies that K is a (relatively) compact subset of L1(R). Viewing the computed
solutions U∆x as functions from [0, T] into K, the time continuity bound (4.60) allows us to apply Ascoli’s

theorem, yielding a subsequence ∆x′ → 0 and a U ∈ L1(R × [0, T]) such that U∆x′ → U . The Lax–
Wendroff theorem implies that U is the entropy solution. But the entropy solution is unique, so any
convergent subsequence of U∆x has to converge to U . It follows that the whole sequence U∆x converges
to U . �

58 4. FINITE VOLUME SCHEMES FOR SCALAR CONSERVATION LAWS

4.7. A note on boundary conditions

The discussion so far has ignored boundary conditions. However, we need to specify boundary
conditions as

• The problem itself may be an initial- boundary value problem and physical boundary conditions
such as Dirichlet, Neumann or periodic boundary conditions might be specified.
• For an initial value problem on the whole real line, we need to truncate the domain, as a

computational domain must be bounded. In this case, we need artificial or numerical boundary
conditions.

Without exploring this issue in detail in the current discussion, we provide a recipe for implementing
boundary conditions with finite volume schemes (4.14). Let [xL, xR] be the physical or computational
domain. Denote x1/2 = xL and xN+1/2 = xR (for a mesh with N + 1 mesh points). We need the following
ghost cells:

(4.69) C0 = [xL −∆x, xL) , CN+1 = [xR, xR + ∆x) .

We denote the cell averages of the unknown over C0 and CN+1 at time level tn as Un0 and UnN+1 respectively.

4.7.1. Dirichlet boundary conditions. Let the conservation law (4.1) be augmented with Dirich-
let boundary conditions

(4.70) U(xL, t) = gL(t), U(xR, t) = gR(t).

These boundary conditions are implemented by specifying the ghost values

(4.71) Un0 = gL(tn), UnN+1 = gR(tn).

Observe that the boundary condition is implemented weakly.

4.7.2. Periodic boundary conditions. These boundary conditions are implemented as

(4.72) Un0 = UnN , UnN+1 = Un1 .

4.7.3. Artificial boundary conditions. Non-reflecting Neumann type boundary conditions are
implemented as

(4.73) Un0 = Un1 , UnN+1 = UnN .

CHAPTER 5

Second-order (high-resolution) finite volume schemes

The finite volume schemes (4.14) with suitable numerical fluxes like the Godunov, Lax–Friedrichs and
Engquist–Osher fluxes have been demonstrated to be quite robust in approximating scalar conservation
laws

(5.1) Ut + f(U)x = 0.

However, some problems still persist as the schemes may lead to large errors. To illustrate this point,
we consider the linear advection equation (2.2) and compute the solutions with the Godunov (upwind)
scheme (2.16) for initial data

(5.2) U(x, 0) = sin(4πx)

in the computational domain [0, 1] with periodic boundary conditions.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(a) N = 40

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(b) N = 80

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(c) N = 160

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(d) N = 320

Figure 5.1. Linear advection equation (2.2) computed to time t = 10, using upwind
flux with smooth initial conditions (5.2) and periodic boundary conditions at different
meshes. [linAdv Upw refine.m]

No. of Cells E∆x EOC
20 100 –
40 98.1 0.027
80 86.1 0.188
160 62.7 0.457
320 39 0.688
640 21.9 0.833
1280 11.6 0.914
2560 5.98 0.956

Table 5.1. Error and order of convergence for the linear advection equation (2.2) using
upwind scheme, with smooth initial data (5.2). [linAdv OOC.m]

The exact solution of the problem (2.2), (5.2) is U(x, t) = sin(4π(x− t)). Coupled with the periodic
boundary condition, it implies that the exact solution returns back to the initial condition (5.2) at time
t = k for all positive integers k. The computed results on a sequence of meshes are presented in Figure

59

60 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

5.1 and Table 5.1. Table 5.1 shows the relative error in L1 on a sequence of meshes. The percentage
relative error is defined by

(5.3) E∆x = 100× ‖U
∆x − U ref‖L1

‖U ref‖L1

,

where U∆x is the approximate solution computed on a mesh with mesh size ∆x and U ref is a reference
(exact) solution of the continuous problem. In Table 5.1, we have also shown the experimental order of
convergence (EOC),

(5.4) EOC∆x,∆y =
log
(
E∆x

)
− log

(
E∆y

)
log(∆x)− log(∆y)

.

Here, ∆x,∆y are two different mesh sizes. In Table 5.1, we have used ∆y = 2∆x for all the results.
The results of Figure 5.1 indicate that the approximation by the Godunov scheme is quite stable

and there are no spurious oscillations or other numerical artifacts. However, the approximation has
large errors and the extrema of the solution are clipped. Table 5.1 provides quantitative evidence of
these conclusions. The relative errors are quite large, particularly at coarse meshes. An explanation for
the large errors is provided in the experimental order of convergence (EOC) column of the table. The
observed order of convergence is close to one. This implies that the convergence is slow and the errors
are reduced very slowly, impacting the computational efficiency of the scheme.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(a) N = 20

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(b) N = 40

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(c) N = 80

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact solution
Approximate solution

(d) N = 160

Figure 5.2. Burgers’ equation (3.3) computed up to time t = 0.5, using Godunov flux
with initial conditions (4.17) and outflow boundary conditions at different meshes.
[burgers refine.m]

No. of Cells E∆x EOC
20 6.86 –
40 4.51 0.605
80 2.84 0.667
160 1.74 0.706
320 1.04 0.745
640 0.606 0.778
1280 0.347 0.804
2560 0.196 0.826

Table 5.2. Error and order of convergence for Burgers’ equation (3.3) using Godunov’s
scheme with initial data (4.18). [burgers OOC.m]

A similar situation is observed with computations for the nonlinear Burgers equation (3.3). We com-
pute approximate solutions for initial data (4.18) with the Godunov scheme (4.16) in the computational
domain [−1, 1] on a sequence of meshes and present the results in Figure 5.2 and Table 5.2. The results
show that the Godunov scheme is stable and converges, but slowly. In fact, the order of convergence is
less than one.

5.1. ORDER OF ACCURACY 61

Both numerical experiments indicate that the Godunov type finite volume scheme (4.14) is stable but
can lead to large errors, due to its slow convergence. A possible recipe for reducing errors is to increase
the rate of convergence. This chapter is devoted to introducing the concepts of truncation errors and
order of accuracy of schemes. Furthermore, we will construct second-order accurate versions of the finite
volume scheme (4.14) for approximating scalar conservation laws.

5.1. Order of accuracy

The order of accuracy of numerical schemes is a very useful concept in numerical analysis.

Definition 5.1. Assume that a finite volume scheme for approximating (5.1) can be written in the generic
(2p + 1)-point update form (4.39), and that ∆t

∆x ≡ λ for some constant λ > 0. The truncation error of
the scheme is defined as

(5.5) T nj = U(xj , t
n+1)−H

(
U(xj−p, t

n), . . . , U(xj+p, t
n)
)
,

where U is the exact solution. The scheme is q-th order accurate if q ∈ N is the largest integer for which

(5.6) T nj = O
(
∆tq+1

)
for all j, n

as ∆t→ 0.

Lemma 5.2. Assume that the exact solution U(x, t) of the scalar conservation law is C2, and that a
consistent and conservative three-point finite volume method has a C2 update function H. Then the
scheme is at least first-order accurate.

. As the solution and the update function H in (4.46) are at least twice continuously differentiable, we
can use Taylor expansions. We write the update function as H = H(X,Y, Z). From (4.46) and (4.14) we
get

(5.7)

∂H

∂X
(Unj−1, U

n
j , U

n
j+1) =

∆t

∆x

∂F

∂a
(Unj−1, U

n
j),

∂H

∂Z
(Unj−1, U

n
j , U

n
j+1) = −∆t

∆x

∂F

∂b
(Unj , U

n
j+1).

Denoting V nj = U(xj , t
n) and writing down the Taylor expansion for the truncation error (5.5), we obtain

T nj = V n+1
j −H

(
V nj−1, V

n
j , V

n
j+1

)
= V nj + ∆tUt(xj , t

n) +O(∆t2)−H
(
V nj , V

n
j , V

n
j

)
− ∂H

∂X

(
V nj , V

n
j , V

n
j

)(
V nj−1 − V nj

)
− ∂H

∂Z

(
V nj , V

n
j , V

n
j

)(
V nj+1 − V nj

)
+O

(
∆x2

)
= ∆tUt(xj , t

n) +O(∆t2)

− ∂H

∂X

(
V nj , V

n
j , V

n
j

)(
V nj−1 − V nj

)
− ∂H

∂Z

(
V nj , V

n
j , V

n
j

)(
V nj+1 − V nj

)
+O

(
∆x2

)
by the consistency of H. By using the fact that ∆t = λ∆x and Taylor expanding once more, the above
relation reduces to

T nj = ∆tUt(xj , t
n)

+ ∆x
∂H

∂X

(
V nj , V

n
j , V

n
j

)
Ux(xj , t

n)−∆x
∂H

∂Z

(
V nj , V

n
j , V

n
j

)
Ux(xj , t

n) +O
(
∆t2

)
.

Using the partial derivatives (5.7) and differentiating the consistency relation F (U,U) = f(U) we obtain

T nj = ∆tUt(xj , t
n) + ∆t

(
∂F

∂a

(
V nj , V

n
j

)
+
∂F

∂b

(
V nj , V

n
j

))
Ux(xj , t

n) +O(∆t2)

= ∆t
(
Ut(xj , t

n) + f ′(U(xj , t
n))Ux(xj , t

n)
)︸ ︷︷ ︸

= 0 by (5.1)

+O
(
∆t2

)
= O

(
∆t2

)
.

Thus (5.6) holds for q = 1. �

62 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

Note that the conditions of Lemma 5.2 are satisfied by the Lax–Friedrichs and Engquist–Osher
schemes. However, the Godunov flux (4.15) is not C2 and the conclusions of the above lemma do not
directly apply to the Godunov flux, except in the linear case. Nevertheless, it may be shown that the
Godunov flux is formally first-order accurate.

The fact that the truncation error has a certain decay as ∆t → 0 can be converted to an estimate
on the rate of convergence in the linear case. To be more precise, consider the transport equation (2.2)
and a first-order scheme (first-order in the sense of (5.6) with q = 1). Denote the computed solutions for
a mesh size ∆x as U∆x, and the exact solution as U , both evaluated at some time t. Then it may be
shown (see e.g. [TW09]) that

‖U∆x − U‖L1(R) 6 C∆x.

Thus a first-order scheme for a linear equation has a unit rate of convergence to the exact solution. This
rate of convergence is demonstrated in the numerical experiments for the linear equation (2.2), presented
earlier in this chapter.

However, a similar result does not hold for the nonlinear conservation law (5.1). The truncation
error is only defined for smooth solutions, as the Taylor expansion is needed to obtain a truncation error
estimate. It is well established by now that solutions of (5.1) are discontinuous and that the Taylor
expansion is not valid for such solutions. Hence, the notion of truncation error is purely formal for the
nonlinear case. A famous result of Kuznetsov [GR91] shows that monotone schemes (see Chapter 4 for
definitions) satisfy an estimate of the form

‖U∆x − U‖L1(R) 6 C∆x
1/2.

Hence, formally first-order schemes like the Godunov, Lax–Friedrichs and related schemes may show a
rate of convergence lower than unity. However, the rate of convergence is close to one for most numerical
experiments as the ones presented at the beginning of this chapter.

5.1.1. The Lax–Wendroff scheme. In order to obtain better resolution of the approximate so-
lutions of (5.1), we need to design numerical schemes that are better than first-order accurate, at least
formally. The simplest recipe for obtaining a higher order scheme is to use Taylor expansions more
effectively. Let U be a solution of (5.1) and assume that it is smooth. We then have

(5.8)
Ut = −f(U)x,

Utt = −(f(U)x)t = −(f(U)t)x = −(f ′(U)Ut)x = (f ′(U)f(U)x)x.

Expanding the exact solution in terms of Taylor expansions and using the identities (5.8), we obtain

U(xj , t
n+1) = U(xj , t

n) + ∆tUt(xj , t
n) +

∆t2

2
Utt(xj , t

n) +O
(
∆t3

)
= U(xj , t

n)−∆tf(U(xj , t
n)x

+
∆t2

2

(
f ′(U(xj , t

n))f(U(xj , t
n))x

)
x

+O
(
∆t3

)
.

We approximate the spatial derivatives with second-order accurate central differences as

f(U)x ≈
f(Unj+1)− f(Unj−1)

2∆x
,

(f ′(U)f(U)x)x ≈
1

∆x

(
anj+1/2

(
f(Unj+1)− f(Unj)

∆x

)
− anj−1/2

(
f(Unj)− f(Unj−1)

∆x

))
,

and obtain the Lax–Wendroff scheme

(5.9)

Un+1
j = Unj −

∆t

2∆x

(
f(Unj+1)− f(Unj−1)

)
+

∆t2

2∆x2

(
anj+1/2(f(Unj+1)− f(Unj))− anj−1/2(f(Unj)− f(Unj−1))

)
.

Here,

anj+1/2 = f ′
(
Unj + Unj+1

2

)

5.1. ORDER OF ACCURACY 63

is an approximation to f ′(U(xj+1/2, t)). The Lax–Wendroff scheme can be written in the standard finite
volume form (4.14) with the numerical flux function

(5.10) Fnj+1/2 = F (Unj , U
n
j+1) =

f(Unj) + f(Unj+1)

2
−
anj+1/2∆t

2∆x

(
f(Unj+1)− f(Unj)

)
.

Exercise 5.3. Show that the Lax–Wendroff scheme is second-order accurate in the sense of (5.6).

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Lax−Wendroff
Upwind

Figure 5.3. Linear advection equation computed to time t = 10 on 50 mesh points,
using the Lax–Wendroff and upwind schemes with smooth initial conditions (5.2) and
periodic boundary conditions. [linAdv LW Upw sine.m]

No. of Cells E∆x EOC
20 132 –
40 67.3 0.967
80 18.4 1.87
160 4.64 1.98
320 1.16 2
640 0.291 2
1280 0.0727 2
2560 0.0182 2

Table 5.3. Error and order of convergence for the linear advection equation using the
Lax–Wendroff scheme, with smooth initial data (5.2). [linAdv LW OOC.m]

5.1.2. Numerical experiments. We perform several numerical experiments with the Lax–Wendroff
scheme. To begin with, we consider the advection equation (2.2) with initial data (5.2) and periodic
boundary conditions. The numerical results are presented in Figure 5.3. For the sake of comparison,
we plot the results obtained with the Godunov (upwind) scheme. The Lax–Wendroff scheme is clearly
more accurate. Quantitative results in error Table 5.3 attest to the fact that Lax–Wendroff has a rate of
convergence equal to 2, thus justifying its derivation as a second-order scheme.

In the next numerical experiment, the Lax–Wendroff scheme is used to compute solutions of the
linear advection equation (2.2) with Riemann data (2.27). The results in Figure 5.4(a) show that the
discontinuity is resolved much more sharply by the Lax–Wendroff scheme when compared to the Godunov
scheme. However, the Lax–Wendroff scheme produces incorrect oscillations in the wake of the shock.
These oscillations increase in both amplitude and frequency as the mesh is refined (see Figure 5.4(b)).
Thus, increasing the order of accuracy may lead to stability issues, at least with the Lax–Wendroff scheme.

As another numerical example, consider the nonlinear Burgers equation (3.3) with Riemann data
(4.17). The results, shown in Figure 5.5, show that although the Lax–Wendroff scheme resolves the
shock slightly better than the Godunov scheme, the solution is polluted with spurious oscillations. In
conclusion, the Lax–Wendroff scheme fails to resolve discontinuous solutions of conservation laws in a
stable, monotonous manner.

64 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

0 0.5 1 1.5 2
1

1.2

1.4

1.6

1.8

2

x

Exact
Lax−Wendroff
Upwind

(a) 100 grid points

0 0.5 1 1.5 2
1

1.2

1.4

1.6

1.8

2

2.2

x

Exact
Lax−Wendroff
Upwind

(b) 1000 grid points

Figure 5.4. Linear advection equation computed to time t = 1 with discontinuous ini-
tial conditions (2.27) and outflow boundary conditions. Comparison of the Lax–Wendroff
and upwind schemes. [linAdv LW Upw disc.m]

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

Exact
Lax−Wendroff
Godunov

Figure 5.5. Burgers’ equation computed to time t = 0.5 with discontinuous initial
conditions (4.17) and outflow boundary conditions on 50 cells.
[burgers LW God disc.m]

5.2. The REA algorithm

Given the instabilities that result from the Lax–Wendroff scheme, we need to devise a new procedure
for obtaining high-order schemes. This forces us to revisit the original derivation of the Godunov scheme,
presented in Chapter 4. It turns out that the entire derivation of the Godunov scheme can be summarized
in the following three steps:

Reconstruction: At time level tn, assume that we know the approximate cell averages Unj . We realize
this collection of cell average by a piecewise constant function

(5.11) U(x, tn) = Unj for xj−1/2 < x < xj+1/2.

Evolution: The reconstructed function U(x, tn) is evolved in time using either an exact or approxi-
mate solution algorithm for the conservation law. This amount to solving the superposition of
Riemann problems (4.8), either exactly or approximately.

Averaging: Last, we average the solution at the next time step tn+1 over each control volume C.
The three steps of reconstruction, evolution and averaging are branded together as the REA algorithm.
Most of the finite volume schemes of the previous chapter can be obtained from the REA algorithm by
a suitable approximation of the evolution step.

5.2. THE REA ALGORITHM 65

The main constraint of the REA algorithm so far is that the reconstruction step utilizes only piecewise
constant functions (Figure 5.6). For smooth solutions of (5.1), piecewise constant functions are a first-
order interpolation, thus resulting in the overall first-order accuracy of the Godunov-type schemes. One
possible recipe for constructing high-order accurate schemes lies in employing high-order interpolations
in the reconstruction step.

