
Chapter 6
Numerical Simulation
of Difference Equations

An important ingredient in school mathematics is solution of algebraic equa-
tions like x +3 = 4. The challenge is to determine a numerical value for x such
that the equation holds. In this chapter we are going to give a brief review of
difference equations or recurrence relations. In contrast to traditional equations,
the unknown in a difference equation is not a single number, but a sequence of
numbers.

For some simple difference equations, an explicit formula for the solution
can be found with pencil-and-paper methods, and we will review some of these
methods in section 6.4. For most difference equations, there are no explicit so-
lutions. However, a large group of equations can be solved numerically, or sim-
ulated, on a computer, and in section 6.3 we will see how this can be done.

In chapter 5 we saw how real numbers can be approximated by floating-
point numbers, and how the limitations inherent in floating-point numbers some-
times may cause dramatic errors. In section 6.5 we will see how round-off errors
affect the simulation of even the simplest difference equations.

6.1 Why equations?

The reason equations are so useful is that they allow us to characterise unknown
quantites in terms of natural principles that may be formulated as equations.
Once an equation has been written down, we can apply standard techniques for
solving the equation and determining the unknown. To illustrate, let us consider
a simple example.
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A common type of puzzle goes like this: Suppose a man has a son that is half
his age, and the son will be 16 years younger than his father in 5 years time. How
old are they?

With equations we do not worry about the ages, but rather write down what
we know. If the age of the father is x and the age of the son is y , the first piece of
information can be expressed as y = x/2, and the second as y = x −16. This has
given us two equations in the two unknowns x and y ,

y = x/2,

y = x −16.

Once we have the equations we use standard techniques to solve them. In this
case, we find that x = 32 and y = 16. This means that the father is 32 years old,
and the son 16.

Exercises

1 One of the oldest known age puzzles is known as Diophantus’ riddle. It comes from the
Greek Anthology, a collection of puzzles compiled by Metrodorus of Chios in about 500
AD. The puzzle claims to tell how long Diophantus lived in the form of a riddle engraved
on his tombstone:

God vouchsafed that he should be a boy for the sixth part of his life; when a
twelfth was added, his cheeks acquired a beard; He kindled for him the light
of marriage after a seventh, and in the fifth year after his marriage He granted
him a son. Alas! late-begotten and miserable child, when he had reached the
measure of half his father’s life, the chill grave took him. After consoling his
grief by this science of numbers for four years, he reached the end of his life.

How old were Diophantus and his son at the end of their lives?

6.2 Difference equations defined

The unknown variable in a difference equation is a sequence of numbers, rather
than just a single number, and the difference equation describes a relation that
is required to hold between the terms of the unknown sequence. Difference
equations therefore allow us to model phenomena where the unknown is a se-
quence of values, like the annual growth of money in a bank account, or the
size of a population of animals over a period of time. The difference equation,
i.e., the relation between the terms of the unknown sequence, is obtained from
known principles, and then the equation is solved by a mathematical or numer-
ical method.
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Example 6.1. A simple difference equation arises if we try to model the growth
of money in a bank account. Suppose that the amount of money in the account
after n years is xn , and the interest rate is 5 % per year. If interest is added once
a year, the amount of money after n+1 years is given by the difference equation

xn+1 = xn +0.05xn = 1.05xn . (6.1)

This equation characterises the growth of all bank accounts with a 5 % interest
rate — in order to characterise a specific account we need to know how much
money there was in the account to start with. If the initial deposit was 100 000 (in
your favourite currency) at time n = 0, we have an initial condition x0 = 100 000.
This gives the complete model

xn+1 = 1.05xn , x0 = 100 000. (6.2)

This is an example of a first-order difference equation with an initial condition.
From the information in (6.2) we can compute the values of xn for n ≥ 0. If we
set n = 0, we find

x1 = 1.05x0 = 1.05×100 000 = 105 000.

We can then set n = 1 and obtain

x2 = 1.05x1 = 1.05×105 000 = 110 250.

These computations can clearly be continued for as long as we wish, and in this
way we can compute the value of xn for any positive integer n. For example, we
find that x10 ≈ 162 889.

Example 6.2. Suppose that we withdraw 1 000 from the account every year. If
we include this in our model we obtain the equation

xn+1 = 1.05xn −1 000. (6.3)

If we start with the same amount x0 = 100 000 as above, we now find x1 = 104 000,
x2 = 108 200, and x10 ≈ 150 312.

Example 6.3. As the capital accumulates, it is reasonable that the owner in-
creases the withdrawals. If for example the amount withdrawn increases by 300
each year, we get the model

xn+1 = 1.05xn − (1 000+300n). (6.4)

In this case we find x1 = 104 000, x2 = 107 900, and x10 = 134 844.
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Figure 6.1. The growth of capital according to the models (6.1) (largest growth), (6.3) (middle growth), and
(6.4) (smallest growth).

Plots of the development of the capital in the three different cases are shown
in figure 6.1. Note that in the case of (6.4) it appears that the growth of the capital
levels out. In fact, it can be shown that after about 45 years, all the capital will be
gone, and x46 will in fact be negative, i.e., money must be borrowed in order to
keep up the withdrawals.

After these simple examples, let us define difference equations in general.

Definition 6.4 (Difference equation). A difference equation or recurrence re-
lation is an equation that involves the terms of an unknown sequence {xn}.
The equation is said to be of order k if a term in the sequence depends on k
previous terms, as in

xn+k = f (n, xn , xn+1, . . . , xn+k−1), (6.5)

where f is a function of k + 1 variables. The actual values of n for which
(6.5) should hold may vary, but would typically be all nonzero integers.

