
Part I

Numbers

21





Chapter 2
0 and 1

’0 and 1’ may seem like an uninteresting title for this first proper chapter, but
most readers probably know that at the most fundamental level computers al-
ways deal with 0s and 1s. Here we will first learn about some of the advantages
of this, and then consider some of the mathematics of 0 and 1.

2.1 Robust communication

Suppose you are standing at one side of a river and a friend is standing at the
other side, 500 meters away; how can you best communicate with your friend in
this kind of situation, assuming you have no aids at your disposal? One possi-
bility would be to try and draw the letters of the alphabet in the air, but at this
distance it would be impossible to differentiate between the different letters as
long as you only draw with your hands. What is needed is a more robust way to
communicate where you are not dependent on being able to decipher so many
different symbols. As far as robustness is concerned, the best would be to only
use two symbols, say ’horizontal arm’ and ’vertical arm’ or ’h’ and ’v’ for short.
You can then represent the different letters in terms of these symbols. We could
for example use the coding shown in table 2.1 which is built up in a way that will
become evident in chapter 3. You would obviously have to agree on your coding
system in advance.

The advantage of using only two symbols is of course that there is little dan-
ger of misunderstanding as long as you remember the coding. You only have to
differentiate between two arm positions, so you have generous error margins for
how you actually hold your arm. The disadvantage is that some of the letters re-
quire quite long codes. In fact, the letter ’s’ which is among the most frequently
used in English, requires a code with five arm symbols, while the two letters ’a’

23



a h j vhhv s vhhvh
b v k vhvh t vhhvv
c vh l vhvv u vhvhh
d vv m vvhh v vhvhv
e vhh n vvhv w vhvvh
f vhv o vvvh x vhvvv
g vvh p vvvv y vvhhh
h vvv q vhhhh z vvhhv
i vhhh r vhhhv

Table 2.1. Representation of letters in terms of ’horizontal arm’ (’h’) and ’vertical arm’ (’v’).

and ’b’ which are less common both require one symbol each. If you were to
make heavy use of this coding system it would therefore make sense to reorder
the letters such that the most frequent ones (in your language) have the shortest
codes.

2.2 Why 0 and 1 in computers?

The above example of human communication across a river illustrates why it
is not such a bad idea to let computers operate with only two distinct symbols
which we may call ’0’ and ’1’ just as well as ’h’ and ’v’. A computer is built to
manipulate various kinds of information and this information must be moved
between the different parts of the computer during the processing. By repre-
senting the information in terms of 0s and 1s, we have the same advantages as
in communication across the river, namely robustness and the simplicity of hav-
ing just two symbols.

In a computer, the 0s and 1s are represented by voltages, magnetic charges,
light or other physical quantities. For example 0 may be represented by a volt-
age in the interval 1.5 V to 3 V and 1 by a voltage in the interval 5 V to 6.5 V. The
robustness is reflected in the fact that there is no need to measure the voltage
accurately, we just need to be able to decide whether it lies in one of the two
intervals. This is also a big advantage when information is stored on an exter-
nal medium like a DVD or hard disk, since we only need to be able to store 0s
and 1s. A ’0’ may be stored as ’no reflection’ and a ’1’ as ’reflection’, and when
light is shone on the appropriate area we just need to detect whether the light is
reflected or not.

A disadvantage of representing information in terms of 0s and 1s is that we
may need a large amount of such symbols to encode the information we are in-

24



terested in. If we go back to table 2.1, we see that the ’word’ hello requires 18
symbols (’h’s and ’v’s), and in addition we have to also keep track of the bound-
aries between the different letters. The cost of using just a few symbols is there-
fore that we must be prepared to process large numbers of them.

Although representation of information in terms of 0s and 1s is very robust,
it is not foolproof. Small errors in for example a voltage that represents a 0 or 1
do not matter, but as the voltage becomes more and more polluted by noise, its
value will eventually go outside the permitted interval. It will then be impossible
to tell which symbol the value was meant to represent. This means that increas-
ing noise levels will not be noticed at first, but eventually the noise will break the
threshold which will make it impossible to recognise the symbol and therefore
the information represented by the symbol.

When we think of the wide variety of information that can be handled by
computers, it may seem quite unbelievable that it is all comprised of 0s and 1s.
In chapter 1 we saw that information commonly processed by computers can be
represented by numbers, and in the next chapter we shall see that all numbers
may be expressed in terms of 0s and 1s. The conclusion is therefore that a wide
variety of information can be represented in terms of 0s and 1s.