X
−j 1/ 2

X j +1 /2

Uj −1

Uj

Uj +1

Figure 5.6. Representation of cell averages as piecewise constant functions in the REA algorithm.

X
−j 1/ 2

X j +1 /2

Uj −1

Uj

Uj +1

j
p

−1

pj

j
p

+1

Figure 5.7. Piecewise linear functions in the REA algorithm.

5.2.1. Second-order reconstruction. The simplest high-order interpolation results from a piece-
wise linear reconstruction (Figure 5.7). Such a reconstruction will lead to a second-order accurate ap-
proximation of the smooth solutions of (5.1). Given the cell averages Unj at time tn, there are several
possibilities for reconstructing linear functions in each cell Cj . We need to narrow down the alternatives
by putting constraints on the reconstruction.

One of the key requirements for a stable and convergent approximation of conservation laws is that
the scheme is conservative, (4.40).

Exercise 5.4. Show that the evolution and averaging steps are conservative by verifying that

(a) if U(x, tn+1) is the exact solution at time tn+1, then∫
R
U(x, tn+1) dx =

∫
R
U(x, tn) dx,

(b) if Un+1
j is the average of U(x, tn+1) in cell j, then

∆x
∑
j

Un+1
j =

∫
R
U(x, tn+1) dx.

It is natural to demand that the reconstruction step is also conservative. Denoting the piecewise
linear function in the cell Cj as pj(x), we require that

(5.12)
1

∆x

∫ xj+1/2

xj−1/2

pj(x) dx = Unj .

It is readily seen that pj must have the form

(5.13) pj(x) = Unj + σnj (x− xj),

66 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

where σnj is a parameter that determines the slope in cell Cj . The local linear functions pj are combined
to define the global piecewise linear function

(5.14) p(x) = pj(x) for xj−1/2 < x < xj+1/2.

This piecewise linear function can be used with the REA algorithm to obtain a higher order scheme.

5.2.2. Choices of slope. The slope σ in (5.13) can be determined in a variety of ways. Three of
them are

• Central:

(5.15) σnj =
Unj+1 − Unj−1

2∆x
.

• Backward:

(5.16) σnj =
Unj − Unj−1

∆x
.

• Forward:

(5.17) σnj =
Unj+1 − Unj

∆x
.

It is instructive to see what scheme the REA algorithm with the above choices of slope results in. For
simplicity of the exposition, we consider the linear advection equation (2.2) with a positive velocity a > 0.

Exercise 5.5. Let (5.14) be the prescribed initial data for the linear advection equation (2.2) at time tn,
and assume that a > 0. Show that the cell average Un+1

j of the exact solution at time tn+1 can be written
as

(5.18)
Un+1
j =

a∆t

∆x

(
Unj−1 +

1

2
(∆x− a∆t)σnj−1

)
+

(
1− a∆t

∆x

)(
Unj −

1

2
a∆tσnj

)
= Unj −

a∆t

∆x

(
Unj − Unj−1

)
− 1

2

a∆t

∆x
(∆x− a∆t)(σnj − σnj−1).

Choosing σ as the downwind slope (5.17), we obtain the following explicit formula for (5.18):

(5.19) Un+1
j = Unj −

a∆t

2∆x
(Unj+1 − Unj−1) +

a2∆t2

2∆x2 (Unj+1 − 2Unj + Unj−1).

This is precisely the Lax–Wendroff scheme (5.9) for the linear advection equation. This conclusion
also justifies the fact that a second-order piecewise linear reconstruction leads to an overall second-order
accurate scheme like the Lax–Wendroff scheme. However, the Lax–Wendroff scheme produces oscillations,
and so the choice of a downwind slope is not desirable.

Next, we consider the upwind slope (5.16). The explicit formula (5.18) then becomes

(5.20) Un+1
j = Unj −

a∆t

2∆x
(3Unj − 4Unj−1 + Unj−2) +

a2∆t2

2∆x2 (Unj − 2Unj−1 + Unj−2).

This four point scheme is called the Beam–Warming scheme. An approximate solution of the linear
advection equation with Riemann data (2.27) computed with the Beam–Warming scheme is shown in
Figure 5.8. The results show that the accuracy of the scheme at the shock is comparable to the Lax–
Wendroff scheme. However, it also leads to oscillations. Similarly, using the central slope (5.15) leads to
oscillatory approximations.

5.2.3. The source of oscillations. The exact solution for the linear transport equation (2.2) as
well as the nonlinear conservation law (5.1) are TVD and consequently nonoscillatory whenever the initial
data is nonoscillatory. It is reasonable to demand that stable numerical schemes respect this property
(see Section 4.5). The numerical results presented above demonstrate that second-order schemes like the
Lax–Wendroff (5.9) and the Beam–Warming schemes (5.20) violate the requirement that the approximate
solutions be TVD. What goes wrong and why do these schemes violate this requirement?

A closer look at the REA algorithm reveals that the evolution step is TVD whenever an exact
solution of the Riemann problem is used. Furthermore, suitable approximate Riemann solvers like the

5.2. THE REA ALGORITHM 67

0 0.5 1 1.5 2

1

1.2

1.4

1.6

1.8

2

x

Exact
Beam−Warming

Figure 5.8. Linear advection equation computed to time t = 1 with discontinuous
initial conditions (2.27) and outflow boundary conditions on 50 cells using the Beam–
Warming scheme. linAdv beamWarm disc.m]

Lax–Friedrichs solver are also TVD. Finally, it is straightforward to check that the averaging operator
respects the TVD property. Indeed, considering u ∈ BV (R) and u∆ defined by:

u∆(x) =
1

∆x

∫ xj+1/2

xj−1/2

u(y) dy,

we see that

TV (u∆) =
∑
j∈Z

1

∆x

∣∣∣∣ ∫ xj+3/2

xj+1/2

u(y) dy −
∫ xj+1/2

xj−1/2

u(y) dy

∣∣∣∣
=
∑
j∈Z

1

∆x

∣∣∣∣ ∫ ∆x

0

u(xj−1/2 + ∆x+ s)− u(xj−1/2 + s)ds

∣∣∣∣
6

1

∆x

∫ ∆x

0

∑
j∈Z

∣∣u(xj−1/2 + ∆x+ s)− u(xj−1/2 + s)
∣∣ ds

6
1

∆x

∫ ∆x

0

‖u(·+ s)‖TV (R) ds = TV (u).

The only explanation for the fact that the Lax–Wendroff and Beam–Warming schemes are not TVD
is that the second-order reconstruction (5.13) violates the TVD requirement. To illustrate this point, we
consider the following simple situation: Let J ∈ Z be fixed and consider cell averages at time level tn

(5.21) Unj =

{
1 if j 6 J

0 if j > J.

The initial total variation is 1. Computing the downwind slope (5.17), we find that σnj = 0 for j 6= J and
σnJ = −0.5. Therefore, the piecewise linear reconstruction (5.17) is active only in the cell J (see Figure
5.9). Furthermore, the reconstructed function has an overshoot with a maximum value of 1.5. The
resulting total variation is 1.5, which is greater than the total variation of the initial cell averages. This
induction of oscillations is independent of ∆x and can lead to much larger oscillations as the solutions
are evolved in time. Similar results hold for the upwind and central slopes.

Given the nature of the continuous solution, it is reasonable to expect that the reconstruction (5.13)
is TVD, i.e,

(5.22) ‖p‖BV 6 ‖U∆x‖BV ,

where p is the piecewise linear function (5.14) and U∆x is the piecewise constant function (5.11).

68 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

Figure 5.9. The Lax–Wendroff reconstruction for (5.21).

5.3. The minmod limiter

Straightforward choices of slope like the central (5.15), upwind (5.16) and downwind (5.17) slopes
do not satisfy the TVD requirement (5.22). The problem is manifested near discontinuities as shown in
Figure 5.9.

A clever choice of the slope in (5.13) that satisfies the TVD property (5.22) is the so-called minmod
limiter, which is given by

(5.23) σnj = minmod

(
Unj+1 − Unj

∆x
,
Unj − Unj−1

∆x

)
.

The minmod function is defined as

(5.24) minmod(a1, . . . , an) =

sign (a1) min
16k6n

(|ak|) if sign (a1) = · · · = sign (an) ,

0 otherwise.

The minmod limiter compares the upwind slope and the downwind slope and checks if they are of the
same sign. If so, it selects the smallest one, and if not, it sets the slope to zero. Thus, the reconstruction
is limited based on local gradients.

XJ−1/2 X J+1/2

0

1

Figure 5.10. The minmod reconstruction for (5.21).

To illustrate the effect of the minmod limiter, we take the same example as before and consider initial
data (5.21). Using the minmod slope (5.23) in (5.13) results in retaining the initial data (5.21) (see Figure
5.10). Thus, at least in this case, the minmod reconstruction is TVD.

Next, we consider cell averages

(5.25) Unj =


1 if j 6 J − 1
3/4 if j = J
1/4 if j = J + 1

0 if j > J + 2.

The reconstructed piecewise linear function (5.13) with minmod slopes (5.23) is depicted in Figure 5.11.
The reconstruction is clearly TVD.

5.3. THE MINMOD LIMITER 69

XJ−1/2 X J+1/2

1
3/4

1/4
0

Figure 5.11. The minmod reconstruction for (5.25).

Exercise 5.6. Show that the minmod reconstruction p(x) of cell averages Uj is TVD: ‖p‖TV 6
∑
j |Uj+1−

Uj |.

0 0.5 1 1.5 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

Exact
Minmod

(a) Discontinuous initial data (2.27)

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Minmod

(b) Smooth initial data (5.2)

Figure 5.12. Linear advection equation computed to time t = 1 50 cells using the
minmod limiter. [linAdv reconstr.m]

No. of cells
Minmod MC Superbee

Relative error EOC Relative error EOC Relative error EOC
20 94.6 – 68.4 – 49.1 –
40 54.4 0.798 14.7 2.22 12.4 1.98
80 17 1.68 4.93 1.57 3.97 1.64
160 7.7 1.14 1.51 1.71 3.64 0.127
320 2.14 1.85 0.407 1.89 1.44 1.34
640 0.613 1.8 0.104 1.97 0.416 1.79
1280 0.168 1.87 0.0262 1.99 0.112 1.89
2560 0.0449 1.9 0.00657 1.99 0.0292 1.94

Table 5.4. Error and order of convergence for the linear advection equation with smooth
initial data (5.2). [linAdv reconstr OOC.m]

5.3.1. Numerical experiments. We test the linear advection equation (2.2) with the second-order
scheme (5.18) and a minmod slope limiter (5.23). To begin with, we use the initial data (2.27) and see
that the resulting scheme is not oscillatory (see Figure 5.12(a)). The scheme improves the accuracy
considerably when compared to the first-order scheme, and captures the discontinuity quite sharply.

Next, we test the minmod scheme with smooth initial data (5.2) and show the resulting profiles
in Figure 5.12(b). The minmod scheme resolves the solution quite well. Error table 5.4 shows that

70 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

the scheme is close to second-order accurate. Numerical experiments with nonlinear examples will be
presented in the sequel.

5.4. Other limiters

We have demonstrated that the minmod limiter (5.23) improves the quality of the solution consid-
erably. However, other choices of slope limiters exist and might result in better approximations of the
underlying PDE. A popular choice is the superbee limiter, due to Roe, which has the expression

(5.26) σnj = maxmod
(
σLj , σ

R
j

)
,

where

σLj = minmod

(
2
Unj − Unj−1

∆x
,
Unj+1 − Unj

∆x

)
,

σRj = minmod

(
Unj − Unj−1

∆x
, 2

Unj+1 − Unj
∆x

)
,

with the maxmod function simply replacing the minimum in (5.24) with a maximum.

0 0.5 1 1.5 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

Exact
Superbee

(a) Discontinuous initial data (2.27)

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Superbee

(b) Smooth initial data (5.2)

Figure 5.13. Linear advection equation computed to time t = 1 50 cells using the
superbee limiter. [linAdv reconstr.m]

Using the superbee limiter with the initial data (5.25) results in a piecewise linear function shown in
Figure 5.14. The figure indicates that the superbee limiter results in a TVD reconstruction. Furthermore,
comparing the superbee limiter with the minmod limiter in Figure 5.11 shows that the superbee limiter
results in steeper slopes, while still being TVD. Employing the superbee limiter in the scheme (5.18) to
compute approximate solutions for the linear advection equation (2.2), we present results for initial data
(2.27) and (5.2) in Figure 5.13 (a) and (b), respectively. The results show that the superbee limiter gives
accurate and nonoscillatory approximations. The superbee limiter is more accurate than the minmod
limiter (particularly at the extrema). However, it has a tendency to square off extrema, as shown in
Figure 5.13(b). Error table 5.4 shows that second-order accuracy is obtained.

Another popular limiter is the MC (monotonized central) limiter of Van-Leer,

(5.27) σnj = minmod

(
2
Unj+1 − Unj

∆x
,
Unj+1 − Unj−1

2∆x
, 2

Unj − Unj−1

∆x

)
.

Numerical results (see Figure 5.15 and Table 5.4) show that the MC limiter is as accurate as the
superbee limiter. It is usually the preferred slope limiter. Yet another choice is van Leer’s limiter:

σnj =
r + |r|
1 + |r|

, where r =
Unj+1 − Unj
Unj − Unj−1

.

5.4. OTHER LIMITERS 71

XJ−1/2 X J+1/2

1
3/4

1/4
0

Figure 5.14. The superbee reconstruction for (5.25).

5.4.1. Second-order schemes in the flux form. So far, we have written the second-order schemes
for the linear advection equation (2.2) in the update form (5.18). They can easily be recast into the finite
volume flux form (4.14). Assume for the moment that the advection speed a > 0. Recall that the interface
flux Fi+1/2 was calculated as the interface integral (4.13). Computing this integral with the exact solution
(2.5) and the second-order reconstruction (5.13), we obtain

Fnj+1/2 =
1

∆t

∫ tn+1

tn
f(U(xj+1/2, t) dt

=
a

∆t

∫ tn+1

tn
U(xj+1/2, t) dt (as f(U) = aU)

=
a

∆t

∫ tn+1

tn
pj
(
xj+1/2 − a(t− tn)

)
dt (from (2.5))

=
a

∆t

∫ tn+1

tn
Unj + σnj

(
xj+1/2 − a(t− tn)− xj

)
dt (from (5.13))

= aUnj +
a

2∆t

∫ tn+1

tn
σnj
(
∆x− 2a(t− tn)

)
dt

= aUnj +
a

2
(∆x− a∆t)σnj .

Consequently, the second-order scheme (5.18) can be written in the finite volume form (4.14) with flux

(5.28) Fnj+1/2 = aUnj +
a

2
(∆x− a∆t)σnj .

0 0.5 1 1.5 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

Exact
MC

(a) Discontinuous initial data (2.27)

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
MC

(b) Smooth initial data (5.2)

Figure 5.15. Linear advection equation computed to time t = 1 50 cells using the MC
limiter. [linAdv reconstr.m]

72 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

A similar expression can be derived when the advection velocity a < 0. Defining δnj+1/2 = ∆xσnj , we can

rewrite (5.28) as

(5.29) Fnj+1/2 = aUnj +
a

2

(
1− a∆t

∆x

)
δnj+1/2.

Denote the jump of the solution at the interface xj+1/2 as

[[Un]]j+1/2 = Unj+1 − Unj

and define

θnj+1/2 =
[[Un]]j−1/2

[[Un]]j+1/2

.

The parameter δ is an indication of the change in U around xj+1/2. Therefore, we rewrite it in terms of
cell interface jumps,

δnj+1/2 = ϕ(θnj+1/2)[[U
n]]j+1/2

for some function ϕ(θ). The advantage of writing δ in this limited form is immediate. If ϕ ≡ 1, then the
flux (5.29) immediately reduces to the Lax–Wendroff flux (5.9) for the linear advection equation. Hence,
the second-order scheme can be thought as a version of the Lax–Wendroff scheme with the flux being
limited by the limiter function ϕ. In conclusion, a limiter on the slope of the linear function (5.13) can
be written as a flux limiter.

5.5. Flux limiters and the TVD property.

We can realize slope limiters as flux limiters. Table 5.5 gives the flux limiter form of the slope limiters
we have studied so far.

Exercise 5.7. For each flux limiter in Table 5.5, show that the resulting scheme is the same as when
using the corresponding slope limiter in (5.18).

Method Flux limiter function ϕ(θ)
Upwind 0
Lax–Wendroff 1
Beam–Warming θ
Minmod minmod(1, θ)
Superbee max (0,min(1, 2θ),min(2, θ))
MC max

(
0,min

(
1+θ

2 , 2, 2θ
))

van Leer θ+|θ|
1+|θ|

Table 5.5. The most popular flux limiters.

Observe that the upwind, Lax–Wendroff and Beam–Warming flux limiters are linear (or linear affine),
whereas the minmod, superbee and MC limiters are nonlinear. It is essential to consider nonlinear limiters
to obtain TVD second-order accurate schemes, as we will see in a moment.

We can rewrite the second-order scheme (5.18) in the incremental form

(5.30) Un+1
j = Unj + Cnj+1/2[[U

n]]j+1/2 −D
n
j−1/2[[U

n]]j−1/2

(consult (4.55)) with coefficients

Cnj+1/2 = −a
2
λ(1− aλ)ϕ

(
θnj+1/2

)
,

Dn
j−1/2 = aλ− a

2
λ(1− aλ)ϕ

(
θnj−1/2

)
,

5.5. FLUX LIMITERS AND THE TVD PROPERTY. 73

where λ = a∆t
∆x . However, realizing that [[Un]]j+1/2 =

[[Un]]
j−1/2

θn
j+1/2

, we rewrite the coefficients in (5.30) in

the more revealing form

(5.31)

Cnj+1/2 = 0,

Dn
j−1/2 = aλ+

a

2
λ(1− aλ)

(
ϕ(θnj+1/2)

θnj+1/2

− ϕ(θnj−1/2)

)
.