It is instructive to see how the three examples above fit into the general set-
ting of definition 6.4. In all three cases we have k = 1; in the case (6.1) we have
f (t , x) = 1.05x, in (6.3) we see that f (t , x) = 1.05x − 1000, and in (6.4) we have
f (t , x) = 1.05x − (1000+300t ).

The examples above all led to a simple first-order difference equation. Here
is an example where we end up with an equation of higher order.

Example 6.5. An illness spreads by direct contact between individuals. Each
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day a person with the illness infects one new person, and the infected person
becomes ill after three days. This means that on day n, the total number of ill
persons are the people who were ill yesterday, plus the number of people who
were infected three days ago. But this latter number equals the number of peo-
ple that were ill three days ago. If xn denotes the number of ill people on day n,
we therefore have

xn = xn−1 +xn−3, n = 3, 4, . . . ,

or
xn+3 = xn+2 +xn , n = 0, 1, . . .

We obtain a difference equation of order k if we assume that the incubation
time is k days. By reasoning in the same way we then find

xn+k = xn+k−1 +xn , n = 0, 1, . . . (6.6)

Note that in the case k = 2 we get the famous Fibonacci model.

6.2.1 Initial conditions

Difference equations are particularly nice from a computational point of view
since we have an explicit formula for a term in the sequence in terms of previous
terms. In the bank example above, next year’s balance is given explicitly in terms
of this year’s balance in formulas (6.1), (6.3), and (6.4), and this makes it easy to
successively compute the balance, starting with the first year.

For general equations, we can compute xn+k from the k previous terms in
the sequence, as in (6.5). In order for this to work, we must be able to start
somewhere, i.e., we need to know k consecutive terms in the sequence. It is
common to assume that these terms are x0, . . . , xk−1, but they could really be
any k consecutive terms.

Observation 6.6 (Initial conditions). For a difference equation of order k, the
solution is uniquely determined if k consecutive values of the solution is spec-
ified. These initial conditions are usually given as

x0 = a0, x1 = a1, . . . xk = ak ,

where a0, . . . , ak are given numbers.

Note that the number of initial conditions required equals the order of the
equation. The model for population growth (6.6) therefore requires k initial con-
ditions. A natural way to choose the initial conditions in this model is to set

x0 = ·· · = xk = 1. (6.7)
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This corresponds to starting with a population of one new-born pair which re-
mains the only one until this pair gives birth to another pair after k months.

6.2.2 Linear difference equations

It is convenient to classify difference equations according to their structure, and
for many purposes the simplest ones are the linear difference equations.

Definition 6.7. A kth-order difference equation is said to be linear and inho-
mogenous if it has the form

xn+k = g (n)+ f0(n)xn + f1(n)xn+1 +·· ·+ fk−1(n)xn+k−1,

where g and f0, . . . , fk−1 are functions of n. The equation is said to have con-
stant coefficients if the functions f0 . . . , fk−1 do not depend on n. It is said to
be homogenous if g (n) = 0 for all n.

From this definition we see that all the difference equations we have encoun-
tered so far have been linear, with constant coefficients. The equations (6.3) and
(6.4) are inhomogenous, the others are homogenous.

Linear difference equations are important because it is relatively simple to
predict and analyse their solutions, as we will see in section 6.4.

6.2.3 Solving difference equations

In examples 6.1–6.3 we saw how easy it is to compute the terms of the sequence
determined by a difference equation since the equation itself is quite simply a
formula which tells us how one term can be computed from the previous ones.
Provided the functions involved are computable and the calculations are done
correctly (without round-off errors), we can therefore determine the exact value
of any term in the solution sequence in this way. We refer to this as simulating
the difference equation.

There is another way to solve a difference equation, namely by determining
an explicit formula for the solution. For instance, the difference equations in
examples 6.1–6.3 turn out to have the solutions that are given by the formulas

xn = 100 000×1.05n , (6.8)

xn = 80 000×1.05n +20 000, (6.9)

xn =−40 000×1.05n +6 000n +140 000. (6.10)

The advantage of these formulas is that we can compute the value of a term im-
mediately, without first computing all the preceding terms. With such formulas
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we can also deduce the asymptotic behaviour of the solution. For example we
see straightaway from (6.10) that in the situation in example 6.3, all the capi-
tal will eventually be used up, since xn becomes negative for sufficiently large n.
Another use of solution formulas like the ones in (6.8)–(6.10) is for predicting the
effect of round-off errors on the numerical solutions computed by simulating a
difference equation, see section 6.5.

Observation 6.8 (Solving difference equations). There are two different ways
to ’solve’ a difference equation:

1. By simulating the equation, i.e., by starting with the initial values, and
then successively computing the numerical values of the terms of the
solution sequence, as in examples 6.1–6.3.

2. By finding an explicit formula for the solution sequence, as in (6.8)–
(6.10).

We emphasise that solution by formulas like (6.8)–(6.10) is only possible in
some special cases like linear equations with constant coefficients. On the other
hand, simulation of the difference equation is possible for very general equa-
tions in the form (6.5), the only requirement is that all the functions involved are
computable.

We will discuss simulation of difference equations in section 6.3, and then
review solution by a formula for linear equations in section 6.4. In section 6.5
we will then use our knowledge of solution formulas to analyse the effects of
round-off errors on the simulation of linear difference equations.