Observation 2.1 (0 and 1 in computers). In a computer, all information is
usually represented in terms of two symbols, ’0’ and ’1’. This has the advan-
tage that the representation is robust with respect to noise, and the electronics
necessary to process one symbol is simple. The disadvantage is that the code
needed to represent a piece of information becomes longer than what would
be the case if more symbols were used.

Whether we call the two possible values 0 and 1, ’v’ and ’h’ or ’yes’ and ’no’
does not matter. What is important is that there are only two symbols, and what
these symbols are called usually depends on the context. An important area of
mathematics that depends on only two values is logic.

2.3 True and False

In everyday speech we make all kinds of statements and some of them are ob-
jective and precise enough that we can check whether or not they are true. Most
people would for example agree that the statements ’Oslo is the capital of Nor-
way’ and ’Red is a colour’ are true, while there is less agreement about the state-
ment ’Norway is a beautiful country’. In normal speech we also routinely link
such logical statements together with words like ’and’ and ’or’, and we negate a
statement with ’not’.

25



Mathematics is built by strict logical statements that are either true or false.
Certain statements which are called axioms, are just taken for granted and form
the foundation of mathematics (something cannot be created from nothing).
Mathematical proofs use logical operations like ’and’, ’or’, and ’not’ to combine
existing statements and obtain new ones that are again either true or false. For
example we can combine the two true statements ’π is greater than 3’ and ’π is
smaller than 4’ with ’and’ and obtain the statement ’π is greater than 3 and π is
smaller than 4’ which we would usually state as ’π lies between 3 and 4’. Likewise
the statement ’π is greater than 3’ can be negated to the opposite statement ’π
is less than or equal to 3’ which is false.

Even though this description is true, doing mathematics is much more fun
than it sounds. Not all new statements are interesting even though they may
be true. To arrive at interesting new truths we use intuition, computation and
any other aids at our disposal. When we feel quite certain that we have arrived
at an interesting statement comes the job of constructing the formal proof, i.e.,
combining known truths in such a way that we arrive at the new statement. If
this sounds vague you should get a good understanding of this process as you
work your way through any university maths course.

2.3.1 Logical variables and logical operators

When we introduced the syntax for algorithms in section 1.4, we noted the pos-
sibility of confusion between assignment and test for equality. This distinction
is going to be important in what follows since we are going to discuss logical
expressions which may involve tests for equality.

In this section we are going to introduce the standard logical operators in
more detail, and to do this, logical variables will be useful. From elementary
mathematics we are familiar with using x and y as symbols that typically denote
real numbers. Logical variables are similar except that they may only take the
values ’true’ or ’false’ which we now denote by T and F. So if p is a logical variable,
it may denote any logical statement. As an example, we may set

p = (4 > 3)

which is the same as setting p = T. More interestingly, if a is any real number we
may set

p = (a > 3).

The value of p will then be either T or F, depending on the value of a so we may
think of p = p(a) as a function of a. We then clearly have p(2) = F and p(4) = T.
All the usual relational operators like <, >, ≤ and ≥ can be used in this way.

26



The function

p(a) = (a == 2)

has the value T if a is 2 and the value F otherwise. Without the special notation
for comparison this would become p(a) = (a = b) which certainly looks rather
confusing.

Definition 2.2. In the context of logic, the values true and false are denoted T
and F, and assignment is denoted by the operator =. A logical statement is an
expression that is either T or F and a logical function p(a) is a function that
is either T or F, depending on the value of a.

Suppose now that we have two logical variables p and q . We have already
mentioned that these can be combined with the operators ’and’, ’or’ and ’not’
for which we now introduce the notation ∧, ∨ and ¬. Let us consider each of
these in turn.

The expression ¬p is the opposite of p, i.e., it is T if p is F and F if p is T, see
column three in table 2.2. The only way for p ∧ q to be T, is for both p and q
to be T; in all other cases it is F, see column four in the table. Logical or is the
opposite: The expression p ∨ q is only F if both p and q are F; otherwise it is T;
see column five in table 2.2.

p q ¬p p ∧q p ∨q p ⊕q
F F T F F F
T F F F T T
F T T F T T
T T F T T F

Table 2.2. Behaviour of the logical operators ¬ (not), ∧ (and), ∨ (or), and ⊕ (exclusive or).

This use of ’not’ and ’and’ is just like in everyday language. The definition
of ’or’, however, does not always agree with how it is used in speech. Suppose
someone says ’The apple was red or green’, is it then possible that the apple was
both red and green? Many would probably say no, but to be more explicit we
would often say ’The apple was either red or green (but not both)’.

This example shows that there are in fact two kinds of ’or’, an inclusive or (∨)
which is Twhen p and q are both T, and an exclusive or (⊕) which is Fwhen both
p and q are T, see columns five and six of Table 2.2.