By Harten’s Lemma 4.12, the scheme will be TVD if the coefficients C and D in (5.31) satisfy the criteria
(4.57). Hence, we have to ensure that

(5.32) 0 6 Dn
j−1/2 6 1.

We recall that λ 6 1 due to the CFL condition (2.18). Hence, a sufficient condition for (5.32) to hold is
given by

(5.33)

∣∣∣∣ϕ(θ1)

θ1
− ϕ(θ2)

∣∣∣∣ 6 2 for θ1, θ2 ∈ R.

The set of solutions to (5.33) is rich. A particular class of solutions is given by

(5.34) 0 6 ϕ(θ) 6 minmod(2, 2θ) for θ ∈ R.
It is straightforward to verify that (5.34) satisfies (5.33). The region defined by (5.34) is shown in Figure
5.16. Note that (5.34) requires that ϕ ≡ 0 whenever θ < 0. This occurs precisely when there is a local
extrema at xj .

Exercise 5.8. Show that any flux limiter that satisfies (5.34) reduces to first-order accuracy at extrema.
In particular, show that when Unj has a local maximum or minimum in cell j, then pj(x) ≡ Unj .

TVD REGION

Lax−Wendroff

Beam−Warming

(a) Lax–Wendroff and Beam–Warming

TVD REGION

Minmod

(b) Minmod

TVD REGION

Superbee

(c) Superbee

TVD REGION

MC

(d) MC

Figure 5.16. Sweby diagrams for different limiters.

Exercise 5.9. Verify that the Lax–Wendroff method and the Beam–Warming method do not satisfy the
TVD requirement (5.34), whereas the minmod, superbee and MC limiters do satisfy (5.34).

74 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

5.6. High-resolution methods for nonlinear problems.

The limiter-based methods described above can be directly used for approximating the nonlinear
equation (5.1), as the REA algorithm applies to any conservation law. However, it may be difficult to
obtain explicit formulas like (5.28) in this case, as the flux integral (4.13) may not be possible to evaluate
explicitly. Furthermore, an analogue of the exact solution (2.5) is not available in the nonlinear case,
making an evaluation of (4.13) is very complicated. Therefore, we use a related but slightly different
approach to yield high-resolution methods for nonlinear equations.

5.6.1. Semi-discrete formulation. The starting point for obtaining high-resolution methods for
the nonlinear conservation law (5.1) is still the reconstruction procedure, as described previously. Instead
of employing the REA algorithm directly, we denote the cell average over Cj as

Uj(t) =
1

∆x

∫ xj+1/2

xj−1/2

U(x, t) dx

and integrate the conservation law (5.1) over space to obtain

1

∆x

∫ xj+1/2

xj−1/2

Ut + f(U)x dx = 0

⇒ d

dt
Uj(t)+

1

∆x

(
f(U(x−j+1/2, t))− f(U(x+

j−1/2, t))
)

= 0.

Here, U(x−j+1/2, t) denotes the left-limit of U at xj+1/2,

U(x−j+1/2, t) = lim
x→x−

j+1/2

U(x, t).

Letting F be an approximation of the above flux terms,

(5.35) F±j+1/2(t) ≈ f(U(x±j+1/2, t)),

we obtain the semi-discrete form of the finite volume scheme (4.14) as

(5.36)
d

dt
Uj(t) +

1

∆x

(
F−j+1/2(t)− F

+
j−1/2(t)

)
= 0.

The scheme (5.36) leads to a system of ODEs that must be integrated in time by a suitable time integration
routine. Dropping the t in (5.36) for notational convenience, we can use the following numerical flux
function:

(5.37) F−j+1/2 = F+
j+1/2 = F (Uj , Uj+1),

where F is an consistent two-point flux function like the Godunov (4.15), Rusanov (4.32) or Engquist–
Osher (4.33) flux. If a standard forward Euler method is used to integrate the ODE system (5.36) in
time, we obtain the standard first-order monotone finite volume scheme (4.14).

5.7. Second-order semi-discrete schemes.

The advantage of the semi-discrete formulation (5.36) lies in the fact that we can separately increase
the order of spatial and temporal accuracy. The standard first-order scheme uses piecewise constants in
space and a forward Euler routine for time integration. Based on our previous discussion, we know that
one approach to increase the order of accuracy is to employ high-order reconstructions instead of the
piecewise constant cell averages

(5.38) U(x, t) = Uj(t) for xj−1/2 6 x < xj+1/2.

The process of reconstructing suitable nonoscillatory (TVD) piecewise linear functions from cell
averages was described in detail in the previous section. Given Uj , we can obtain the following linear
function in the cell Cj (again dropping t for notational convenience):

(5.39) pj(x) = Uj + σj(x− xj).
These linear functions are combined to form the piecewise linear function

(5.40) p(x, t) = pj(x) for xj−1/2 6 x < xj+1/2.

5.8. TIME STEPPING 75

In order to ensure that the reconstruction is TVD, i.e,

‖p‖BV 6 ‖U∆x‖BV for all t,

we need to choose the slope σ in (5.39) suitably. From our previous discussion, we have at least two
choices that satisfy the above condition: the minmod limiter (5.23) and the superbee limiter (5.26).

Last, we denote the reconstructed values at the cell interfaces as

(5.41) U+
j = pj(xj+1/2), U−j = pj(xj−1/2).

See Figure 5.17 for an illustration.

5.7.1. The numerical flux. The numerical flux in (5.36) is an approximation of the interface flux.
If the data are represented as piecewise constant cell averages, then the two-point flux (5.37) suffices to
define the numerical flux. Since we are representing the approximations as piecewise linear functions, we
need to replace the cell averages in (5.37) with the relevant edge values (see Figure 5.17),

(5.42) Fj+1/2 = F
(
U+
j , U

−
j+1

)
,

where F is any consistent numerical flux. Since we require that the evolution be TVD, we will use
monotone fluxes like the Godunov (4.15), Rusanov (4.32) and Engquist–Osher (4.33) flux. This completes
the description of the second-order semi-discrete scheme (5.36).

X
−j 1/ 2

X j +1 /2

Uj −1

Uj

Uj +1
pj Uj

+

Uj +1

j

−

p
j +1

Figure 5.17. Second-order nonoscillatory reconstruction.

5.8. Time stepping

Denoting U(t) as the vector

U(t) =
[
. . . , Uj−1(t), Uj(t), Uj+1(t), . . .

]
the finite volume scheme (5.36) can be rewritten as

(5.43)
d

dt
U(t) = L(U(t)).

Here, the operator L acts pointwise on the vector U as

L(U(t))j := − 1

∆x

(
Fj+1/2(t)− Fj−1/2(t)

)
.

Thus, (5.43) is a system of ODEs that must be integrated in time. The simplest time integration routine
is the forward Euler time integration,

(5.44) Un+1 = Un + ∆tL(Un),

where Un = U(tn) is the vector of cell averages U at time tn. The time step ∆t should be determined by
a suitable CFL condition like (4.10). By choosing a TVD reconstruction in (5.39) and a monotone flux
in (5.42), we can ensure that the solution update in (5.44) is TVD, i.e,

(5.45) TV (Un+1) 6 TV (Un) for all n.

However, the forward Euler method is only first-order accurate. Despite the second-order accuracy of
the piecewise linear reconstruction (5.39), the first-order temporal accuracy leads to an overall first-order
accuracy and negates the very purpose of using a piecewise linear reconstruction.

76 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

5.8.1. Standard Runge–Kutta method. The alternative is to employ high-order time stepping
methods. These methods have been developed to a considerable extent; see standard textbooks like
[HNW87]. The standard high-order ODE methods are of the Runge–Kutta type. The well-established
standard second-order Runge–Kutta method is of the form

(5.46) Un+1 = Un + ∆tL
(
Un +

∆t

2
L(Un)

)
.

This two-stage method is second-order accurate. However it fails to satisfy the TVD requirement (5.45)
and may lead to oscillatory solutions [GST01]. Wishing to avoid such spurious oscillations, we need
to search for Runge–Kutta methods that preserve the TVD property. Such methods are termed strong
stability preserving (SSP) Runge–Kutta methods. One second-order SSP Runge–Kutta method is

(5.47)

U∗ = Un + ∆tL(Un)

U∗∗ = U∗ + ∆tL(U∗)

Un+1 =
1

2
(Un + U∗∗)

We have the following stability lemma for the second-order SSP Runge–Kutta method.

Lemma 5.10. If the discrete differential operator L is such that the forward Euler method (5.44) is TVD,
then the Runge–Kutta method (5.47) is TVD.

. We wish to prove the TVD property (5.45) for the Runge–Kutta method (5.47). Note that this method
is a combination of two forward Euler stages. Therefore,

TV (U∗) 6 TV (Un) and TV (U∗∗) 6 TV (U∗) 6 TV (Un).

Thus,

TV (Un+1) = TV

(
1

2

(
Un + U∗∗

))
6

1

2

(
TV (Un) + TV (U∗∗)

)
6 TV (Un).

�

5.9. High-resolution algorithm

With all the ingredients in place, we can state the algorithm for computing with a second-order
scheme. Given cell averages Unj at time level tn, we need to perform the following steps:

Step 1 (Reconstruction): Given Uj , reconstruct the averages to obtain the piecewise linear function
(5.39). Any nonoscillatory slope limiter like the minmod (5.23), superbee (5.26) or the MC
(5.27) limiter can be used. Note that we only require the edge values U±j (5.41) in each cell.

Step 2 (Flux evaluation): Given the edge values U±j in each cell, we plug these values into the numerical

flux (5.42). In particular, monotone two-point fluxes like the Godunov (4.15), Engquist–Osher
(4.33) and Rusanov (4.32) fluxes should be used.

Step 3 (Time stepping): For second-order schemes, we use the second-order SSP Runge–Kutta method
(5.47). As this method consists of two stages, steps 1 and 2 must be applied to each stage (e.g.,
Un and U∗).

The time step ∆t in (5.47) is determined by a CFL condition of the form (4.10). The second-order high
resolution schemes are TVD as all the three ingredients are constructed to ensure this property.

The stencil of a second-order scheme consists of five points. This should be contrasted with the three
point first-order schemes.

5.10. Numerical experiments

In this section, we present numerical experiments with both the linear transport equation (2.2) and
Burgers’ equation (3.3). To begin with, we consider the advection equation (2.2) with initial data (5.2)
and periodic boundary conditions. The second-order high-resolution scheme with all three choices of
slope limiters are computed and the results are displayed in Figure 5.18(a). The results are very similar
to those obtained with the second-order Lax–Wendroff scheme (5.9) (see Figure 5.3). This is to be
expected, as the schemes basically only differ in their time integration routines. Analogous results hold
for the discontinuous initial data (2.27) and are shown in Figure 5.18(b).

5.10. NUMERICAL EXPERIMENTS 77

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Exact
Minmod
MC
Superbee

(a) Smooth data (5.2).

0 0.5 1 1.5 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

Exact
Minmod
MC
Superbee

(b) Discontinuous data (2.27).

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

Exact
Minmod
MC
Superbee

(c) Closeup of (b).

Figure 5.18. Linear advection equation (2.2) on a mesh of 50 cells, using various limiters.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact
Minmod
MC
Superbee

(a) Solution at t = 1.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact
Minmod
MC
Superbee

(b) Closeup.

Figure 5.19. The Godunov scheme with different slope limiters on the problem (4.17).
[burgers reconstr.m]

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact
Godunov
Rusanov

(a) Solution at t = 1.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact
Godunov
Rusanov

(b) Closeup.

Figure 5.20. Comparison between the Godunov and Rusanov schemes with the min-
mod limiter on the problem (4.17). [burgers reconstr.m]

Next, we consider Burgers’ equation with initial data (4.17) using the Godunov scheme. The results
obtained with the high-resolution schemes are shown in Figures 5.19 and 5.20 – clearly there are very
minor differences between the three choices of slope. The gain due to second-order accuracy in resolving
the shock is not as much as the gain seen in the linear case.

78 5. SECOND-ORDER (HIGH-RESOLUTION) FINITE VOLUME SCHEMES

No. of cells
Godunov Rusanov

Relative error EOC Relative error EOC
20 2.86 – 3.51 –
40 1.48 0.951 1.66 1.08
80 0.74 0.998 0.839 0.988
160 0.37 1 0.42 0.997
320 0.185 1 0.21 1
640 0.0925 1 0.105 1
1280 0.0463 1 0.0525 1
2560 0.0231 1 0.0263 1

Table 5.6. Error and order of convergence for Burgers’ equation computed to time t = 1
with discontinuous initial conditions (4.17), using the minmod limiter.
[burgers reconstr OOC.m]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact

Godunov

(a) t = 0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact

Godunov

(b) t = 0.3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact

Godunov

(c) t = 0.6

Figure 5.21. Smooth initial value problem developing into a discontinuous solution.
[burgers sine reconstr.m]

In Figure 5.20, we display results comparing the Godunov flux and the Rusanov flux (4.32) using the
minmod limiter. While the differences in results rendered by these fluxes is pronounced at first-order, the
differences at second-order are considerably smaller. Error table 5.6 shows that the rate of convergence
is exactly 1. This is to be expected, as the solution is not smooth, and so the truncation error is not well
defined in this case.

Last, we consider the smooth initial value problem

U(x, 0) =
1 + sin(2πx)

2
for x ∈ [0, 1]

with periodic boundary conditions. The solution will develop a discontinuity at time t = − 1
minU ′(x,0) =

1
π ≈ 0.318. The solution computed with the Godunov scheme using the minmod limiter on a mesh
of 50 cells is displayed in Figure 5.21. To assess the convergence rate of the scheme, we compute its
experimental rate of convergence at t = 0.3, while the solution is still smooth. As seen in Table 5.7, the
rate of convergence is now close to 2 for both the Godunov and Rusanov schemes.

5.10. NUMERICAL EXPERIMENTS 79

No. of cells
Godunov Rusanov

Relative error EOC Relative error EOC
20 5.01 – 5.44 –
40 2.13 1.23 2.3 1.24
80 0.772 1.47 0.812 1.5
160 0.241 1.68 0.247 1.72
320 0.0712 1.76 0.0716 1.79
640 0.0214 1.73 0.0215 1.74
1280 0.00592 1.86 0.00592 1.86
2560 0.00168 1.82 0.00168 1.82

Table 5.7. Error and order of convergence for Burgers’ equation for a smooth initial
value problem. [burgers sine reconstr OOC.m]

CHAPTER 6

Very high-order finite volume methods for scalar conservation
laws.

The numerical examples in the preceding chapter reveal that increasing the order of accuracy of the
semi-discrete finite volume scheme for approximating the scalar conservation law (3.4):

(6.1)
d

dt
Uj(t) +

1

∆x
(Fj+1/2(t)− Fj−1/2(t)) = 0,

from one to two in both space and time led to a considerable increase in the computational efficiency, both
in the smooth parts of the solution as well as near the shocks. High-resolution schemes like the limiter
based schemes presented in the last chapter suffice for a large number of applications. However, there
may be some situations (particularly in three space dimensions), where it is not possible to resolve very
finely and even the high-resolution second-order schemes are not adequate to approximate interesting
flow features. In such problems, we need to design very high-order schemes i.e, schemes whose formal
order of accuracy is greater than two in both space and time.

In this chapter, we will present very high-order schemes. To begin with, we work with the semi-
discrete form of the finite volume scheme (6.1) and focus on increasing the spatial accuracy. Then, the
temporal integration is performed with high-order accurate strong stability preserving (SSP) Runge–
Kutta methods.

We consider an uniform discretization of the spatial domain [xl, xr] with mesh size ∆x. The mesh
points are denoted by xj = xl + j∆x and they demarcate cells of the form: Cj = [xj−1/2, xj+1/2). The cell
average of the unknown at time t is denoted as Uj(t) and we drop the t-dependence of all quantities in
the sequel for notational convenience. We recall from chapters 4 and 5 that using piecewise constant cell
averages results in a first-order spatially accurate scheme whereas employing piecewise linear functions
(5.40) results in a second-order accurate scheme. Thus, it is natural to employ even higher order piecewise
polynomial interpolations of the cell-averages in-order to obtain higher order of accuracy in space.

6.1. High-order accurate piecewise polynomial reconstructions

Consider a smooth function V (x) and assume that we are given cell averages:

(6.2) Vj =
1

∆x

∫ xj+1/2

xj−1/2

V (x) dx, ∀j.

and would like to obtain piecewise polynomial approximations to V of degree k > 2. In-order to do so,
we need to consider neighboring cell values in the form of a so-called stencil of neighboring cells. Let
r, s > 0 be integers such that r + s+ 1 = k, then standard approximation theory suggests that a stencil
for constructing approximate polynomials of (k − 1)-th degree are the cells,

(6.3) Sr,j = {Cj−r, · · · , Cj , · · · , Cj+s}.
Therefore, there are k possible stencils for reconstructing a polynomial of degree k − 1. As an example,
the three possible stencils for reconstructing a piecewise quadratic functions (see Figure 6.1) are

S0,j = {Cj , Cj+1, Cj+2},
S1,j = {Cj−1, Cj , Cj+1},
S2,j = {Cj−2, Cj−1, Cj}.

Note that we mark a stencil with the left shift value r as specifying r leads to an unique value for the
right shift: s = k−1−r. For the rest of this section, we will fix r and hence the stencil Sr,j and construct
an approximating polynomial prj(x) with the following properties,

81

82 6. VERY HIGH-ORDER FINITE VOLUME METHODS FOR SCALAR CONSERVATION LAWS.

Conservation: The approximating polynomial prj is conservative, i.e, for all j − r 6 i 6 j + s, we have

(6.4)
1

∆x

∫ xi+1/2

xi−1/2

prj(x) dx = Vi.