Exercises

1 Compare with (6.5) and determine the function f for the difference equations below. Also
compute the values of x2, . . . , x5 in each case.

a) xn+2 = 3xn+1 −xn , x0 = 2, x1 = 1.

b) xn+2 = xn+1 +3xn , x0 = 4, x1 = 5.

c) xn+2 = 2xn+1xn , x0 = 1, x1 = 2.

d) xn+1 =−
�

4−xn , x0 = 0.

e) 5xn+2 −3xn+1 +xn = n, x0 = 0, x1 = 1.

f ) x2
n+1 +5xn = 1, x0 = 3.
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2 Which of the following equations are linear?

a) xn+2 +3xn+1 − sin(n)xn = n!.

b) xn+3 −xn+1 +x2
n = 0.

c) xn+2 +xn+1xn = 0.

d) nxn+2 −xn+1en +xn = n2.

6.3 Simulating difference equations

In examples 6.1–6.3 above we saw that it was easy to compute the numerical
values of the terms in a difference equation. In this section we are going to for-
malise this as an algorithm. Let us start by doing this for second-order linear
equations. These are equations in the form

xn+2 = g (n)+ f0(n)xn + f1(n)xn+1, x0 = a0, x1 = a1, (6.11)

where g , f0 and f1 are given functions of n, and a0 and a1 are given real numbers.
Let us consider an example to remind ourselves how the terms are computed.

Example 6.9. We consider the difference equation

xn+2 = n +2xn −3nxn+1, x0 = 1, x1 = 2,

in other words we have g (n) = n, f0(n) = 2, and f1(n) = −3n in this case. If we
set n = 0 in the difference equation we can compute x2 as

x2 = 0+2×x0 −3×0×x1 = 2.

We continue and set n = 1 which yields

x3 = 1+2×x1 −3×1×x2 = 1+4−6 =−1.

We take one more step and obtain (n = 2)

x4 = 2+2×x2 −3×1×x3 = 2+4+3 = 9.

In general, these computations can be phrased as a formal algorithm.

Algorithm 6.10. Suppose the second-order equation (6.11) is given, i.e., the
functions g , f0, and f1 are given together with the initial values a0 and a1. The
following algorithm will compute the first N + 1 terms x0, x1, . . . , xN of the
solution:

x0 = a0;
x1 = a1;
for i = 2, 3, . . . , N

xi = g (i −2)+ f0(i −2)xi−2 + f1(i −2)xi−1;
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This algorithm computes all the N + 1 terms and saves them in the array
x = [x0, . . . , xN ]. Sometimes we are only interested in the last term xN , or we just
want to print out the terms as they are computed — then there is no need to
store all the terms.

Algorithm 6.11. The following algorithm computes the solution of (6.11), just
like algorithm 6.10, but prints each term instead of storing them:

xpp = a0;
xp = a1;
for i = 2, 3, . . . , N

x = g (i −2)+ f0(i −2)xpp + f1(i −2)xp ;
print x;
xpp = xp ;
xp = x;

The algorithm is based on the simple fact that in order to compute the next
term, we only need to know the two previous terms, since the equation is of
second order. At time i , the previous term xi−1 is stored in xp and the term xi−2

is stored in xpp . Once xi has been computed, we must prepare for the next step
and make sure that xp is shifted down to xpp , which is not needed anymore, and
x is stored in xp . Note that it is important that these assignments are performed
in the right order. At the beginning, the values of xp and xpp are given by the
initial values.

In both of these algorithms it is assumed that the coefficients given by the
functions g , f0 and f1, as well as the initial values a0 and a1, are known. In prac-
tice, the coefficient functions would usually be entered as functions (or meth-
ods) in the programming language you are using, while the initial values could
be read from the terminal or via a graphical user interface.

Algorithms (6.10) and (6.11) can easily be generalised to 3rd or 4th order, or
equations of any fixed order, and not only linear equations. The most conve-
nient is to have an algorithm which takes the order of the equation as input.

Algorithm 6.12. The following algorithm computes and prints the first N +1
terms of the solution of the kth-order difference equation

xn+k = f (n, xn , xn+1, . . . , xn+k−1), n = 0, 1, . . . , N −k (6.12)

with initial values x0 = a0, x1 = a1, . . . , xk−1 = ak−1. Here f is a given function
of k +1 variables, and a0, . . . , ak−1 are given real numbers.
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for i = 0, 1, . . . , k −1
zi = ai ;
print zi ;

for i = k, k +1, . . . , N
x = f (i −k, z0, . . . , zk−1);
print x;
for j = 0, . . . , k −2

zi = zi+1;
zk−1 = x;

Algorithm 6.12 is similar to algorithm 6.11 in that it does not store all the
terms of the solution sequence. To compensate it keeps track of the k previous
terms in the array z = [z0, . . . , zk−1]. The values xk , xk+1, . . . , xN are computed in
the second for-loop. By comparison with (6.12) we observe that i = n +k; this
explains i −k = n as the first argument to f . The initial values are clearly correct
the first time through the loop, and at the end of the loop they are shifted along
so that the value in z0 is lost and the new value x is stored in zk−1.

Difference equations have the nice feature that a term in the unknown se-
quence is defined explicitly as a function of previous values. This is what makes
it so simple to generate the values by algorithms like the ones sketched here.
Provided the algorithms are correct and all operations are performed without
errors, the exact solution will be computed. When the algorithms are imple-
mented on a computer, this is the case if all the initial values are integers and all
computations can be performed without introducing floating-point numbers.
One example is the Fibonacci equation

xn+2 = xn +xn+1, x0 = 1, x1 = 1.