27



Definition 2.3. The logical operators ’not’, ’and’, ’or’, and ’exclusive or’ are de-
noted by the symbols ¬, ∧, ∨, and ⊕, respectively and are defined in table 2.2.

So far we have only considered expressions that involve two logical variables.
If p, q , r and s are all logical variables, it is quite natural to consider longer ex-
pressions like

(p ∧q)∧ r, (2.1)

(p ∨q)∨ (r ∨ s), (2.2)

(we will consider mixed expressions later). The brackets have been inserted to
indicate the order in which the expressions are to be evaluated since we only
know how to combine two logical variables at a time. However, it is quite easy to
see that both expressions remain the same regardless of how we insert brackets.
The expression in (2.1) is T only when all of p, q and r are T, while the expression
in (2.2) is always true except in the case when all the variables are F. This means
that we can in fact remove the brackets and simply write

p ∧q ∧ r,

p ∨q ∨ r ∨ s,

without any risk of misunderstanding since it does not matter in which order we
evaluate the expressions.

Many other mathematical operations, like for example addition and multi-
plication of numbers, also have this property, and it therefore has its own name;
we say that the operators ∧ and ∨ are associative. The associativity also holds
when we have longer expressions: If the operators are either all ∧ or all ∨, the
result is independent of the order in which we apply the operators.

What about the third operator, ⊕ (exculsive or), is this also associative? If we
consider the two expressions

(p ⊕q)⊕ r, p ⊕ (q ⊕ r ),

the question is whether they are always equal. If we check all the combinations
and write down a truth table similar to Table 2.2, we do find that the two expres-
sions are the same so the ⊕ operator is also associative. A general description of
such expressions is a bit more complicated than for ∧ and ∨. It turns out that if
we have a long sequence of logical variables linked together with ⊕, then the re-
sult is true if the number of variables that is T is an odd number and F otherwise.

28



The logical operator ∧ has the important property that p ∧q = q ∧p and the
same is true for ∨ and ⊕. This is also a property of addition and multiplication
of numbers and is usually referred to as commutativity.

For easy reference we sum all of this up in a theorem.

Proposition 2.4. The logical operators ∧, ∨ and ⊕ defined in Table 2.2 are all
commutative and associative, i.e.,

p ∧q = q ∧p,

p ∨q = q ∨p,

p ⊕q = q ⊕p,

(p ∧q)∧ r = p ∧ (q ∧ r ),

(p ∨q)∨ r = p ∨ (q ∨ r ),

(p ⊕q)⊕ r = p ⊕ (q ⊕ r ).

where p, q and r are logical variables.

2.3.2 Combinations of logical operators

The logical expressions we have considered so far only involve one logical op-
erator at a time, but in many situations we need to evaluate more complex ex-
pressions that involve several logical operators. Two commonly occurring ex-
pressions are ¬(p ∧ q) and ¬(p ∨ q). These can be expanded by De Morgan’s
laws which are easily proved by considering truth tables for the two sides of the
equations.

Lemma 2.5 (De Morgan’s laws). Let p and q be logical variables. Then

¬(p ∧q) = (¬p)∨ (¬q),

¬(p ∨q) = (¬p)∧ (¬q).

De Morgan’s laws can be generalised to expressions with more than two op-
erators, for example

¬(p ∧q ∧ r ∧ s) = (¬p)∨ (¬q)∨ (¬r )∨ (¬s),

see exercise 3.
We are going to consider two more laws of logic, namely the two distributive

laws.

29



Theorem 2.6 (Distributive laws). If p, q and r are logical variables, then

p ∧ (q ∨ r ) = (p ∧q)∨ (p ∧ r ),

p ∨ (q ∧ r ) = (p ∨q)∧ (p ∨ r ).

As usual, these rules can be proved setting up truth tables for the two sides.

Exercises
1 Use a truth table to prove that the exclusive or operator ⊕ is associative, i.e., show that if p,

q and r are logical operators then (p ⊕q)⊕q = p ⊕ (q ⊕ r ).

2 Prove de Morgan’s laws.

3 Generalise De Morgan’s laws to expressions with any finite number of ∧- or ∨-operators,
i.e., expressions on the form

¬(p1 ∧p2 ∧ · · ·∧pn ) and ¬(p1 ∨p2 ∨ · · ·∨pn ).

Hint: Use Lemma 2.5.

4 Use truth tables to check that

a) (p ∧q)∨ r = p ∧ (q ∨ r ).

b) (p ∨q)∧ (q ∨ r ) = (p ∧ r )∨q .

30