The approximation should preserve the cell averages and is hence termed conservative.
Accuracy: Given prj , we need the corner point values,

V rj+1/2 = prj(xj+1/2), V rj−1/2 = prj(xj−1/2),

for obtaining the numerical fluxes in (6.1). These corner point values can be realized as linear
combinations of the neighboring cell averages,

(6.5) V rj+1/2 =

k−1∑
i=0

criVj−r+i, V rj−1/2 =

k−1∑
i=0

ĉriVj−r+i,

with cri and ĉri being suitable constants. A simple argument with the ordering shows that

ĉri = cr−1,i.

Therefore, the problem of finding an approximating polynomial to V reduces to determining
the constants cri in (6.5). We need the approximately polynomial to be k-th order accurate:

(6.6) V rj+1/2 − V (xj+1/2) = O(∆xk).

Hence, prj should be of (k − 1)-th degree.

Given point values of a smooth function, the task of constructing interpolation polynomials results
from standard approximation theory. However, we are given the cell averages of the function and we
need a conservative reconstruction (6.4). Standard approximation theory does not suffice and we utilize
the structure of cell averages by consider the primitive of the function V ,

(6.7) V̂ (x) =

∫ x

xL

V (ξ)dξ.

Here, xL is any arbitrary point and we can fix it as the left boundary point xl of the domain. Note that

the cell averages of V (4.3) define point values of V̂ at each xj+1/2 by

(6.8) V̂j+1/2 = V̂ (xj+1/2) =

j∑
i=0

∫ xi+1/2

xi−1/2

V (ξ)dξ = ∆x

j∑
i=0

Vj ,

by definition (4.3). Since, the point values of V̂ are readily available, we will interpolate it with a
polynomial of degree k from the values at points

xj−r−1/2, · · · , xj+1/2, · · · , xj+s+1/2.

and call this polynomial as P rj (x). Note that this polynomial approximates the primitive function V̂ to
order k + 1. Therefore setting

(6.9) prj(x) =
dP rj
dx

(x),

will approximate V to degree k as V̂ ′ = V . Hence, we have shown that prj satisfies the order property
(6.6).

For checking the conservation property (6.4), we fix j − r 6 i 6 j + s and perform the following
calculations, ∫ xi+1/2

xi−1/2

prj(x) dx =

∫ xi+1/2

xi−1/2

d

dx
P rj (x) dx (Definition (6.9)),

= P rj (xi+1/2)− P rj (xi−1/2) (Integrating by parts),

= V̂i+1/2 − V̂i−1/2 (Interpolation points),

= ∆x

(
i∑
l=0

Vl −
i−1∑
i=0

Vl

)
, (Definition (6.8)),

6.2. ENO RECONSTRUCTION PROCEDURE 83

= ∆xVi,

thus verifying (6.4). Hence, the interpolation polynomial prj satisfies both the conservation (6.4) and
order (6.6) requirements.

We do not need to explicitly calculate the interpolation polynomial (6.9) as the only information
necessary in reconstructing the corner point values are the coefficients cri in (6.5) (as ĉr,i = cr−1,i). The
recipe for finding the coefficients is a standard procedure from approximation theory and we refer to
[Shu97] for a detailed account. For implementing these schemes, we provide the coefficients cri up to
order k = 4 in the Table 6.1 below,

k r i = 0 i = 1 i = 2 i = 3
2 -1 3

2 − 1
2

0 1
2

1
2

1 - 1
2

3
2

3 -1 11
6 − 7

6
1
3

0 1
3

5
6 - 1

6

1 − 1
6

5
6

1
3

2 1
3 − 7

6
11
6

4 -1 25
12 − 23

12
13
12 − 1

4

0 1
4

13
12 − 5

12
1
12

1 − 1
12

7
12

7
12 − 1

12

2 1
12 − 5

12
13
12

1
4

3 − 1
4

13
12 − 23

12
25
12

Table 6.1. The coefficients cri in (6.5) up to k = 4

Summarizing the contents of this section, we have a described a general procedure for building up
conservative polynomial interpolations of degree k, given the cell averages Vj of a smooth function j.
Since the corner point values in each cell are the only pieces of information necessary in defining the
numerical fluxes in the finite volume scheme (6.1), we have described a recipe to construct them from
(6.5) and Table 6.1 up to fourth order. Higher order reconstructions can be checked from [Shu97] and
standard books in approximation theory.

6.2. ENO reconstruction procedure

The preceding section was very general and provided a procedure for obtaining high-order interpo-
lations once a stencil (6.3) is specified. If the function V is smooth, then any admissible stencil would
yield a robust high-order approximation. The optimal stencil is then chosen to be the one with lowest
approximation error. For example, the optimal 4-th order stencil leads to the following approximation,

V 1
j+1/2 = − 1

12
Vj−1 +

7

12
Vj +

7

12
Vj+1 −

1

12
Vj+2.

84 6. VERY HIGH-ORDER FINITE VOLUME METHODS FOR SCALAR CONSERVATION LAWS.

However, it is well known by now that the solutions of the conservation law (3.4) are discontinuous,
on account of the presence of shock waves. Using any arbitrary admissible stencil to reconstruct a
discontinuous may lead to a oscillatory approximation. As an example, consider k = 2 and the cell
averages given in example (5.21). In this case, using the upwind stencil (r = 0) at every cell leads to an
oscillatory approximation, resulting in the increase of total variation. Similarly, using a downwind stencil
(r = 1) at every cell also leads to an oscillatory approximation.

Entropy solution of the scalar conservation law (3.4) are TVD and it is natural to require that the
approximating polynomial pr be nonoscillatory. This is achieved in the second-order case by using limiters
(Chapter 5). However, it is very hard to enforce the TVD criteria for even higher order approximations.
This problem is solved by the ingenious and celebrated ENO procedure.

Motivation. To motivate the design of the Essentially Nonoscillatory (ENO) reconstruction proce-
dure, we recall that the entropy solution of the conservation law (3.4) contains shocks and is discontinuous.
There is no point in approximating a discontinuous function with a high-order interpolation polynomial
as the approximation properties are only valid for a smooth function.

Consider the cell Cj . The set of all admissible stencils (6.3) is specified by the left shift value
0 6 r 6 k − 1, where k is the order of approximation. Assume that a shock exists in the neighborhood
of cell Cj . It is natural to search for those stencils in the set of admissible stencils such that they do not
contain the shock. If such a smooth stencil exists, then the solution is smooth within this stencil and
the correct order of approximation holds. Thus, we should select a stencil among the set of admissible
stencils, based on smoothness of the solution. The optimal stencil should be chosen in the direction of
smoothness.

How do we decide which of the admissible stencils is the smoothest?. A possible answer might lie in
considering divided differences.

Divided differences. The reconstruction procedure involves reconstructing the primitive function

V̂ (6.8). Define the first-order divided differences as

V̂ [xj−1/2] = V̂j−1/2,

The l-th order divided difference is defined inductively as,

V̂ [xj−1/2, · · · , xi+l−1/2] =
V̂ [xj+1/2, · · · , xj+l−1/2]− V̂ [xj−1/2, · · · , xj+l−3/2]

xi+l−1/2 − xj−1/2
.

As V̂ is the primitive of V , we can use (6.5) to obtain

V̂ [xj−1/2, xj+1/2] =
V̂j+1/2 − V̂j−1/2

∆x
= Vj .

Hence, we can calculate the divided differences of V̂ in terms of the cell averages of V .
The reason for introducing divided differences lies in the fact that they define the Newton form of

interpolating polynomial of degree k given by

(6.10) P rj (x) =

k∑
i=0

V̂ [xj−r−1/2, · · ·xj−r+i−1/2]

i−1∏
l=0

(x− xj−r+l−1/2).

The divided differences are also a measure of the smoothness of the underlying function. Standard
approximation theory yields that for a smooth function W ,

(6.11) W [xj−1/2, · · · , xj+i−1/2] =
diW (x)

dxi
(ξ),

for some ξ lying in the stencil and if W is discontinuous at any point in the stencil, then we have

(6.12) W [xj−1/2, · · · , xj+i−1/2] = O(
1

∆xi
).

Hence, divided differences provide some measure of the degree of smoothness of a solution. The ENO
procedure utilizes divided differences to ascertain the smoothest possible stencil.

6.2. ENO RECONSTRUCTION PROCEDURE 85

ENO algorithm. To illustrate the ENO algorithm, we describe an example involving approximation

of the primitive function V̂ to third-order. Consequently the function V is approximated to second-order.
To begin with, we require that the cell Cj should be involved in the reconstruction. This implies that we
start with a two-point stencil,

(6.13) S2
j = {xj−1/2, xj+1/2},

to reconstruct V̂ . The Newton form (6.10) yields the piecewise linear function,

(6.14) P 1
j (x) = V̂ [xj−1/2] + V̂ [xj−1/2, xj+1/2](x− xj−1/2).

In order to obtain a quadratic interpolation, we need to add another point to the stencil. There are two
possibilities: either we consider the left neighboring point xj−3/2 leading to the stencil

(6.15) S3
j = {xj−3/2, xj−1/2, xj+1/2},

and quadratic interpolation,
(6.16)

P 2(x) = V̂ [xj−1/2] + V̂ [xj−1/2, xj+1/2](x− xj−1/2) + V̂ [xj−3/2, xj−1/2, xj+1/2](x− xj−1/2)(x− xj+1/2),

= P 1(x) + V̂ [xj−3/2, xj−1/2, xj+1/2](x− xj−1/2)(x− xj+1/2),

or we can add the right neighboring point xj+3/2 leading to the stencil

(6.17) S̃3
j = {xj−1/2, xj+1/2, xj+3/2},

and quadratic interpolation,
(6.18)

P̃ 2(x) = V̂ [xj−1/2] + V̂ [xj−1/2, xj+1/2](x− xj−1/2) + V̂ [xj−1/2, xj+1/2, xj+3/2](x− xj−1/2)(x− xj+1/2),

= P 1(x) + V̂ [xj−1/2, xj+1/2, xj+3/2](x− xj−1/2)(x− xj+1/2).

Note that the only difference between the reconstructed polynomials lies in the quadratic term (x −
xi−1/2)(x − xi+1/2), which is multiplied by two different divided differences for each stencil. So choosing

stencils S3
j or S̃3

j boils down to choosing between the two second-order divided differences. From the

preceding discussion, we recall that divided differences are an indicator of smoothness of function V̂ and
choose the divided difference with the least magnitude i.e, if

(6.19) |V̂ [xj−3/2, xj−1/2, xj+1/2]| 6 |V̂ [xj−1/2, xj+1/2, xj+3/2]|,

then S3
j is chosen as the stencil to reconstruct the quadratic interpolation. Otherwis S̃3

j is chosen.
Note that

V̂ [xj−3/2, xj−1/2, xj+1/2] =
Vj − Vj−1

∆x
,

V̂ [xj−1/2, xj+1/2, xj+3/2] =
Vj+1 − Vj

∆x
.

Hence (6.19) amounts to choosing a limiter for the adjacent slopes. This should be compared with the
limiters presented in Chapter 5.

If we want to construct a cubic interpolation, we have to add another point to the current stencil,
say S3

j . We have two choices: either the left neighbor xj−5/2 or the right neighbor xj+3/2. Again the
modulus of the third-order divided differences,

|V̂ [xj−5/2, xj−3/2, xj−1/2, xj+1/2]|, |V̂ [xj−3/2xj−1/2, xj+1/2, xj+3/2]|

are compared and the one with minimum modulus is chosen to be added to the stencil. This procedure
can be iterated k times to obtain a preferred stencil. The ENO algorithm is

Step 1. Given the cell averages of a function V and the order of the desired interpolation polynomial k,

compute divided differences of the primitive function V̂ using cell averages Vj .

86 6. VERY HIGH-ORDER FINITE VOLUME METHODS FOR SCALAR CONSERVATION LAWS.

Step 2. For the cell Cj , define the two-point stencil:

S2
j = {xj−1/2, xj+1/2}.

For all m = 2, 3, · · · , k, assume that m-th stencil is known and takes the form,

Smj = {xi−1/2, xi+1/2, · · · , xi+m−1/2},

for some i, Then if

|V̂ [xi−3/2, xi−1/2, · · · , xi+m−1/2]| 6 |V̂ [xi−1/2, xi+1/2, · · · , xi+m+1/2]|

we add xi−3/2 to the stencil to form the new stencil

Sm+1
j = {xi−3/2, xi−1/2, xi+1/2, · · · , xi+m−1/2},

else, we add xi+m+1/2 to the stencil to form the new stencil .
Step 3. The above procedure determines the stencil uniquely. Denote the stencil as Sr,j by the left shift

value r and use (6.5) to determine the corner point values V rj+1/2 and V rj−1/2. The coefficients

crj can be checked from Table 6.1.

The above algorithm is easy to code and results in a nonoscillatory reconstruction of V from its cell

averages. Note that the primitive function V̂ need not be computed at any stage as only its divided
differences (computed from cell averages) are required. A graphical illustration of the ENO procedure is
depicted in Figure 6.1.

We illustrate the ENO procedure by considering the Heaviside function V , with cell averages given
by (5.21). The aim is to obtain a third-order piecewise quadratic interpolation at cell CJ−1. Using the
ENO algorithm leads to the following set of stencils,

S2
j = {xJ−3/2, xJ−1/2},
S3
j = {xJ−5/2, xJ−3/2, xJ−1/2},
S4
j = {xJ−7/2, xJ−5/2, xJ−3/2, xJ−1/2},

Thus the reconstruction is based completely from the left. Similarly, the ENO reconstruction at CJ uses
a stencil, takes values completely from the right. The reconstructed function is thus the the original
function and the entire reconstruction is TVD.

Xj+1/2
Xj−1/2

Xj+3/2
Xj−3/2

S

S

1S

2

0

Figure 6.1. A graphical description of the ENO procedure: The aim is reconstruct
a second-order polynomial in the cell Cj . The three candidate stencils are denoted by
S0 (green), S1 (red) and S2 (blue). The corresponding quadratic functions are depicted
inside the cell. The ENO procedure selects the stencil with the smoothest approximation.
In this case, the blue stencil S2 is selected and the corresponding polynomial (in blue)
is used to obtain the approximate corner point values

6.3. WENO RECONSTRUCTION 87

Properties of the ENO reconstruction. The ENO reconstruction, as outlined above has the
following properties,

i. Let Pj(x) be an k-degree interpolation polynomial of the primitive function V̂ (x), based on the
ENO procedure. Then, it satisfies the accuracy condition,

(6.20) Pj(x)− V̂ (x) = O(∆xk+1),

for all j provided that the cell Cj does not contain a discontinuity i.e, the function V is sufficiently
smooth. The proof of this fact is a straightforward consequence of the construction of the
interpolation polynomial.

ii. If Cj contains a discontinuity of V̂ , then Pj(x) is monotone in the cell . The proof is non-trivial
and interested readers can consult [HOEC86] for a rigorous proof.

iii. The reconstruction is Total Variation Bounded (TV B), in fact there exists a function W such
that

W (x)− Pj(x) = O(∆xk+1),

such that

‖W‖TV 6 ‖V̂ ‖TV .

The proof is a consequence of properties (i) and (ii). Define W = V̂ if the cells are smooth and
W = Pj if the cell has a discontinuity. Monotonicity automatically implies the TVB property.

Problems with the ENO approximation. The ENO approximation is very robust and leads to
efficient nonoscillatory approximations of conservation laws (this will be discussed in detail in the sequel).
However, it has two major drawbacks,

1. The ENO procedure can lead to a non-smooth and abrupt change of stencils at neighboring mesh
points. Even round-off errors in divided differences can lead to changes of stencils, causing a
lack of smoothness for the numerical flux in (6.1).

2. To obtain a k-th order ENO approximation, we need to consider all the candidate stencils
consisting of (2k − 1) points and choose the “smoothest” stencil among them. Standard ap-
proximation theory establishes that a (2k− 1)-th order approximation can be constructed from
(2k− 1) interpolation points. Thus, we are not utilizing the optimal reconstruction property of
the underlying stencil.

These limitations, particularly the one concerning sub-optimal accuracy encourage the modification of
the ENO framework to design the WENO or Weighted essential nonoscillatory framework.

6.3. WENO Reconstruction

Consider a function V , expressed in terms of its cell averages Vj . Let k > 2 be the order of approx-
imation and 0 6 r 6 k − 1. Define s = k − 1 − r and denote the stencil Sr,j by (6.3). For any fixed r

and stencil Sr,j , Section 6.1 provides a general recipe for using the primitive function V̂ to obtain a k-th
order accurate and conservative approximation of V . In particular, the point values V rj+1/2 and V rj−1/2 are

defined in terms of (6.5). Thus every stencil leads to unique k-th order accurate approximation of the
point values.

In the ENO procedure, we choose the smoothest stencil among all the k candidate stencils and define
the corresponding point values. The WENO procedure differs from this stencil selection. It utilizes a
standard result from approximation theory which states that if V is smooth in all the candidate stencils,
then there exists constants cr such that the function,

(6.21) Ṽj+1/2 =

k−1∑
r=0

drV
r
j+1/2 = V (xj+1/2) +O(∆x2k−1).

Thus, the k-candidate stencils based on 2k − 1 interpolation points lead to a (2k + 1)-th order accurate
interpolation. For k = 2, the constants are

(6.22) d0 =
2

3
, d1 =

1

3
.

88 6. VERY HIGH-ORDER FINITE VOLUME METHODS FOR SCALAR CONSERVATION LAWS.

Similarly for k = 3, the constants are

(6.23) d0 =
3

10
, d1 =

3

5
, d2 =

1

10
.

The constants for even higher order approximations can be readily obtained. It is easy to check that
dr > 0 and for consistency,

k−1∑
r=0

dr = 1.

Similarly,

(6.24) Ṽj−1/2 =

k−1∑
r=0

d̃rV
r
j−1/2 = V (xj−1/2) +O(∆x2k−1).

By symmetry, we obtain that d̃r = dk−1−r.
The point values are thus weighted averages of the reconstruction from each candidate stencil. Using

the point values Ṽj+1/2 will lead to an oscillatory reconstruction as the function V can contain discontinu-
ities. Hence, we need to combine the idea of weighted averages of reconstructions from candidate stencil
together with a procedure for identifying stencils that are smooth and ensuring that they contribute more
to the average than stencils that contain discontinuities. This balance or choice of weights lies at the
heart of the WENO approach.