However, if floating-point numbers are needed for the computations, round-off
errors are bound to occur and it is important to understand how this affects the
computed solution. This is quite difficult to analyse in general, so we will restrict
our attention to linear equations with constant coefficients. First we need to
review the basic theory of linear difference equations.

Exercises

1 Program algorithm 6.11 and test it on the Fibonacci equation

xn+2 = xn+1 +xn , x0 = 0, x1 = 1.
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2 Generalise algorithm 6.11 to third order equations and test it on the Fibonacci like equa-
tion

xn+3 = xn+2 +xn+1 +xn , x0 = 0, x1 = 1, x2 = 1.

3 A close relative of the Fibonacci numbers is called the Lucas numbers, and these are de-
fined by the difference equation

Ln+2 = Ln+1 +Ln , L0 = 2, L1 = 1.

Write a program which prints the following information:

a) The 18th Lucas number.

b) The first Lucas number greater than 100.

c) The value of n for the number in (b).

d) The Lucas number closest to 1000.

6.4 Review of the theory for linear equations

Linear difference equations with constant coefficients have the form

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n)

where b0, . . . , bk−1 are real numbers and g (n) is a function of one variable. Ini-
tially we will focus on first-order (k = 1) and second-order (k = 2) equations for
which g (n) = 0 for all n (homogenous equations). We will derive explicit for-
mulas for the solutions of such equations, and from this, the behaviour of the
solution when n tends to infinity. This will help us to understand how round-off
errors influence the results of numerical simulations of difference equations—
this is the main topic in section 6.5.

6.4.1 First-order homogenous equations

The general first-order linear equation with constant coefficients has the form

xn+1 = bxn , (6.13)

where b is some real number. Often we are interested in xn for all n ≥ 0, but any
value of n ∈Zmakes sense in the following. From (6.13) we find

xn+1 = bxn = b2xn−1 = b3xn−2 = ·· · = bn+1x0. (6.14)

This is the content of the first lemma.

121



Lemma 6.13. The first-order homogenous difference equation

xn+1 = bxn , n ∈Z,

where b is an arbitrary real number, has the general solution

xn = bn x0, n ∈Z.

If x0 is specified, the solution is uniquely determined.

The fact that the solution also works for negative values of n follows just like
in (6.14) if we rewrite the equation as xn = b−1xn+1 (assuming b �= 0).

We are primarily interested in the case where n ≥ 0, and then we have the
following simple corollary.

Corollary 6.14. For n ≥ 0, the solution of the difference equation xn+1 = bxn

will behave according to one of the following three cases:

lim
n→∞

|xn | =






0, if |b| < 1;

∞, if |b| > 1;

|x0|, if |b| = 1.

Phrased differently, the solution of the difference equation will either tend
to 0 or ∞, except in the case where |b| = 1.

6.4.2 Second-order homogenous equations

The general second-order homogenous equation is

xn+2 +b1xn+1 +b0xn = 0. (6.15)

The basic idea behind solving this equation is to try with a solution xn = r n in
the same form as the solution of first-order equations, and see if there are any
values of r for which this works. If we insert xn = r n in (6.15) we obtain

0 = xn+2 +b1xn+1 +b0xn = r n+2 +b1r n+1 +b0r n = r n(r 2 +b1r +b0).

In other words, we must either have r = 0, which is uninteresting, or r must be a
solution of the quadratic equation

r 2 +b1r +b0 = 0
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which is called the characteristic equation of the difference equation. If the char-
acteristic equation has the two solutions r1 and r2, we know that both yn = r n

1
and zn = r n

2 will be solutions of (6.15). And since the equation is linear, it can be
shown that any combination

xn =Cr n
1 +Dr n

2

is also a solution of (6.15) for any choice of the numbers C and D . However,
in the case that r1 = r2 this does not give the complete solution, and if the two
solutions are complex conjugates of each other, the solution may be expressed
in a more adequate form that does not involve complex numbers. In either case,
the two free coefficients can be adapted to two initial conditions like x0 = a0 and
x1 = a1.

Theorem 6.15. The solution of the homogenous, second-order difference
equation

xn+2 +b1xn+1 +b0xn = 0 (6.16)

is governed by the solutions r1 and r2 of the characteristic equation

r 2 +b1r +b0 = 0

as follows:

1. If the two roots r1 and r2 are real and distinct, the general solution of
(6.16) is given by

xn =Cr n
1 +Dr n

2 .

2. If the two roots are equal, r1 = r2, the general solution of (6.16) is given
by

xn = (C +Dn)r n
1 .

3. If the two roots are complex conjugates of each other so that r1 = r and
r2 = r̄ , and r has the polar form as r = ρeiθ, then the general solution of
(6.16) is given by

xn = ρn(C cosnθ+D sinnθ).

In all three cases the solution can be determined uniquely by two initial con-
ditions x0 = a0 and x1 = a1, where a0 and a1 are given real numbers, since this
determines the two free coefficients C and D uniquely.

The proof of the theorem is not so complicated and can be found in a text
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on difference equations. A couple of examples will illustrate how this works in
practice.

Example 6.16. Let us consider the equation

xn+2 +5xn+1 −14xn = 0, x0 = 2, x1 = 9.

The characteristic equation is r 2 +5r −14 = 0 which has the two solutions r1 = 2
and r2 = 7. The general solution of the difference equation is therefore

xn =C 2n +D7n .

The two initial conditions lead to the system of two linear equations

2 = x0 =C +D,

9 = x1 = 2C +7D,

whose solution is C = 1 and D = 1. The solution that satisfies the initial condi-
tions is therfore

xn = 2n +7n .

Example 6.17. The difference equation

xn+2 −2xn+1 +2xn = 0, x0 = 1, x1 = 1,

has the characteristic equation r 2 −2r +2 = 0. The two roots are r1 = 1+ i and
r2 = 1− i . The absolute value of r = r1 is |r | =

�
12 +12 =

�
2, while a drawing

shows that the argument of r is argr = π/4. The general solution of the differ-
ence equation is therefore

xn =
��

2
�n�

C cos(nπ/4)+D sin(nπ/4)
�
.

We determine C and D by enforcing the initial conditions

1 = x0 =
�

2
0

(C cos0+D sin0) =C ,

1 = x1 =
�

2
�
C cos(π/4)+D sin(π/4)

�
=
�

2
�
C
�

2/2+D
�

2/2
�
=C +D.

From this we see that C = 1 and D = 0. The final solutiion is therefore

xn =
��

2
�n cos(nπ/4).

The following is a consequence of theorem 6.15 and is analogous to corol-
lary 6.14.
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Corollary 6.18. Suppose that one root, say r1, of the characteristic equation
satisfies |r1| > 1, that C �= 0, and that |r2| < |r1|. Then

lim
n→∞

|xn | =∞.

On the other hand, if both |r1| < 1 and |r2| < 1, then

lim
n→∞

xn = 0.

Note that in cases 2 and 3 in theorem 6.15, the two roots have the same ab-
solute value (in case 2 the roots are equal and in case 3 they both have absolute
value ρ). This means that it is only in the first case that we need to distinguish
between the two roots in the conditions in corollary 6.18.

Proof of corollary 6.18. In cases 2 and 3 in theorem 6.15 |r1| = |r2|, so if |r1| > 1
and |r2| < |r1| we must have two real roots. Then we can write the solution as

xn = r n
1

�
C +D

�r2

r1

�n
�

and therefore

lim
n→∞

|xn | = lim
n→∞

|r1|n
����C +D

�r2

r1

�n
����= |C | lim

n→∞
|r1|n =∞.

If both |r1| < 1 and |r2| < 1 and both roots are real, the triangle inequality
leads to

lim
n→∞

|xn |≤ lim
n→∞

�
|C ||r1|n +|D||r2|n

�
= 0.

If r1 = r2, and |r1| < 1 (case 2 in theorem 6.15), we have the same conclusion
since n|r1|n tends to 0 when n tends to ∞. Finally, in the case of complex conju-
gate roots of absolute value less than 1 we have ρ < 1, so the term ρn will ensure
that |xn | tends to 0.

A situation that is not covered by corollary 6.18 is the case where both roots
are real, but of opposite sign, and larger than 1 in absolute value. In this case
the solution will also tend to infinity in most cases, but not always. Consider
for example the case where xn = 2n + (−2)n . Then x2n+1 = 0 for all n while
limn→∞ x2n =∞.
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6.4.3 Linear homogenous equations of general order

Consider now a kth-order, homogenous, and linear difference equation with
constant coefficients,

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0,

where all the coefficients {bi } are real numbers. It is quite easy to show that if we
have k solutions {xi

n}k
i=1, then the combination

xn =C1x1
n +C2x2

n +·· ·+Ck xk
n (6.17)

will also be a solution for any choice of the coefficients {Ci }. As we have already
seen, an equation of order k can be adapted to k initial values.

To determine k solutions, we follow the same procedure as for second-order
equations and try the solution xn = r n . We then find that r must solve the char-
acteristic equation

r k +bk−1r k−1 +·· ·+b1r +b0 = 0.

From the fundamental theorem of algebra we know that this equation has k dis-
tinct roots, and complex roots occur in conjugate pairs since the coefficients are
real. A theorem similar to theorem 6.15 can therefore be proved.

Observation 6.19. The general solution of the difference equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0

is a combination of k terms

xn =C1x1
n +C2x2

n +·· ·+Ck xk
n

where each term
�

xi
n
�

is a solution of the difference equation. The solution�
xi

n
�

is essentially of the form xi
n = r n

i where ri is the i th root of the character-
istic equation

r k +bk−1r k−1 +·· ·+b1r +b0 = 0.

Note the word ’essentially’ in the last sentence: just like for quadratic equa-
tions we have to take special care when there are double roots (or roots of even
higher multiplicity) or complex roots.

Closed formulas for the roots can be found for quadratic, cubic and quartic
equations, but the expressions even for cubic equations can be rather compli-
cated. For higher degree than 2, one therefore has to resort to numerical tech-
niques, like the ones in chapter 9, for finding the roots.
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There is also an analog of corollary 6.18 which shows that a solution will
tend to zero if all roots have absolute value less than 1. And if there is a root
with absolute value greater than 1, whose corresponding coefficient in (6.17) is
nonzero, then the solution will grow beyond all bounds when n becomes large.

6.4.4 Inhomogenous equations

So far we have only discussed homogenous difference equations. For inhomoge-
nous equations there is an important, but simple lemma, which can be found in
standard text books on difference equations.

Lemma 6.20. Suppose that {xp
n } is a particular solution of the inhomogenous

difference equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n). (6.18)

Then all other solutions of the inhomogenous equation will have the form

xn = xp
n +xh

n

where
�

xh
n
�

is some solution of the homogenous equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0.

More informally, lemma 6.20 means that we can find the general solution of
(6.18) by just finding one solution, and then adding the general solution of the
homogenous equation. The question is how to find one solution. The following
observation is useful.