WENO reconstruction is based on the weighted point value,

(6.25) Vj+1/2 =

k−1∑
r=0

ωrV
r
j+1/2,

We need that ωr > 0 and
k−1∑
r=0

ωr = 1,

hold for the sake of consistency.
If V were a smooth function, then weights ω have to be chosen in-order ensure that the approximation

(6.25) is (2k + 1)-th order accurate. This is indeed the case if the weights satisfy,

(6.26) ωr = dr +O(∆xk−1).

Then,

k−1∑
r=0

ωrV
r
j+1/2 −

k−1∑
r=0

drV
r
j+1/2, =

k−1∑
r=0

ωrV
r
j+1/2 −

k−1∑
r=0

drV
r
j+1/2 + V (xj+1/2)− V (xj+1/2)

=

k−1∑
r=0

ωrV
r
j+1/2 −

k−1∑
r=0

drV
r
j+1/2 + V (xj+1/2)

(
k−1∑
r=0

ωr −
k−1∑
r=0

dr

)
, (consistency),

=

k−1∑
r=0

(ωr − dr)(V rj+1/2 − V (xj+1/2)),

=

k−1∑
r=0

O(∆xk−1)O(∆xk), by (6.26) and (6.6),

= O(∆x2k−1).

Combining the above inequality with (6.21) and (6.25), we obtain that

(6.27) Vj+1/2 − V (xj+1/2) = O(∆x2k−1),

thus satisfying the desired order of accuracy.
As discussed before, the weights ωr should reflect the smoothness of the corresponding stencil, marked

by r. A clever choice of computationally efficient weights that measure smoothness leads to

(6.28) ωr =
αr∑k−1

m=0 αm
,

6.4. WENO ALGORITHM 89

where

(6.29) αr =
dr

(βr + ε)2
,

with ε being a very small tolerance to ensure that the denominator is always non-zero. The key to finding
robust weights is to design βr carefully so that both the accuracy requirement (6.26) is met and the weight
reflects the smoothness of the stencil.

If the function V was smooth in the stencil marked by r, then the smoothness indicator βr should be

βr = O(∆x2).

Similarly, if the stencil under consideration contained a discontinuity of V , then the smoothness indicator
βr is chosen to be

βr = O(1)

Using the above choices, we observe that the weight ωr in (6.28) becomes,

ωr = O(1),

if the function V is smooth in the stencil. Similarly, if the stencil contains a discontinuity then the weight
is

ωr = O(∆x4).

This choice of β ensures that a stencil containing the smooth parts of a function has a much greater weight
in the reconstruction (6.25) than a stencil that contains a discontinuity. Thus, the WENO procedure
replicates some aspects of the ENO procedure and weighs stencils, based on their smoothness.

The task of finding smoothness indicators β is highly non-trivial. A clever choice in [LOC94] is based
on the following recipe: consider a stencil Sr,j and denote the k − 1-th degree polynomial interpolating
V as pr(x), then βr is given by

(6.30) βr =

k−1∑
m=1

∫ xi+1/2

xi−1/2

∆x2m−1

(
dmpr(x)

dxm

)2

dx.

The scaling of ∆x ensures that the resulting derivatives do not depend on ∆x. The above expression is a
square of the L2 norms of all derivatives of the interpolation polynomial, up to k − 1. This integral can
be explicitly computed in the special case of k = 2 and we obtain,

(6.31) β0 = (Vj+1 − Vj)2, β1 = (Vj − Vj−1)2.

Similarly, we can compute (6.30) when k = 3 to obtain,

(6.32)

β0 =
13

12
(Vj − 2Vj+1 + Vj+2)2 +

1

4
(3Vj − 4Vj+1 + Vj+2)2,

β1 =
13

12
(Vj−1 − 2Vj + Vj+1)2 +

1

4
(Vj−1 − Vj+1)2,

β2 =
13

12
(Vj−2 − 2Vj−1 + Vj)

2 +
1

4
(Vj−2 − 4Vj−1 + 3Vj)

2,

Higher order smoothness indicators are harder to compute explicitly. We summarize the complete algo-
rithm below:

6.4. WENO Algorithm

Step 1. Given the cell averages of a function V and a desired approximation of order k, denote 0 6
r 6 k − 1 as the left shift and Sr,j (6.3) as the corresponding stencil. Construct point values
V rj+1/2, V

r
j−1/2 by (6.5) for all r.

Step 2. Compute the coefficients dr and d̃r from (6.21) and (6.24). For k = 2, 3, we can use the explicit
values (6.22) and (6.23).

Step 3. Compute smoothness indicators βr using (6.30). Explicit values for k = 2 and k = 3 are given
by (6.31) and (6.32).

90 6. VERY HIGH-ORDER FINITE VOLUME METHODS FOR SCALAR CONSERVATION LAWS.

Step 4: Define ωr from (6.28), (6.29). Similarly define,

ω̃r =
α̃r∑k−1

m=0 α̃m
, α̃r =

d̃r
(βr + ε)2

,

Step 5: Compute the (2k + 1)-th accurate point values,

(6.33) V +
j =

k−1∑
r=0

ωrV
r
j+1/2, V −j =

k−1∑
r=0

ω̃rV
r
j−1/2.

A graphical description of the WENO procedure is provided in Figure 6.2.

X j +1/ 2
X j −1/ 2

X j +3/2
X j −3/2

S

S

1S

2

0

Figure 6.2. A graphical description of the WENO procedure: The aim is reconstruct
a second-order polynomial in the cell Cj . The three candidate stencils are denoted by
S0 (green), S1 (red) and S2 (blue). The corresponding quadratic functions are depicted
inside the cell. The WENO procedure computes an weighted average of the three polyno-
mials resulting in the polynomial shown in black, which is used to obtain the approximate
corner point values

Remark 6.1. The implementation of a WENO interpolation is easier to code than an ENO interpolation
and requires fewer if statements. Consequently, it is more efficient in terms of run time.

Remark 6.2. We would like to point out that a k-order WENO interpolation results in a (2k − 1)-th
order accuracy of the approximation. Therefore, a second-order WENO procedure results in third-order
of accuracy and a third-order WENO procedure leads to fifth-order of accuracy.

To illustrate the WENO procedure, we again consider the numerical example with cell averages given
by (5.21). Let k = 2. There are two candidate stencils,

S0,J = {CJ−1, CJ} and S1,J = {CJ , CJ+1}.
The corresponding point values are given by (6.5) as

V 0
j+1/2 = −1

2
, V 1

j+1/2 = 0.

The coefficients d are given by (6.22) and the smoothness indicators (6.30) are

β0 = 1, β1 = 0.

We can compute the weights ω by (6.28), (6.29) as

ω0 =
2ε2

1 + 2ε2
≈ 0, ω1 = 1− ω0 ≈ 1.

Therefore, the reconstructed value (6.33) is
V +
J ≈ 0.

Similarly, we can compute,
V −J ≈ 0, V +

J−1 ≈ 1, V −J−1 ≈ 1,

and observe that the resulting reconstruction is TVD.

6.6. TIME-STEPPING 91

6.5. Numerical flux calculation

The ENO and WENO approximations as described above are very general and can be applied to
obtain nonoscillatory reconstructions for any function. However, we are interested in computing approx-
imate solutions of the scalar conservation law (3.4). Therefore, we work with cell averages Uj(t) at any
given time t.

Given the cell averages at any time level, we use either the ENO or the WENO procedures to obtain
the corner point values,

U−j (t) ≈ U(xj−1/2+, t), U+
j (t) ≈ U(xj+1/2−, t).

Both the ENO and WENO procedures result in a nonoscillatory choice of the above point values. Once
these point values are specified, the numerical flux in (6.1) can be determined as

(6.34) Fj+1/2(t) = F (U+
j (t), U−j+1(t)).

Here F can be any consistent, monotone two-point flux function like the Godunov (4.15), Engquist-Osher
(4.33) or Rusanov flux (4.32). This completes the description of a semi-discrete finite volume scheme
(6.1).

6.6. Time-Stepping

The finite volume scheme (6.1) is semi-discrete and needs to be updated in time with a suitable
time stepping scheme. In Chapter 5, we discussed the issue of time-stepping extensively and introduced
the concept of Strong Stability Preserving (SSP) Runge–Kutta methods. These methods are designed to
ensure that the updates are TVD if the underlying Forward Euler step is TVD. A second-order two stage
SSP Runge–Kutta method was described in (5.47). Since our spatial order of approximation, constructed
with suitable ENO and WENO schemes is more than second-order accurate, we need to construct even
high order SSP Runge–Kutta methods.

Let L be update operator defined in (5.43) for a numerical flux (6.34) defined by a ENO or WENO
procedure, then we can rewrite the semi-discrete finite volume scheme (6.1) as a system of ODEs (5.43)
in terms of L. A general k-stage Runge–Kutta method is of the form,

(6.35)
U (m) =

m−1∑
l=0

(
αmlU

(l) + ∆tβmlL
(
U (l)

))
, 1 6 m 6 k

U (0) = Un, U (k) = Un+1,

with the coefficients αml and βml. If the coefficients αml, βml > 0, it is clear that U (m) is just a
convex combination of Forward Euler steps. Hence, any good properties of the forward-Euler method are
inherited by the corresponding Runge–Kutta method. In particular, for the second-order Runge–Kutta
method (5.47), we have that

α10 = 1, α20 =
1

2
, α21 =

1

2
,

β10 = 1, β20 = 0, β21 =
1

2
,

ensuring that this method is TVD.
A third-order three stage TVD method for (5.43) takes the form,

(6.36)

U (1) = Un + ∆tL(Un),

U (2) =
3

4
Un +

1

4
U (1) +

1

4
L(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
L(U (2)).

It is not possible to obtain a fourth-order SSP Runge–Kutta method that has positive βml’s. One has
use a suitable adjoint operator to ensure that a SSP method can be designed. Interested reader can

92 6. VERY HIGH-ORDER FINITE VOLUME METHODS FOR SCALAR CONSERVATION LAWS.

consult [Shu97] for description of such a method. For practical purposes, it suffices to use the third-
order Runge–Kutta method (6.36). In case an even higher order time integration method is required, we
can use the standard four stage Runge Kutta method given by,

(6.37)

U (1) = ∆tL(Un),

U (2) = ∆tL(Un +
1

2
U (1)),

U (3) = ∆tL(Un +
1

2
U (2)),

U (4) = ∆tL(Un + U (3)),

Un+1 = Un +
1

6
U (1) +

1

3
U (2) +

1

3
U (3) +

1

6
U (4).

Although (6.37) may not be TVD, it is observed to be quite robust in practice. This completes the
description of a fully discrete high-order finite volume scheme.

6.7. Numerical Experiments

We will test the very high-order schemes of this chapter for the linear advection equation (2.2) as
well as Burgers’ equation (3.3). We denote the following schemes:

ENO2 Second-order ENO scheme with second-order Runge–Kutta time stepping (5.47).
ENO3 Third-order ENO scheme with third-order Runge–Kutta time stepping (6.36).
ENO4 Fourth-order ENO scheme with fourth-order Runge–Kutta time stepping (6.37).
WENO3 Third-order WENO scheme with second-order Runge–Kutta time stepping (5.47).
WENO5 Fifth-order WENO scheme with third-order Runge–Kutta time stepping (6.36).

To begin with, we consider the advection equation (2.2) with initial data (5.2) and periodic boundary
conditions. The results with all the five schemes , with Godunov (upwind) flux for 100 mesh points for
time t = 5 are presented in Figure ??. For the sake of comparison, we present results comparing the
first-order upwind scheme also. The errors are present in Table ?? show the correct rates of convergence.

We repeat the same experiments for Burgers’ equation with initial data (4.17) and (5.2).

CHAPTER 7

Linear hyperbolic systems in one space dimension

In the last few chapters, we have treated the nonlinear scalar conservation law (3.4) and have designed
robust high-order finite volume schemes to approximate its entropy solutions.

Despite their occurance in many interesting models, scalar conservation laws are too simplistic to be
used for modeling complex physical phenomena as these problems involve the interaction of many un-
knowns. These problems (see Chapter 1 for examples) are modeled by a nonlinear system of conservation
laws:

(7.1) Ut + f(U)x = 0,

where U = [U1, U2, . . . , Um]> is the vector of unknowns and f = [f1, f2, . . . , fm]> is the flux vector. Note
that (7.1) represents an m ×m system of conservation laws in one space dimension. Multi-dimensional
systems will be considered later. The system (7.1) is supplemented with suitable initial and boundary
conditions. When m = 1, the system reduces to the scalar conservation law (3.4).

To begin with, we consider the simplest case of (7.1) in the form a linear system,

(7.2) Ut +AUx = 0.

Here, A is an m × m matrix with constant (in both space and time) entries. Linear systems arise for
instance when linearizing (7.1) around a constant state U, which amounts to solving (7.2) with the
constant matrix A = ∂f

∂U (U).
A related linear system with variable coefficients takes the form

(7.3) Ut + (A(x, t)U)x = 0.

It can be recast into the non-conservative form

(7.4) Ut +A(x, t)Ux = −Ax(x, t)U.

7.1. Examples of linear systems

7.1.1. The wave equation. The simplest example of (7.2) is given by the one-dimensional wave
equation,

(7.5) utt − c2uxx = 0.

This equation is also known as the string equation, as it models vibrations in media like strings and rods.
Its derivation can be found in many text books; see for instance [TW09]. The wave equation can be
written as a first-order system by defining auxiliary variables v = cux and w = −ut. With this change of
variables, it is easy to show that (7.5) transforms to

(7.6)
vt + cwx = 0

wt + cvx = 0.

Hence, the wave equation (7.6) is an example of the linear system (7.2) with

(7.7) U =

[
v
w

]
, A =

[
0 c
c 0

]
.

93

94 7. LINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

7.1.2. Maxwell’s equations. The dynamics of electromagnetic waves is modeled by the Maxwell
equations of electrodynamics:

(7.8)

Bt + curl(E) = 0

Et − c2curl(B) = − j

ε0

div(B) = 0

div(E) =
ρ

ε0
.

Here, B = [B1, B2, B3]> and E = [E1, E2, E3]> are the magnetic and electric fields, respectively. The
charge and current density are denoted by ρ and j, respectively. The speed of light is given by c2 = µ0ε0,
where µ0 and ε0 are constants. In one space dimension, solving for electromagnetic waves propagating
in the x-direction (with no current) reduces (7.8) to

(7.9)
B2
t + E3

x = 0

E3
t + c2B2

x = 0.

Thus, Maxwell’s equations are equivalent to the wave equation (7.7) with U = [cB2, E3]>, leading to
another concrete application of the wave equation.

7.1.3. Linearized Euler equations. The Euler equations of gas dynamics (1.10) are a nonlinear
system of conservation laws in several spatial dimensions. Let ρ, u and p denote the density, velocity and
pressure of the gas, respectively. Restricting the equations to one space dimension and linearizing (1.10)
around a constant state U = [ρ̄, ū, p̄]>, we obtain the linearized Euler equations,

(7.10)

ρt + ūρx + ρ̄ux = 0

ut + ūux +
1

ρ̄
px = 0

pt + γp̄ux + ūpx = 0.

This system of equations can be written as a linear system (7.2) with

(7.11) U =

ρu
p

 , A =

ū ρ̄ 0
0 ū 1

ρ̄

0 γp̄ ū

 .
The linearized Euler equations are a good approximation of the more complex Euler equations (1.10)
when the solution only consists of small perturbations around constant states.

Given the above examples, the study of the linear system (7.2) is important in its own right. Fur-
thermore, it serves as an example of the nonlinear system (7.1), and so the study of the linear system
will be a starting point in the design of efficient numerical schemes for approximating (7.1).

7.2. Hyperbolicity and characteristic decomposition

We will consider the initial value problem associated with (7.2) by augmenting it with initial data

(7.12) U(x, 0) = U0(x).

One of the key notions underlying the behavior of the solutions of (7.2) is the concept of hyperbolicity.
For scalar equations, the notion of hyperbolicity referred to the property of finite speed of propagation.
Such a notion will hold true for a system.

Definition 7.1 (Hyperbolic system). The linear system (7.2) is hyperbolic if the matrix A is diago-
nalizable and has m real eigenvalues. Similarly, the equation (7.3) is hyperbolic if the matrix A(x, t) is
diagonalizable and has m real eigenvalues for all x, t. Both systems are termed strictly hyperbolic if the
eigenvalues are distinct.

This definition can be extended to the nonlinear case (7.1) if the flux f is at least C1 in U. We will
say that (7.1) is hyperbolic if for any state U in the range of f , the Jacobian matrix ∇Uf is diagonalizable
in R. We return to nonlinear systems in the next chapter.

7.2. HYPERBOLICITY AND CHARACTERISTIC DECOMPOSITION 95

Thus, the concept of hyperbolicity for a system like (7.2) is tied to the eigenstructure of the un-
derlying matrix. Why is the eigenstructure linked to finite speed of propagation? The answers lies in
diagonalizability. A matrix A is diagonalizable if it has a complete set of eigenvectors, i.e, there exists m
linearly independent vectors r1, . . . , rm ∈ Rm and corresponding eigenvalues λ1, . . . , λm ∈ R such that

Arp = λprp.

We can then define the matrix of eigenvectors

(7.13) R =
[
r1 | r2 | · · · | rm

]
and the diagonal matrix of eigenvalues

(7.14) Λ = diag
(
λ1, . . . , λm

)
and use them to diagonalize the underlying matrix A – that is, write it in the form

(7.15) A = RΛR−1.

The diagonalization of A leads us to the following decoupling:

Ut +AUx = 0

Ut +RΛR−1Ux = 0 (from (7.15))

Ut +RΛ
(
R−1U

)
x

= 0 (constant coefficient)(
R−1U

)
t

+R−1RΛ
(
R−1U

)
x

= 0 (multiplying both sides with R−1)(
R−1U

)
t

+ Λ
(
R−1U

)
x

= 0.