Observation 6.21. One of the solutions of the inhomogenous equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n)

has the same form as g (n).

Some examples will illustrate how this works.

Example 6.22. Consider the equation

xn+1 −2xn = 3. (6.19)
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Here the right-hand side is constant, so we try with the a particular solution
xh

n = A, where A is an unknown constant to be determined. If we insert this in
the equation we find

A−2A = 3,

so A = −3. This means that xp
n = −3 is a solution of (6.19). Since the general

solution of the homogenous equation xn+1 − 2xn = 0 is xh
n = C 2n , the general

solution of (6.19) is
xn = xh

n +xp
n =C 2n −3.

In general, when g (n) is a polynomial in n of degree d , we try with a partic-
ular solution which is a general polynomial of degree d . When this is inserted
in the equation, we obtain a relation between two polynomials that should hold
for all values of n, and this requires corresponding coefficients to be equal. In
this way we obtain a set of equations for the coefficients.

Example 6.23. In the third-order equation

xn+3 −2xn+2 +4xn+1 +xn = n (6.20)

the right-hand side is a polynomial of degree 1. We therefore try with a solution
xp

n = A+Bn and insert this in the difference equation,

n = A+B(n +3)−2(A+B(n +2))+4(A+B(n +1))+ A+Bn = (4A+3B)+4Bn.

The only way for the two sides to be equal for all values of n is if the constant
terms and first degree terms on the two sides are equal,

4A+3B = 0,

4B = 1.

From these equations we find B = 1/4 and A =−3/16, so one solution of (6.20) is

xp
n = n

4
− 3

16
.

There are situations where the technique above does not work because the
trial polynomial solution is also a homogenous solution. In this case the degree
of the polynomial must be increased. For more details we refer to a text book on
difference equations.

Other types of right-hand sides can be treated similarly. One other type is
given by functions like

g (n) = p(n)an ,

where p(n) is a polynomial in n and a is a real number. In this case, one tries
with a solution xp

n = q(n)an where q(n) is a general polynomial in n of the same
degree as p(n).
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Example 6.24. Suppose we have the equation

xn+1 +4xn = n3n . (6.21)

The right hand side is a first-degree polynomial in n multiplied by 3n , so we try
with a particular solution in the form

xp
n = (A+Bn)3n .

When this is inserted in the difference equation we obtain

n3n =
�

A+B(n +1)
�
3n+1 +4(A+Bn)3n

= 3n
�
3
�

A+B(n +1)
�
+4A+4Bn

�

= 3n(7A+3B +7Bn).

Here we can cancel 3n , which reduces the equation to an equality between two
polynomials. If these are to agree for all values of n, the constant terms and the
linear terms must agree,

7A+3B = 0,

7B = 1.

This system has the solution B = 1/7 and A = −1/49, so a particular solution of
(6.21) is

xp
n =

�1
7

n − 1
49

�
3n .

The homogenous equation xn+1 −4xn = 0 has the general solution xh
n = C 4n so

according to lemma 6.20 the general solution of (6.21) is

xn = xh
n +xp

n =C 4n +
�1

7
n − 1

49

�
3n .

We emphasise that the ikke løse, men forstå effekter i simulering

Exercises
1 Find a unique solution for xn for the following difference equations:

a) xn+1 = 3xn , x0 = 5/3

b) xn+2 = 3xn+1 +2xn , x0 = 3, x1 = 4.

c) xn+2 =−2xn+1 −xn , x0 = 1, x1 = 1

d) xn+2 = 2xn+1 +3xn , x0 = 2, x1 = 1
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2 Find a unique solution for xn for the following difference equations:

a) xn+2 −3xn+1 −4xn = 2, x0 = 2, x1 = 4.

b) xn+2 −3xn+1 +2xn = 2n +1, x0 = 1, x1 = 3.

c) 2xn+2 −3xn = 15×2n , x0 = 3, x1 = 6.

d) xn+1 −xn = 5n2n , x0 = 1, x1 = 5

3 Find the unique solution of the difference equation described in equation 6.4 with initial
condition x0 = 100000, and show that all the capital is indeed lost after 45 years.

4 Remember that the Fibonacci numbers are defined as:

Fn+2 = Fn+1 +Fn ,F0 = 0,F1 = 1.

Remember also from exercise 6.3.3 that the Lucas numbers are defined as:

Ln+2 = Ln+1 +Ln ,L0 = 2,L1 = 1.

Use this to prove the following identities:

a) Ln = Fn+1 +Fn−1

b) F2n = Fn Ln

6.5 Simulation of difference equations and round-off errors

In practice, most difference equations are ’solved’ by numerical simulation, be-
cause of the simplicity of simulation, and because for most difference equations
it is not possible to find an explicit formula for the solution. In chapter 5, we
saw that computations on a computer often lead to errors, at least when we use
floating-point numbers. Therefore, when a difference equation is simulated via
one of the algorithms in section 6.3, we must be prepared for round-off errors.
In this section we are going to study this in some detail. We will restrict our at-
tention to linear difference equations with constant coefficients. Let us start by
stating how we intend to do this analysis.

Idea 6.25. To study the effect of round-off errors on simulation of difference
equations, we focus on a class of equations where exact formulas for the so-
lutions are known. These explicit formulas are then used to explain (and pre-
dict) how round-off errors influence the numerical values produced by the
simulation.

We first recall that integer arithmetic is always correct, except for the possi-
bility of overflow, which is so dramatic that it is usually quite easy to detect. We
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therefore focus on the case where floating-point numbers must be used. Note
that we use 64-bit floating-point numbers in all the examples in this chapter.

The effect of round-off errors becomes quite visible from a couple of exam-
ples.

Example 6.26. Consider the equation

xn+2 −
2
3

xn+1 −
1
3

xn = 0, x0 = 1, x1 = 0. (6.22)

Since the two roots of the characteristic equation r 2 −2r /3−1/3 = 0 are r1 = 1
and r2 =−1/3, the general solution of the difference equation is

xn =C +D
�
−1

3

�n
.

The initial conditions yield the equations

C +D = 1,

C −D/3 = 0,

which has the solution C = 1/4 and D = 3/4. The solution of (6.22) is therefore

xn = 1
4

�
1+ (−1)n31−n�

.

We observe that xn tends to 1/4 as n tends to infinity.
If we simulate equation (6.22) on a computer, the next term is computed by

the formula xn+2 = (2xn+1 + xn)/3. The division by 3 means that floating-point
numbers are required to evaluate this expression. If we simulate the difference
equation, we obtain the four approximate values

x̃10 = 0.250012701316,

x̃15 = 0.249999947731,

x̃20 = 0.250000000215,

x̃30 = 0.250000000000,

(throughout this section we will use x̃n to denote a computed version of xn),
which agree with the exact solution to 12 digits. In other words, numerical simu-
lation in this case works very well and produces essentially the same result as the
exact formula, even if floating-point numbers are used in the calculations.

Example 6.27. We consider the difference equation

xn+2 −
19
3

xn+1 +2xn =−10, x0 = 2, x1 = 8/3. (6.23)
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The two roots of the characteristic equation are r1 = 1/3 and r2 = 6, so the gen-
eral solution of the homogenous equation is

xh
n =C 3−n +D6n .

To find a particular solution we try a solution xp
n = A which has the same form

as the right-hand side. We insert this in the difference equation and find A = 3,
so the general solution is

xn = xh
n +xp

n = 3+C 3−n +D6n . (6.24)

If we enforce the initial conditions, we end up with the system of equations

2 = x0 = 3+C +D,

8/3 = x1 = 3+C /3+6D.
(6.25)

This may be rewritten as
C +D =−1,

C +18D =−1.
(6.26)

which has the solution C =−1 and D = 0. The final solution is therefore

xn = 3−3−n , (6.27)

which tends to 3 when n tends to infinity.
Let us simulate the equation (6.23) on the computer. As in the previous ex-

ample we have to divide by 3 so we have to use floating-point numbers. Some
early terms in the computed sequence are

x̃5 = 2.99588477366,

x̃10 = 2.99998306646,

x̃15 = 3.00001192858.

These values appear to approach 3 as they should. However, some later values
are

x̃20 = 3.09329859009,

x̃30 = 5641411.98633,

x̃40 = 3.41114428655×1014,

(6.28)

and at least the last two of these are obviously completely wrong!
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6.5.1 Explanation of example 6.27

The cause of the problem with the numerical simulations in example 6.27 is
round-off errors. In this section we are going to see how the general solution
formula (6.24) actually explains our numerical problems.

First of all we note that the initial values are x0 = 2 and x1 = 8/3. The first
of these will be represented exactly in a computer whether we use integers or
floating-point numbers, but the second one definitely requires floating-point
numbers. Note though that the fraction 8/3 cannot be represented exactly in bi-
nary with a finite number of digits, and therefore there will inevitably be round-
off error. This means that the initial value 8/3 at x1 becomes x1 = ã1 = 8/3+ �,
where ã1 is the floating-point number closest to 8/3 and � is some small number
of magnitude about 10−17.

But it is not only the initial values that are not correct. When the next term is
computed from the two previous ones, we use the formula

xn+2 = 10+ 19
3

xn+1 −2xn .

The number 10, and the coefficient −2 can be represented exactly. The middle
coefficient 19/3, however, cannot be represented exactly by floating-point num-
bers, and is replaced by the nearest floating-point number c̃ = 19/3+δ, where δ
is a small number of magnitude roughly 10−17.

Observation 6.28. When the difference equation (6.23) is simulated numeri-
cally, round-off errors cause the difference equation and initial conditions to
become

xn+2 −
�19

3
+δ

�
xn+1 +2xn =−10, x0 = 2, x1 = 8/3+�, (6.29)

where � and δ are both small numbers of magnitude roughly 10−17.

The effect of round-off errors in the coefficients

So the actual computations are based on the difference equation (6.29), and not
(6.23), but we can still determine a formula for the exact solution that is being
computed. The characteristic equation now becomes

r 2 −
�19

3
+δ

�
r +2 = 0

which has the two roots

r1 =
1
6

�
19+3δ−

�
289+114δ+9δ2

�
, r2 =

1
6

�
19+3δ+

�
289+114δ+9δ2

�
.
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The dependence on δ in these formulas is quite complicated, but can be sim-
plified by the help of Taylor-polynomials which we will learn about in chapter 8.
Using this technique, it is possible to show that

r1 ≈
1
3
− δ

17
, r2 ≈ 6+ 18δ

17
.

In addition, since the right-hand side of (6.29) is constant, we try with a particu-
lar solution that is constant. If we do this we find the particular solution

xp
n = 30

10+3δ
.

This means that the general formula for the solution of the difference equation
(6.29) is

xn = 30
10+3δ

+C
�1

3
− δ

17

�n
+D

�
6+ 18δ

17

�n
.