Introducing the vector of characteristic variables

W = R−1U,

the above calculation leads to

(7.16) Wt + ΛWx = 0.

Thus, the hyperbolic linear system (7.2) is completely decoupled into a set of scalar linear transport
equations, obtained by writing (7.16) componentwise:

(7.17) W p
t + λpW

p
x = 0 for p = 1, . . . ,m,

where W p(x, t) is the p-th component of W(x, t). This decoupled set of transport equations can be solved
explicitly by the method of characteristics (see Chapter 2) to obtain

(7.18) W p(x, t) = W p
0 (x− λpt) ,

where

W0(x) = R−1U0(x)

and again W p
0 (x, t) is the p-th component of W0(x, t). Therefore, we can explicitly write the initial value

problem for a hyperbolic system (7.2) as

(7.19) U(x, t) = RW(x, t).

Remark 7.2. One may wonder where Definition 7.1 comes from. In fact, considering a linear system,
this is the only way to achieve that the initial value problem associated with (7.2) subjected to the initial
conditions (7.12) is well posed in L2. Let us first recall the notion of well-posedness in the sense of
Hadamard.

Since we are looking for L2 solution, we can use the Fourier transform and the problem becomes:

∂Û

∂t
(k, t) + ik ·AÛ(k, t) = 0,

that can easily be integrated:

Û(k, t) = eik·AtÛ0.

So the question is to look at the L2 of the operator

eik·At.

96 7. LINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

Since A is real valued, its eigenvalues consist of pairs of complex conjugates. The real part of the eigen-
values of ik · A are related to the imaginary part of the eigenvalues of A. For each eigenvalue, there
exists an eigenvector, and for sure, for any pair of conjugate eigenvalues, one has a negative imaginary
part. If at least one of the eigenvalues of A has a non zero imaginary part, then the norm of the operator
cannot be bounded uniformly in time. This shows that a necessary condition for stability is to have real
eigenvalues.

Now let is show that the matrix is diagonalizable. If not, there is one Jordan block. We can assume
without problem that A is this Jordan block. Taking the vector x = (0, 0, . . . , 1)T and computing eik·Atx,
we get

eiλkt
(

(itk)n−1

(n− 1)!
,

(itk)n−2

(n− 2)!
, . . . , 1

)
which L2 norm is (n−1∑

p=0

(
(tk)p

k!

)2)1/2

which cannot be bounded. Hence, for the L2 norm of eik·At to be bounded, we need A to be diagonalizable
in R.

The converse is immediate.

7.3. Solutions of Riemann problems, waves

We illustrate the explicit solution (7.19) for the Riemann initial data

(7.20) U0(x) =

{
UL if x < 0

UR if x > 0.

The first step in finding an explicit solution is to determine Λ and R for the given system A. These are
used to define W0 = R−1U0, which will be of the form

W0(x) =

{
WL if x < 0

WR if x > 0.

with WL = R−1UL and WR = R−1UR. Then we can solve (7.17) in terms of the transport equation
(7.18) to obtain

W p(x, t) =

{
W p
L if x < λpt

W p
R if x > λpt.

The solution U is obtained by letting U = RW. This solution consists of m waves, one for each
eigenvector. The p-th wave propagates with a speed of λp, and across this wave, there is a jump in
only the p-th component of W. This is seen clearly by decomposing the jump UR − UL in terms of
eigenvectors:

UR −UL = R
(
WR −WL

)
=

m∑
p=1

(
W p
R −W

p
L

)
rp

=

m∑
p=1

αprp,

(7.21)

where αp := W p
R −W

p
L is the wave strength of the p-th wave. Hence, the jump across the p-th wave

is proportional to the eigenvector rp. Thus, the solution of the Riemann problem for a linear system
corresponds to decomposing the initial jump into m waves (with the corresponding eigenvalue being the
wave speed), with the jump across the p-th wave being proportional to the corresponding eigenvector.

7.4. FINITE VOLUME SCHEMES 97

7.3.1. Example: The wave equation. We consider the linear wave equation (7.6). It is straight-
forward to find that the eigenvalues and eigenvectors of A are

(7.22) Λ = diag(−c, c), R =

[
−1 1
1 1

]
, R−1 =

[
− 1

2
1
2

1
2

1
2

]
.

Thus, the wave equation is strictly hyperbolic and diagonalizable, so the above construction of the explicit
solution is applicable. Consider the Riemann problem (7.20) for the wave equation (7.6). Let c = 1 for
simplicity. The solution of the Riemann problem is then

(7.23) U(x, t) =


UL if x < −t
U∗ if − t < x < t

UR if x > t,

where the mid-state U∗ is given by

U∗ = R

[
vR−uR

2
vL+uL

2

]
.

Thus, it is straightforward to calculate solutions to the Riemann problem for the wave equation.

7.3.2. Example: Linearized Euler equations. The eigenstructure of the linearized Euler equa-
tions (7.10) can be explicit computed as

(7.24) Λ = diag (ū− ā, ū, ū+ ā) , R =

− ρ̄ā 1 ρ̄
ā

1 0 1
−ρ̄ā 0 ρ̄ā

 ,
where

ā =

√
γp̄

ρ̄

denotes the local sound speed. Hence, the linearized Euler equations are strictly hyperbolic. The two
waves corresponding to r1 and r3 are termed the acoustic or sound waves and the wave corresponding
to r2 is called a contact wave. The Riemann problem for the linearized Euler equations can be solved
explicitly with the procedure outlined above.

7.4. Finite volume schemes

In this section, we construct finite volume schemes to approximate the linear system (7.2). For
simplicity, we consider a uniform grid in both space and time with mesh size ∆x and time step ∆t. The
mesh size and time step are related via a CFL type condition to be specified in the sequel. We denote
the grid points as xj+1/2 = xL + (j + 1/2)∆x and the time levels by tn. The domain is divided into cells
denoted by

Cj = [xj+1/2, xj−1/2).

See Figure 4.1 for an illustration of the grid.
By now, we are familiar with the design procedure (see Chapter 4) and know that it consists of the

following steps:

(i) Reconstruction: Realize the cell averages {Un
j }j∈Z as the piecewise constant function

Un(x) = Un
j for x ∈ Cj .

(ii) Evolution: Evolve the data to the next time level by solving

Ut +AUx = 0 x ∈ R, t > tn

U(x, tn) = Un(x) x ∈ R.
(7.25)

This amounts to solving a series of Riemann problems

(7.26)

Ut +AUx = 0, x ∈ R, t > tn

U(xj+1/2, t
n) =

{
Un
j if x < xj+1/2,

Un
j+1 if xj+1/2 < x

98 7. LINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

in the vicinity of each cell interface xj+1/2. These Riemann problems can be solved exactly (as
described in the previous section) or approximately (see the sequel). We know that the fastest
wave speed for each problem is bounded by the modulus of the maximum eigenvalue,

λmax = max
16p6m

|λp|,

where λp is the p-th eigenvalue of A. Hence, imposing a CFL condition

(7.27) λmax
∆t

∆x
6

1

2

prevents the waves from the neighboring problems to interact before time level tn+1.
(iii) Averaging: Average the solution of (7.25),

Un+1
j :=

1

∆x

∫
Cj

U
(
x, tn+1

)
, j ∈ Z.

Integrating (7.26) over Cj × [tn, tn+1) gives the following explicit expression for Un+1
j :

(7.28) Un+1
j = Un

j −
∆t

∆x

(
Fnj+1/2 − Fnj−1/2

)
with

(7.29) Fnj+1/2 = F
(
Un
j ,U

n
j+1

)
:= AUj+1/2

(
xj+1/2, t

n + 0
)
.

Here, Uj+1/2 is the solution of the (exact or approximate) solution of the Riemann problem
(7.26). We remark that the solution is self-similar and its value at the interface is time inde-
pendent.

The finite volume scheme (7.28) is similar to the scheme for scalar equations. The only difference
lies in the more complicated structure of solutions of the Riemann problem (7.26). We need to complete
(7.28) by computing the numerical flux explicitly.

7.4.1. Godunov flux. The Riemann problem (7.26) can be solved explicitly as described before.
The resulting flux evaluation (7.29) defines the Godunov flux for the linear system (7.2). It turns out
that we can derive a neat expression for the Godunov flux.

Let a+ = max(a, 0) and a− = min(a, 0). Then a = a+ +a− and |a| = a+−a− for any a ∈ R. The ex-
plicit solution of the Riemann problem (7.26) can be computed and the interface value Uj+1/2(xj+1/2, 0) =
U∗ can be calculated (see (7.21)) by

(7.30) U∗ = Un
j +

∑
p:λp<0

αpj+1/2rp,

where αpj+1/2 is the wave strength of the p-th wave, given by the p-th component of R−1(Un
j+1 −Un

j).

Since we are interested in calculating the interface flux in (7.29), we multiply both sides of (7.30) by A
to obtain

(7.31)

AU∗ = AUn
j +A

(∑
p:λp<0

αpj+1/2rp

)
= AUn

j +
∑

p:λp<0

αpj+1/2Arp

= AUn
j +

∑
p:λp<0

αpj+1/2λprp (as rp are eigenvectors of A)

= AUn
j +

∑
p

λ−p α
p
j+1/2rp.

Similarly, we have

U∗ = Un
j+1 −

∑
p:λp>0

αpj+1/2rp.

7.5. NUMERICAL EXPERIMENTS 99

Repeating the calculations of (7.31), we obtain

(7.32) AU∗ = AUn
j+1 −

∑
p

λ+
p α

p
j+1/2rp.

Taking the average of (7.31) and (7.32) leads to

(7.33)

AU∗ =
1

2

(
AUn

j +AUn
j+1 −

∑
p

(λ+
p − λ−p)αpj+1/2rp

)

=
1

2
A
(
Un
j + Un

j+1

)
− 1

2

∑
p

|λp|αpj+1/2rp.

Using the definition of the wave strength αpj+1/2 and defining

|Λ| = diag(|λ1|, · · · , |λm|),

it is straightforward to rewrite (7.33) as

(7.34) Fnj+1/2 = AU∗ =
1

2
A
(
Un
j + Un

j+1

)
− 1

2
R|Λ|R−1

(
Un
j+1 −Un

j

)
.

This is the explicit form of the Godunov flux for a linear system.
The Godunov scheme (7.28) with flux (7.34) for the linear system (7.2) should be compared with the

upwind flux (2.17) for the linear transport equation (2.2). In particular, both fluxes are written in the
central + diffusion form. The upwinding for a system is more complicated and involves characteristic
decomposition. Note that the flux (7.34) reduces to the standard upwind flux for a scalar equation, when
m = 1.

7.4.2. Lax-Friedrichs and Rusanov flux. The Godunov flux (7.34) requires a characteristic de-
composition of the system. Explicit expressions for the eigenvalues and eigenvectors may not be available
in some cases, and in others it might be computationally costly to evaluate them. Hence, there is scope
for designing cheaper alternative numerical fluxes that are easy to implement. Approximate Riemann
solvers (see Chapter 4) provide a recipe for designing such fluxes. The key idea is to replace the exact
solution of the Riemann problem (7.26) with an approximate solution. The Lax-Friedrichs flux is based
on a two-wave approximate Riemann solver (see Section 4.2.2). It is straightforward to generalize it to
the case of a linear system: We replace the exact solution (consisting of m waves) with exactly two waves,
one moving to the left and another to the right (see Figure 4.7). The wave speeds are − ∆x

2∆t and ∆x
2∆t ,

which is the maximum possible wave speed consistent with the CFL condition (7.27). The resulting flux
is

(7.35) Fnj+1/2 = FLxF
(
Un
j ,U

n
j+1

)
=

1

2
A
(
Un
j + Un

j+1

)
− ∆x

2∆t

(
Un
j+1 −Un

j

)
.

(compare to (4.30)). This flux is trivial to implement as it does not require any characteristic information.
As in the scalar case, the Lax-Friedrichs scheme ((7.28) with (7.35)) is likely to be diffusive. A

more reasonable choice of wave speeds in the approximate Riemann solver is the largest eigenvalue of A.
(Note that the maximum wave speed in the Riemann problem (7.26) is always bounded by the maximum
eigenvalue of A.) The resulting flux is the Rusanov flux

(7.36) Fnj+1/2 = FRus
(
Un
j ,U

n
j+1

)
=

1

2
A
(
Un
j + Un

j+1

)
− λmax

2

(
Un
j+1 −Un

j

)
(compare to (4.32)). The only characteristic information used in the Rusanov scheme is an estimate on
the maximum eigenvalue of A.

7.5. Numerical experiments

In this section we present numerical experiments for linear systems (7.2) using the Godunov, Lax-
Friedrichs and Rusanov schemes.

100 7. LINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

7.5.1. Numerical experiment 1. Consider the wave equation (7.6) with wave speed c = 1. Let
the initial data be the Riemann problem

u0(x) =

{
1− cos2(2π(x− 0.25)) if 0.25 6 x 6 0.75

0 otherwise

v0(x) = 0.

(7.37)

We compute on the periodic domain x ∈ [−1, 1] and divide the domain into 100 grid cells. In Figure 7.1
we present the computational results with the Godunov, Lax-Friedrichs and Rusanov schemes at time
t = 0.5, 1 and 2. The initial profile for u first separates into two parts, and at time t = 1 they meat at
x = −0.5 and merge together. This process is again repeated at time t = 2, at which time the solution
is the same as at t = 0.

(a) t = 0.5 (b) t = 1

(c) t = 2

Figure 7.1. Wave equation (7.6) computed at time t = 0.5, 1 and 2 with smooth
initial conditions (7.37) and periodic boundary conditions on 100 cells using Rusanov,
Lax-Friedrichs and Godunov fluxes. [waveBump.m]

From Figure 7.1 it is clear that the Lax-Friedrichs scheme is more diffusive than the Godunov and
Rusanov schemes. On the other hand, the Godunov and Rusanov schemes produce an identical profile.
The reason for this is that in this case the Rusanov and Godunov schemes are identical.

Exercise 7.3. Show that the Godunov and Rusanov fluxes (7.34) and (7.36) are identical for the wave
equation (7.7).

7.5. NUMERICAL EXPERIMENTS 101

7.5.2. Numerical experiment 2. Consider the wave equation (7.6) with wave speed c = 1 and
initial data

u0(x) =

{
1 if 0.25 6 x 6 0.75

0 otherwise

v0(x) = 0.

(7.38)

We compute on the periodic domain x ∈ [−1, 1] and divide the domain into 100 grid cells. Results are

(a) t = 0.5 (b) t = 1

(c) t = 2

Figure 7.2. Wave equation (7.6) computed at time t = 0.5, 1 and 2, with discontinuous
initial conditions (7.38) and periodic boundary conditions on 100 cells using Rusanov,
Lax-Friedrichs and Godunov fluxes. [waveDisc.m]

presented in Figure 7.2. The results are again plotted at time t = 0.5, 1 and 2. The solution behaves
similar to the smooth case. Again we see that the Lax-Friedrichs scheme is the most diffusive and that
the Godunov and Rusanov schemes produce identical results.

7.5.3. Numerical experiment 3. Consider the linearized Euler equation (7.10) with parametersρ̄ū
p̄

 =

1
0
1

 , γ =
7

5

102 7. LINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

and initial data

ρ0(x) =

{
1 if x < 0

0.2 if x > 0

u0(x) = 0

p0(x) =

{
1 if x < 0

0.2 if x > 0

(7.39)

in the computational domain [−1, 1] with Neumann (outflow) type boundary conditions. In Figure 7.3
we plot the density, velocity and pressure at time t = 0.5. The solution for density contain three waves,
one for each eigenvalue. The fastest wave is moving with speed equal to the highest eigenvalue of the
system. Note that the velocity and pressure contain only two waves.

(a) ρ (b) u

(c) p

Figure 7.3. Linearized Euler equation (7.10) computed up to time t = 0.5 with initial
conditions (7.39) and outflow boundary conditions. [linEuler.m]

The most striking feature in Figure 7.3 is that the Godunov solver resolves the stationary wave
in density exactly. This is a well-known feature of the Godunov scheme. In the velocity and pressure
solutions, the Rusanov and Godunov schemes compute the exact same solutions. Of the three schemes,
the Lax-Friedrichs scheme is by far the most inaccurate one.

7.6. HIGH-ORDER FINITE VOLUME SCHEMES 103

7.6. High-order finite volume schemes

It is relatively straightforward to extend the second-order schemes of Chapter 5 to the linear system
(7.2). Following Chapter 5, we use the semi-discrete form of the finite volume scheme (see (5.36)),

(7.40)
d

dt
Uj(t) +

1

∆x

(
Fj+1/2(t)− Fj−1/2(t)

)
,

where we denote the cell average as

Uj(t) =
1

∆x

∫ xj+1/2

xj−1/2

U(x, t) dx.

Given cell averages Uj , we wish to obtain a linear reconstruction pj in each cell Cj of the form

(7.41) pj(x) = Uj + σj(x− xj).
These linear functions are combined to form the piecewise linear function

(7.42) p(x, t) = pj(x) for xj−1/2 6 x < xj+1/2.

Contrary to the situation in Chapter 5, the slope σj is now a vector, and so the theory for scalar equations
does not translate directly to the present situation. There are two basic approaches to constructing the
slope σj .

7.6.1. Reconstruction in primitive variables. One approach to constructing σj is to reconstruct
in primitive (conserved) variables Upj (p = 1, . . . ,m). This involves applying the reconstruction procedures
of Chapter 5 to each component of Uj , thus constructing σj component by component.

7.6.2. Reconstruction in characteristic variables. An alternative reconstruction involves using
the characteristic variables. Given the cell averages Uj , we define the corresponding characteristic average
Wj = R−1Uj . We can then perform a componentwise reconstruction in Wj , as outlined in the previous
section, to obtain a reconstruction

(7.43) Wj(x) = Wj + µj(x− xj).
The primitive variables are then obtained from

(7.44) pj(x) = RWj(x).

7.6.3. The numerical flux. As in the scalar case, the numerical flux F in (7.40) is defined by

(7.45) Fj+1/2 = F
(
U+
j ,U

−
j+1

)
,

where

(7.46) U+
j = pj(xj+1/2), U−j = pj(xj−1/2),

and F is either the Godunov (7.34), Lax-Friedrichs (7.35) or Rusanov (7.36) numerical flux.

7.6.4. Time stepping. The time integration for (7.40) is performed with an SSP Runge-Kutta
method, as described in Chapter 5. Denoting

U(t) = [. . . ,Uj−1(t),Uj(t),Uj+1(t), . . .],

the finite volume scheme (7.40) can be rewritten as

(7.47)
d

dt
U(t) = L(U(t)),

where the operator L acts pointwise on the vector U as

L(U(t))j := − 1

∆x

(
Fj+1/2(t)− Fj−1/2(t)

)
.

The second-order SSP Runge-Kutta method is then defined by

(7.48)

U∗ = Un + ∆tL(Un)

U∗∗ = U∗ + ∆tL(U∗)

Un+1 =
1

2
(Un + U∗∗).

104 7. LINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

(a) Componentwise reconstruction (b) Characteristic reconstruction

Figure 7.4. Wave equation (7.6) computed up to time t = 1, with smooth initial
conditions (7.37) and periodic boundary conditions on a mesh of 100 grid cells. Computed
with the Godunov flux using the minmod, superbee and MC limiters. [waveBump 2nd.m]

(a) Componentwise reconstruction (b) Characteristic reconstruction

Figure 7.5. Wave equation (7.6) computed up to time t = 1, with discontinuous initial
conditions (7.38) and periodic boundary conditions on a mesh of 100 grid cells. Computed
with the Godunov flux using the minmod, superbee and MC limiters. [waveDisc 2nd.m]

7.7. Numerical experiments

In this section we repeat the numerical experiments carried out in Section 7.5 using second order
numerical scheme based on slope limiters. The computational results for the numerical experiment 1 are
presented in Figure 7.4, where we compare the performance of the minmod, superbee and MC limiters.
We note that both MC and superbee produce some oscillations. On the other hand, minmod is more
diffusive compared to the other limiters. Similar conclusion can be drawn from the computational results
of numerical experiment 2, presented in Figure 7.5.

In Figure 7.6 we present computational results for the linearized Euler equation using data from
numerical experiment 3. Here, the solutions are much sharper than that of the first-order scheme.
Similar to numerical experiments 1 and 2, we see that superbee and MC can produce some oscillation,
whereas minmod is slightly more diffusive. Note in particular that the stationary shock in density is
perfectly resolved, as for the first-order Godunov scheme.

7.7. NUMERICAL EXPERIMENTS 105

(a) ρ (b) u

(c) p

Figure 7.6. Linearized Euler equation (7.10) computed up to time t = 0.5 with initial
conditions (7.39) and outflow boundary conditions. Computed with the Godunov flux
using the minmod, superbee and MC limiters. [linEuler 2nd.m]

CHAPTER 8

Nonlinear hyperbolic systems in one space dimension

A large portion of the partial differential equations of the form

∂tU + ∂xf(U) = 0

U(x, 0) = U0(x)
(8.1)

which appear in the physical sciences are neither scalar equations nor linear systems, but nonlinear
systems of conservation laws. The most prominent example of a nonlinear system of conservation laws is
the Euler equations for compressible gas dynamics which we saw in Section 1.1.3, but there are several
other examples, modeling phenomena such as plasma physics, water waves and elastic materials. In this
section we study some of the main structural properties of these types of equations and give a tour of
what is known about the well-posedness of such equations. In particular we will study the Riemann
problem

∂tU + ∂xf(U) = 0

U(x, 0) =

{
UL if x < 0

UR if x > 0,

(8.2)

with the aim of determining the general form of the entropy solution. Just as for scalar equations and
linear systems, the solution of the Riemann problem is of great importance in designing finite volume
methods for (8.1).

In the remainder of this chapter, the unknown U will be a vector-valued function U : R × R+ → U
which is assumed to lie in, say, L1

loc

(
R × R+, U

)
. Here, U ⊂ Rm is the domain for which (8.1) makes

physical sense; for instance, the Euler equations (Section 1.1.3) require ρ and E, the first and last
components of U, to be nonnegative. The flux function f : U → Rm is assumed to be as smooth as we
like, say, C3.

Just as for scalar equations, the solutions of (8.1) might develop discontinuities after a finite amount
of time, regardless of how smooth U0 is. Hence, we need to interpret the PDE (8.1) in a weak sense.
Multiplying the equation by a test function, integrating over space-time and integrating by parts, we
arrive at the following definition.

Definition 8.1. A function U ∈ L1
loc

(
R × R+, U

)
is a weak solution of (8.1) if for every test function

ϕ ∈ C∞c (R× [0,∞)), ∫
R+

∫
R

U∂tϕ+ f(U)∂xϕdx dt+

∫
R

U0(x)ϕ(x, 0) dx = 0.

With no extra effort we can prove the Rankine–Hugoniot condition for systems of equations: If U is
a piecewise C1 function with only jump-type discontinuities, then the following are equivalent:

• U is a weak solution of (8.1)
• U is a classical solution wherever it is C1, and satisfies the Rankine–Hugoniot condition

(8.3) f(U+)− f(U−) = s(U+ −U−)

across every discontinuity x = γ(t). Here, s = γ′(t) and U± = limy→γ(t)± U(y, t).

Note that (8.3) is now a system of m equations but has 2m+ 1 unknowns: s and the components of U−

and U+. As we will see in Section 8.3, the entropy condition will put constraints on the remaining m+ 1
unknowns.

107

108 8. NONLINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

8.1. Structural properties

Without further structural assumptions, the initial value problem (8.1) is too general to develop a
well-posedness theory. In this section we impose several conditions on the flux function f which will
enable an existence and uniqueness theory.

Definition 8.2. The system (8.1) is hyperbolic if the Jacobian f ′(U) is real diagonalizable for every
U ∈ U , that is, there exists an invertible matrix R(U) ∈ Rm×m and numbers λ1(U) 6 . . . 6 λm(U) ∈ R
such that

f ′(U) = R(U)Λ(U)R(U)−1, Λ(U) := diag
(
λ1(U), . . . , λm(U)

)
.

The system (8.1) is strictly hyperbolic if the eigenvalues are distinct, i.e. λ1(U) < · · · < λm(U).

Definition 8.3. Consider a hyperbolic system (8.1) and let j ∈ {1, . . . ,m}. We say that the jth wave
family is genuinely nonlinear if ∇λj(U) · rj(U) 6= 0 for all U ∈ U . We say that the jth wave family is
linearly degenerate if ∇λj(U) · rj(U) = 0 for all U ∈ U .

Example 8.4. Consider a scalar conservation law, i.e. (8.1) with m = 1. The eigenvalue of the 1 × 1
matrix f ′(U) is just λ1(U) = f ′(U), with corresponding eigenvector, say, r1(U) = 1. Since f is assumed
to be real-valued, the eigenvalue λ1(U) is always real, so a scalar conservation law is always hyperbolic.
Since ∇λ1(U) = f ′′(U), we find that a scalar conservation law is genuinely nonlinear if and only if either
f ′′(U) > 0 or f ′′(U) < 0 for all U ∈ R, and it is linearly degenerate if and only if f is linear.

Example 8.5. Consider the linear system of equations (7.2), i.e. the equation (8.1) with f(U) = AU for
some constant matrix A ∈ Rm×m. This system is hyperbolic if A is real diagonalizable (so the concept
of hyperbolicity coincides with that of Chapter 7). All of the eigenvalues λj are constant with respect to
U, so ∇λj ≡ 0, meaning that every wave family of a linear system is linearly degenerate.

Example 8.6. The shallow water equations

∂th+ ∂x(hv) = 0

∂t(hv) + ∂x

(
1

2
gh2 + hv2

)
= 0

(8.4)

are a model for water waves in a shallow body of water (such as a river, lake or an ocean). The unknowns
are h = h(x, t), the water depth at the (horizontal) position x at time t, and v = v(x, t), the horizontal
velocity of the column of water at x. The parameter g is the gravitational constant, approximately
9.81m/s2. The conserved variables are h and m := hv, the momentum, and we can write (8.4) as the
system (8.1) with

U =

(
h
m

)
, f(U) =

(
m

1
2gh

2 + m2

h

)
.

It is easy to compute the eigenvalues and eigenvectors of f ′(U),

λ1(U) = v − c, λ2(U) = v + c, r1(U) =

(
1

v − c

)
, r2(U) =

(
1

v + c

)
where c :=

√
gh. The eigenvalues are real as long as h > 0, and the matrix R(U) =

(
r1(U) r2(U)

)
is

invertible if h 6= 0. We conclude that the shallow water equations is strictly hyperbolic in the domain

U =
{

(h,m) ∈ R2 : h > 0
}
.

A straightforward computation shows that

∇λ1(U) · r1(U) = −3

2

√
g

h
, ∇λ2(U) · r2(U) =

3

2

√
g

h
,

so both wave families are genuinely nonlinear for U ∈ U .

Example 8.7. Consider the (one-dimensional) compressible Euler equations for a polytropic gas,

∂tρ+ ∂x(ρv) = 0

∂t(ρv) + ∂x
(
ρv2 + p

)
= 0

∂tE + ∂x
(
(E + p)v

)
= 0.

(8.5)

8.2. SIMPLE SOLUTIONS 109

This is an equation for the motion of a gas in a (one-dimensional) container, and the unknowns ρ, v, p and
E are the mass density, velocity, pressure and energy, respectively (see also Section 1.1.3). The pressure
and energy are related through the equation of state

E =
p

γ − 1
+

1

2
ρv2.

The eigenvalues of the Jacobian f ′(U) are

λ1(U) = v − c, λ2(U) = v, λ3(U) = v + c

and the corresponding eigenvectors are

r1(U) =

 1
v − c
H − vc

 , r2(U) =

 1
v

1
2v

2

 , r3(U) =

 1
v + c
H + vc

 .

Here, c =
√

γp
ρ is the speed of sound and H = E+p

ρ is the total specific enthalpy. The eigenvalues are real

as long as ρ > 0, p > 0, and the matrix of eigenvectors is invertible as long as ρ, p > 0. Thus, the Euler
equations is hyperbolic in the domain

U =
{

(ρ,m,E) ∈ R3 : ρ > 0, E > m2

2ρ

}
.

By a straightforward calculation it can be shown that the first and third wave families are genuinely
nonlinear, while the second wave family is linearly degenerate.

8.2. Simple solutions

We will henceforth assume that every wave family is either genuinely nonlinear or linearly degenerate.
Moreover, when the jth wave family is genuinely nonlinear we will normalize the eigenvector rj so that

(8.6) ∇λj(U) · rj(U) = 1 for all U ∈ U .
In this section we will look for some particular solutions of the Riemann problem (8.3) called simple
solutions, with the goal of “gluing” these together to solve the general Riemann problem in Section 8.4.
For the remainder of this section we fix UL ∈ U , and we will try to determine the set of all UR ∈ U such
that the resulting Riemann problem (8.3) has a particular type of solution, such as a rarefaction wave or
a shock wave.

8.2.1. Rarefaction waves. Recall that a rarefaction wave is a smooth solution of (8.2). Based on
the observation that the initial value problem (8.2) is invariant under the transformation (x, t) 7→ (αx, αt)
for any α > 0 (that is, if U is a solution then also U(αx, αt) is a solution), we look for solutions which
are invariant to this transformation:

U(x, t) = u(x/t)

for some differentiable u : R→ Rm. Inserting into (8.1) we find that

0 = ∂tu(x/t) + ∂xf(u(x/t)) = − x
t2

u′(x/t) +
1

t
f ′(u(x/t))u′(x/t),

or written in terms of ξ := x/t,

(8.7) f ′(u(ξ))u′(ξ) = ξu′(ξ).

This can only mean one of two things: Either u′(ξ) = 0, or u′(ξ) is an eigenvector of the Jacobian f ′(u(ξ))
with corresponding eigenvalue ξ. In the latter case we can write

(8.8) u′(ξ) = rj(u(ξ)), ξ = λj(u(ξ))

for some j ∈ {1, . . . ,m} (at least up to a scalar multiple of rj). From the second identity in (8.8) we
see that if u(ξL) = UL and u(ξR) = UR for some ξL, ξR ∈ R, then ξL = λj(UL) and ξR = λj(UR).
Therefore, the solution will be the function

(8.9) U(x, t) =


UL

x
t < λj(UL)

u(xt) λj(UL) < x
t < λj(UR)

UR λj(UR) < x
t .

110 8. NONLINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

If we differentiate the second identity in (8.8) with respect to ξ we obtain

1 = ∂ξλj(u(ξ)) = ∇λj(u(ξ)) · u′(ξ) = ∇λj(u(ξ)) · rj(u(ξ)),

where we have first used the chain rule and then the first identity in (8.8). Note that the particular
normalization ∇λj · rj = 1 is the normalization which we imposed on genuinely nonlinear wave families
in (8.6).

The above computations motivate the following construction of a family of solutions of the Riemann
problem. Let Wj = Wj(ε) be the solution of the ODE

(8.10) W′
j(ε) = rj(W(ε)), Wj(0) = UL

(which is merely a reparametrization of the first identity in (8.8) with ε = ξ − λj(UL)). In other words,
Wj is a parametrization of the integral curve of the vector field rj that goes through UL. By the standard
theory of ODEs, the problem (8.10) has a unique solution for ε ∈ (−ε̄, ε̄) for some ε̄ > 0. If UR lies
anywhere on the integral curve Rj(UL) = {Wj(ε) : 0 6 ε < ε̄} then the Riemann problem (8.3) has
the solution (8.9) with u(ξ) = Wj

(
ξ − λj(UL)

)
. (Here we exclude values ε < 0, for if ε were negative

then λj(UR) = ε+ λj(UL) < λj(UL), in which case the formula (8.9) would not make sense.)

Lemma 8.8. Let the jth wave family be genuinely nonlinear and let UL ∈ U . Then there is a curve

(8.11) Rj(UL) = {Wj(ε) : 0 6 ε < ε̄}

emanating from UL such that if UR ∈ Rj(UL) then

(8.12) U(x, t) =


UL

x
t < λj(UL)

Wj

(
x
t − λj(UL)

)
λj(UL) < x

t < λj(UR)

UR λj(UL) < x
t .

solves the Riemann problem (8.2).

8.2.2. Contact discontinuities. As we found in the previous section, a linearly degenerate wave
family cannot have rarefaction wave solutions, so we should expect discontinuous solutions whenever the
jth wave family is linearly degenerate. It is still natural to ask what the integral curve (8.10) yields in
this case. Differentiating λj(Wj(ε)) with respect to ε now yields

d

dε
λj(Wj(ε)) = ∇λj(Wj(ε)) · rj(Wj(ε)) ≡ 0,

so it follows that λj(Wj(ε)) ≡ λj(UL) for every ε ∈ (−ε̄, ε̄). We then find that

d

dε

(
f(Wj)− λj(Wj)Wj

)
= f ′(Wj)

dWj

dε
− λj(Wj)

dWj

dε
= f ′(Wj)rj − λj(Wj)rj

= λj(Wj)rj − λj(Wj)rj

= 0.

Hence, if UR = Wj(ε) for any ε ∈ (−ε̄, ε̄), then f(UR) − λj(UR)UR = f(UL) − λj(UL)UL, which can
be rewritten as

f(UR)− f(UL) = s
(
UR −UL

)
, s := λj(UL) = λj(UR).

This is precisely the Rankine–Hugoniot condition for a discontinuity moving with speed s. We conclude:

Lemma 8.9. Let the jth wave family be linearly degenerate and let UL ∈ U . Then there is a curve

(8.13) Cj(UL) =
{
Wj(ε) : ε ∈ (−ε̄, ε̄)

}
passing through UL such that if UR ∈ Cj(UL) then

(8.14) U(x, t) =

{
UL

x
t < λj(UL)

UR λj(UL) < x
t

is a weak solution of the Riemann problem (8.2).

8.3. ENTROPY CONDITIONS 111

A solution such as the above, where λj remains constant across a jump along the jth eigenvector,
is called a contact discontinuity. Contact discontinuities appear in gas dynamics when a discontinuity
in the mass density (but not in the pressure or velocity) is transported along with the gas. This is to
be distinguished from shock waves, which move faster than the gas itself, and are characterized by a
discontinuous increase in pressure.

8.2.3. The Hugoniot locus. We have found a class of discontinuous simple solutions correspond-
ing to linearly degenerate wave families, as well as smooth simple solutions corresponding to genuinely
nonlinear wave families. It remains to determine the discontinuous simple solutions corresponding to
genuinely nonlinear wave families.

Fix some UL ∈ U . Since all discontinuous solutions must satisfy the Rankine–Hugoniot condition,
we define

(8.15) H(UL) =
{
UR ∈ U : ∃ s ∈ R such that f(UR)− f(UL) = s

(
UR −UL

)}
.

This set is called the Hugoniot locus, and consist of all UR ∈ U such that

(8.16) U(x, t) =

{
UL

x
t < s

UR s < x
t

(for some s ∈ R) is a weak solution of the Riemann problem (8.2). Clearly, the contact discontinuity
curve Cj(UL) is a subset of the Hugoniot locus.

Lemma 8.10. Assume that (8.1) is strictly hyperbolic and let UL ∈ U . Then there exist m curves
H1(UL), . . . ,Hm(UL) passing through UL such that

H(UL) = H1(UL) ∪ · · · ∪ Hm(UL).

Moreover, each curve Hj(UL) can be parametrized by some function Wj(ε) satisfying

(8.17) Wj(0) = UL, W′
j(0) = rj(UL).

Sketch of proof. The idea is to use the fundamental theorem of calculus to write f(UR) − f(UL) =

M(UL,UR)
(
UR −UL

)
, where M(UL,UR) =

∫ 1

0
f ′
(
UL + τ(UR −UL)

)
dτ . We can then write

H(UL) =
{
UR ∈ U : ∃ s ∈ R such that M(UL,UR)

(
UR −UL

)
= s
(
UR −UL

)}
,

in other words, UR − UL must be an eigenvector of M(UL,UR). The matrix M(UL,UL) = f ′(UL)
is real diagonalizable, so for UR within some ε̄-distance of UL, the matrix M(UL,UR) is still real
diagonalizable. An application of the Implicit Function Theorem now yields the existence of m distinct
curves W1(ε), . . . ,Wm(ε) such that Wj(0) = UL and

M
(
UL,Wj(ε)

)(
Wj(ε)−UL

)
= s
(
Wj(ε)−UL

)
.

Dividing by ε and passing ε → 0, we see that W′
j(0) is an eigenvector of M(UL,UL) = f ′(UL). After

possibly reordering and reparametrizing W1, . . . ,Wm we can conclude that W′
j(0) = rj(UL). �

8.3. Entropy conditions

Given any left-hand state UL, the Hugoniot locus provides an entire family of right-hand states UR

for which the Riemann problem has a discontinuous solution. However, just as for scalar conservation
laws, we should expect some of these solutions to be physically unrealistic, and we need to impose further
entropy conditions to single out a unique, physically relevant solution. To this end, consider the following
parabolic regularization of (8.1):

(8.18) ∂tU + ∂xf(U) = ν∂xxU

for some viscosity parameter ν > 0. We would like to consider only those weak solutions of (8.2) which
arise as the limit ν → 0 of the regularized equation (8.18). As for scalar conservation laws, we study the
limit ν → 0 in terms of the entropy of the solution. To this end, let η : U → R be a convex function and
take the inner product of (8.18) with η′(U):

η′(U)T∂tU + η(U)T f ′(U)∂xU = νη′(U)T∂xxU,

112 8. NONLINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

where T denotes the transpose. By manipulations similar to those in Section 3.3, we can write the above
as

(8.19) ∂tη(U) + η(U)T f ′(U)∂xU = ν∂xxη(U)− ν(∂xU)T η′′(U)(∂xU).

Here, η′′ is the Hessian of η. Assume now that there is a function q : U → R such that q′(U)T =
η(U)T f ′(U) for all U ∈ U . We can then write η(U)T f ′(U)∂xU = q′(U)T∂xU = ∂xq(U).

Definition 8.11. A pair of functions η : U → R and q : U → R is an entropy pair for (8.1) if η is
strictly convex and q satisfies q′(U)T = η(U)T f ′(U) for all U ∈ U .

By the assumption of convexity, the Hessian η′′ is positive definite, and so the second term on the
right-hand side of (8.19) is nonpositive. In the limit ν → 0 we therefore obtain

(8.20) ∂tη(U) + ∂xq(U) 6 0.

This will be our entropy condition.

Definition 8.12. A weak solution U of (8.1) is an entropy solution if for all entropy pairs (η, q) the
entropy inequality (8.20) holds in the sense of distributions, that is,∫

R+

∫
R
η(U)∂tϕ+ q(U)∂xϕdx dt+

∫
R
η(U0(x))ϕ(x, 0) dx > 0 ∀ ϕ ∈ C∞c (R× R+).

Example 8.13. Consider the shallow water equations, Example 8.6. The energy of a state U ∈ U is
defined as

η(U) =
1

2
gh2 +

1

2
hv2,

which is the sum of potential and kinetic energy. Writing η in terms of conserved variables, η(U) =
1
2gh

2 + m2

2h , it is clear that η is strictly convex for h > 0. If we define q(U) = 1
2hv

3 + h2v then it is
straightforward to show that (η, q) is an entropy pair for the shallow water equations.

Example 8.14. Consider the compressible Euler equations for a polytropic gas, Example 8.7. The
thermodynamic entropy is defined as

η(U) = − ρs

γ − 1

where s = log
(
p
ργ

)
is the specific entropy. If we define q(U) = − ρvs

γ−1 then (η, q) is an entropy pair for

(8.5).

Remark 8.15. In most nonlinear hyperbolic systems which appear in the physical sciences, there is only
one entropy pair available. This is in stark contrast to scalar conservation law, where any convex function
η gives rise to an entropy pair.

In the particular case where U is a piecewise C1 function with jump discontinuities across smooth
curves, we can simplify the entropy condition in Definition 8.12 greatly, just as for scalar conservation
laws (cf. Theorem 3.8). If U−, U+ denote the values to the left and to the right of a jump discontinuity
with speed s, then the following are equivalent:

• U is an entropy solution of (8.1)
• U is a classical solution of (8.1) wherever it is C1, and at jump discontinuities it satisfies

(8.21)
(
q(U+)− q(U−)

)
− s
(
η(U+)− η(U−)

)
6 0

for every entropy pair (η, q).

The proof of the above equivalence is more or less the same as for scalar equations, and follows by the
same approach as the proof of the Rankine–Hugoniot condition.

We now determine which parts of the Hugoniot locus H(UL) = H1(UL)∪ · · · ∪Hm(UL) satisfies the
entropy condition (8.21). For each j ∈ {1, . . . ,m}, we must consider two cases:

The jth wave family is linearly degenerate: Here we know that Hj(UL) = Cj(UL), and that this
curve is parametrized by the integral curve (8.10). Define the quantity

E(ε) =
(
q(Wj(ε))− q(UL)

)
− s(Wj(ε))

(
η(Wj(ε))− η(UL)

)
.

8.3. ENTROPY CONDITIONS 113

From (8.21) we see that a discontinuity with left- and right-hand sides UL and UR := Wj(ε)
satisfies the entropy condition if and only if E(ε) 6 0. Writing W = Wj(ε) and s = s(Wj(ε)),
we have

E′(ε) = η′(W) · f ′(W)W′ − s′(η(W)− η(UL))− sη′(W) ·W′

= η′(W) ·
(
f ′(W)W′ − sW′)− s′(η(W)− η(UL))

= 0,

where we have used the fact that W′ is an eigenvector of f ′ with eigenvalue s ≡ λj(UL). Since
E(0) = 0 we can conclude that contact discontinuities always satisfy the entropy condition.

The jth wave family is genuinely nonlinear: In this case the computation is somewhat more in-
volved. Let Wj(ε) be the parametrization of the curve Hj(UL) given in Lemma 8.10, and let
s(ε) be the speed of the corresponding discontinuity. By differentiating the relation f(Wj(ε))−
f(UL) = s(ε)

(
Wj(ε)−UL

)
twice, it is straightforward to show that

(8.22) λj(0) = s(0), λ′j(0) = 2s′(0) = 1

(where λj(ε) = λ(Wj(ε))). A long and tedious computation shows that E′(0) = E′′(0) = 0,
while

E′′′(0) =
1

2
rT η′′(UL)r, r = rj(UL).

The Hessian matrix η′′ is positive definite since η is strictly convex, so for ε small, we find that
E(ε) < 0 if and only if ε < 0. From (8.22) we see that, up to terms of order ε2,

λj(ε) = λj(UL) + ε, s(ε) = λj(UL) +
ε

2
.

Solving for ε, we can state the condition ε < 0 equivalently in terms of the shock speed s and
the eigenvalues:

(8.23a) λj(UR) < s < λj(UL)

If the system is strictly hyperbolic, i.e. λ1(U) < · · · < λm(U), then we can also deduce that (at
least for ε small)

(8.23b) λj−1(UL) < s < λj+1(UR)

The condition (8.23) is the Lax entropy condition, and it can be interpreted geometrically as follows:
The characteristics in the jth wave family (i.e., curves in the x-t-plane with slope λj(U)) impinge on the
shock, whereas the characteristics in all other wave families go through the shock. Counting characteristic
curves, we see that (8.23) asserts that m− j+ 1 characteristics impinge on the shock from the left, while
j characteristics impinge on it from the right—a total of m + 1 conditions. Taken together with the
m equations in the Rankine–Hugoniot condition (8.3), we see that the Lax entropy condition provides
enough information to determine the 2m+ 1 unknowns s and UL, UR.

Lemma 8.16. Assume that (8.1) is strictly hyperbolic with only linearly degenerate or genuinely non-
linear wave families. Consider a piecewise C1 weak solution U of (8.1) with sufficiently small jump
discontinuities. Then U is an entropy solution of (8.1) if and only if at every jump discontinuity there
is an index j ∈ {1, . . . ,m} such that either:

• the jth wave family is linearly degenerate, or
• the jth wave family is genuinely nonlinear, and the Lax entropy condition (8.23) holds.

We have also found that for every genuinely nonlinear wave family j, if we restrict the Hugoniot curve
Hj(UL) = {Wj(ε) : ε ∈ (−ε̄, ε̄)} to values ε < 0, then the discontinuous solution (8.16) is an entropy
solution.

Lemma 8.17. Let the jth wave family be genuinely nonlinear and let UL ∈ U . Then there is a curve

(8.24) Sj(UL) =
{
Wj(ε) : −ε̄ < ε 6 0

}
emanating from UL such that if UR ∈ Sj(UL) then there is some s ∈ R such that

(8.25) U(x, t) =

{
UL

x
t < s

UR s < x
t

114 8. NONLINEAR HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION

is an entropy solution of the Riemann problem (8.2).

8.4. The Riemann problem

To solve the general Riemann problem (8.2) we will assume that the system is strictly hyperbolic and
that each wave family is either genuinely nonlinear or linearly degenerate. In the previous sections we
have shown that through every UL ∈ U , there are m curves W1(UL), . . . ,Wm(UL) such that if UR lies
on any of these curves, then the resulting Riemann problem can be solved with a single simple solution—
either a rarefaction wave, a contact discontinuity or an (entropy satisfying) shock. To be more precise,
we can write the set of all states UR which can be connected to UL by a simple solution as

W(UL) =W1(UL) ∪ · · · ∪Wm(UL),

Wj(UL) =

{
Cj(UL) if the jth wave family is linearly degenerate

Sj(UL) ∪Rj(UL) if the jth wave family is genuinely nonlinear.

(8.26)

Each of the curves Cj , Sj and Rj can be parametrized by some function Wj(UL, ε) for ε ∈ (−ε̄, ε̄),
ε ∈ (−ε̄, 0] and ε ∈ [0, ε̄), respectively, where ε̄ > 0 is some number depending only on UL. For
any UR = Wj(UL, ε) ∈ W(UL), denote the simple solution of the corresponding Riemann problem
by uj(UL, ε;x, t)—that is, uj(UL, ε; ·, ·) is either of the formulas (8.12), (8.14) or (8.25), depending on
whether UR lies on Rj , Cj or Sj , respectively.

To construct the solution of the Riemann problem for general UL,UR ∈ U , the idea is to “walk”
along each of the wave curves Wj and “paste” together the corresponding simple solutions, as follows:
The state UL can be connected to any intermediate state U1 = W1(UL, ε1) by the simple solution
u1

(
UL, ε1;x, t

)
. The state U1 can again be connected to another state U2 = W2(U1, ε2) by the simple

solution u2

(
U1, ε2;x, t

)
. By carefully choosing ε1, . . . , εm, the hope is that we finally end up at Um =

Wm(Um−1, εm) = UR—in other words,

(8.27) UR = Wm

(
Wm−1

(
. . .W1

(
UL, ε1

)
, . . .

)
, εm−1

)
, εm

)
.

It is rather straightforward to see that we can indeed find ε1, . . . , εm so that we can connect UL and UR by
m waves, as described above. For any U ∈ U , each of the curves W1(U), . . . ,Wm(U) is parametrized by

some function Wj(U, ε) satisfying
∂Wj

∂ε (U, 0) = rj(U). Since r1(U), . . . , rm(U) are linearly independent,
and since the curvesW1, . . . ,Wm are smooth, the collection of curvesW(U) constitute a local coordinate
system around U. By an application of the Implicit Function Theorem we deduce that for any UR in
some open ball around UL, we can indeed find ε1, . . . , εm such that (8.27) holds.

We summarize our conclusions in the following theorem, which was originally published in [Lax57].

Theorem 8.18. Consider a strictly hyperbolic system of conservation laws where every wave family is
either genuinely nonlinear or linearly degenerate. Fix some UL ∈ U . Then there is a δ > 0 such that if
|UR−UL| < δ then the Riemann problem (8.2) has a unique solution consisting of m+ 1 constant states
UL = U0,U1, . . . ,Um = UR separated by simple solutions:

(8.28) U(x, t) =



UL
x
t < σ−1

u1

(
UL, ε1;x, t

)
σ−1 < x

t < σ+
1

U1 σ+
1 < x

t < σ−2
...

Um−1 σ+
m−1 <

x
t < σ−m

um
(
Um−1, εm;x, t

)
σ−m < x

t < σ+
m

UR σ+
m < x

t

for some σ−1 6 σ
+
1 6 . . . 6 σ

+
m and ε1, . . . , εm ∈ R.

APPENDIX A

Results from real analysis

Theorem A.1 (Gronwall’s inequality). Let β(t) be continuous and u(t) be differentiable on some interval
[a, b], and assume that

u′(t) 6 β(t)u(t) ∀ t ∈ (a, b).

Then

u(t) 6 u(a) exp

(∫ t

a

β(t)

)
∀ t ∈ [a, b].

115

Bibliography

[CM80] M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Math. Comp.,

34:121, 1980.

[DS88] N. Dunford and J. T. Schwartz. Linear operators. Part I. Wiley Classics Library. John Wiley & Sons Inc., New
York, 1988.

[Giu84] E. Giusti. Minimal Surfaces and Functions of Bounded Variation, volume 80 of Monographs in Mathematics.

Birkhuser Basel, 1984.
[God59] S. K. Godunov. A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equa-

tions. Math. Sbornik, 47:271306, 1959.

[GR91] E. Godlewski and P.A. Raviart. Hyperbolic Systems of Conservation Laws. Ellipses, 1991.
[GST01] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong Stability-Preserving High-Order Time Discretization Methods.

SIAM Review, 43(1):89112, 2001.
[Har83] A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics,

49(3):357393, 1983.

[HNW87] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations. 1987.
[HOEC86] A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy. Some results on uniformly high-order accurate

essentially nonoscillatory schemes. Appl. Numer. Math., 2(3-5):347378, 1986.

[Hop69] E. Hopf. On the right weak solution of the Cauchy problem for quasilinear equations of first order. Journal of
Mathematics and Mechanics, 19:483487, 1969.

[HR15] H. Holden and N. H. Risebro. Front Tracking for Hyperbolic Conservation Laws. Springer-Verlag Berlin Heidel-

berg, second edition edition, 2015.
[Kru70] S. N. Kruzkov. First order quasilinear equations in several independent variables. Mathematics of the USSR-

Sbornik, 10(2):217243, 1970.

[Lax57] P. D. Lax. Hyperbolic systems of conservation laws II. Communications on Pure and Applied Mathematics,
10(4):537566, 1957.

[LL87] L. D. Landau and E. M. Lifschitz. Fluid Mechanics. Butterworth-Heinemann, 1987.
[LOC94] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. J. Comput. Phys.,

115(1):200212, 1994.

[Ole59] O. A. Oleinik. Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear
equation. Uspekhi Mat. Nauk, 14(2(86)):165170, 1959. English translation, Amer. Math. Soc. Trans., ser. 2, no.

33, pp. 285-290.

[Shu97] C.-W. Shu. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Con-
servation Laws. Technical report, 1997.

[TW09] A. Tveito and R. Winther. Introduction to Partial Differential Equations; A Computational Approach, vol-

ume 29. Springer-Verlag, second edition, 2009.

117

	About these notes
	Chapter 1. Introduction
	1.1. Examples for conservation laws.
	1.2. Content and scope of these notes

	Chapter 2. Linear Transport Equations
	2.1. Method of characteristics
	2.2. Finite difference schemes for the transport equation
	2.3. An upwind scheme
	2.4. Stability for the upwind scheme: L1, L2 and L norms

	Chapter 3. Scalar conservation laws
	3.1. Characteristics for Burgers' equation
	3.2. Weak solutions
	3.3. Entropy solutions
	3.4. Solutions to the Riemann problem for general f
	3.5. Summary

	Chapter 4. Finite volume schemes for scalar conservation laws
	4.1. Finite volume scheme
	4.2. Approximate Riemann Solvers
	4.3. Comparison of different finite volume schemes
	4.4. Consistent, conservative and monotone schemes
	4.5. Stability properties of monotone schemes
	4.6. Convergence of monotone methods
	4.7. A note on boundary conditions

	Chapter 5. Second-order (high-resolution) finite volume schemes
	5.1. Order of accuracy
	5.2. The REA algorithm
	5.3. The minmod limiter
	5.4. Other limiters
	5.5. Flux limiters and the TVD property.
	5.6. High-resolution methods for nonlinear problems.
	5.7. Second-order semi-discrete schemes.
	5.8. Time stepping
	5.9. High-resolution algorithm
	5.10. Numerical experiments

	Chapter 6. Very high-order finite volume methods for scalar conservation laws.
	6.1. High-order accurate piecewise polynomial reconstructions
	6.2. ENO reconstruction procedure
	6.3. WENO Reconstruction
	6.4. WENO Algorithm
	6.5. Numerical flux calculation
	6.6. Time-Stepping
	6.7. Numerical Experiments

	Chapter 7. Linear hyperbolic systems in one space dimension
	7.1. Examples of linear systems
	7.2. Hyperbolicity and characteristic decomposition
	7.3. Solutions of Riemann problems, waves
	7.4. Finite volume schemes
	7.5. Numerical experiments
	7.6. High-order finite volume schemes
	7.7. Numerical experiments

	Chapter 8. Nonlinear hyperbolic systems in one space dimension
	8.1. Structural properties
	8.2. Simple solutions
	8.3. Entropy conditions
	8.4. The Riemann problem

	Appendix A. Results from real analysis
	Bibliography