When δ is of magnitude 10−17, this expression will be very close to

xn = 3+C
�1

3

�n
+D6n (6.30)

for all values of n that we typically encounter in practice. This simplifies the
analysis of round-off errors for linear difference equations considerably: We can
simply ignore round-off in the coefficients.

Observation 6.29. The round-off errors that occur in the coefficients of the
difference equation (6.29) do not lead to significant errors in the solution of
the equation. This is true for general, linear difference equations with con-
stant coefficients: Round-off errors in the coefficients (and the right-hand
side) are not significant and may be ignored.

The effect of round-off errors in the initial values

We next consider the effect of round-off errors in the initial values. From what
we have just seen, we may assume that the result of the simulation is described
by the general formula (6.30). The initial values are

x0 = 2, x1 = 8/3+�,

and this allows us to determine C and D in (6.30) via the equations

2 = x0 = 3+C +D,

8/3+�= x1 = 3+C /3+6D.
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If we solve these equations we find

C =−1− 3
17

�, D = 3
17

�. (6.31)

This is summarised in the next observation where for simplicity we have intro-
duced the notation �̂= 3�/17.

Observation 6.30. Because of round-off errors in the second initial value, the
result of numerical simulation of (6.24) corresponds to using a solution in the
form (6.24), where C and D are given by

C =−1+ �̂, D = �̂ (6.32)

and �̂ is a small number. The sequence generated by the numerical simulation
therefore is therefore in the form

x̃n = 3− (1− �̂)3−n + �̂ 6n . (6.33)

From observation 6.30 it is easy to explain where the values in (6.28) come
from. Because of round-off errors, the computed solution is given by (6.33),
where �̂ is a small nonzero number. Even if �̂ is small, the product �̂ 6n will even-
tually become large, since 6n grows beyond all bounds when n becomes large.

We can in fact use the result of the numerical simulation to estimate �̂. From
(6.28) we have x̂40 ≈ 3.4×1014, and for n = 40 we also have 3−n ≈ 8.2×10−20 and
6n ≈ 1.3×1031. Since we have used 64-bit floating-point numbers, this means
that only the last term in (6.33) is relevant (the other two terms affect the result
in about the 30th digit and beyond). This means that we can find �̂ from the
relation

3.4×1014 ≈ x̃40 ≈ �̂ 640 ≈ �̂ 1.3×1031.

From this we see that �̂ ≈ 2.6×10−17. This is a reasonable value since we know
that �̂ is roughly as large as the round-off error in the initial values. With 64-
bit floating-point numbers we have about 15–18 decimal digits, so a round-off
error of about 10−17 is to be expected when the numbers are close to 1 as in this
example.

Observation 6.31. When �̂ is nonzero in (6.33), the last term �̂ 6n will eventu-
ally dominate the computed solution of the difference equation completely,
and the computations will end in overflow.
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It is important to realise that the reason for the values generated by the nu-
merical simulation in (6.28) becoming large is not particularly bad round-off
errors; any round-off error at all would eventually lead to the same kind of be-
haviour. The general problem is that the difference equation corresponds to a
family of solutions given by

xn = 3+C 3−n +D6n , (6.34)

and different initial conditions pick out different solutions (different values of C
and D) within this family. The exact solution has D = 0. However, for numeri-
cal simulation with floating-point numbers it is basically impossible to get D to
be exactly 0, so the last term in (6.34) will always dominate the computed solu-
tion for large values of n and completely overwhelm the other two terms in the
solution.

6.5.2 Round-off errors for linear equations of general order

The difference equation in example 6.27 is not particularly demanding — we
will get the same effect whenever we have a difference equation where the ex-
act solution remains significantly smaller than the part of the general solution
corresponding to the largest root of the characteristic equation.

Observation 6.32. Suppose the difference equation

xn+k +bn−k xn−k +·· ·+b1xn+1 +b0xn = g (n)

is simulated numerically with floating-point numbers, and let r be the root of
the characteristic equation,

r k +bk−1r k−1 +·· ·+b1r +b0 = 0,

with largest absolute value. If the particular solution of the inhomogenous
equation does not grow as fast as |r |n (in case |r | > 1), or decays faster than
|r |n (in the case |r | < 1), then the computed solution will eventually be domi-
nated by the solution corresponding to the root r , regardless of what the initial
values are.

In example 6.27, the solution family has three components: the two solu-
tions 6n and 3−n from the homogenous equation, and the constant solution 3
from the inhomogenous equation. When the solution we are interested in just
involves 3−n and 3 we get into trouble since we invariably also bring along 6n

because of round-off errors. On the other hand, if the exact initial values lead to
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a solution that includes 6n , then we will not get problems with round-off: The
coefficient multiplying 6n will be accurate enough, and the other terms are too
small to pollute the 6n solution.

Example 6.33. We consider the third-order difference equation

xn+3 −
16
3

xn+2 +
17
3

xn+1 −
4
3

xn = 10×2n , x0 =−2, x1 =−17
3

, x2 =−107
9

.

The coefficients have been chosen so that the roots of the characteristic equa-
tion are r1 = 1/3, r2 = 1 and r3 = 4. To find a particular solution we try with
xp

n = A2n . If this is inserted in the equation we find A =−3, so the general solu-
tion is

xn =−3×2n +B3−n +C +D4n . (6.35)

The initial conditions force B = 0, C = 1 and D = 0, so the exact solution is

xn = 1−3×2n . (6.36)

The discussion above shows that this is bound to lead to problems. Because of
round-off errors, the coefficients B and D will not be exactly 0 when the equation
is simulated. Instead we will have

x̃n =−3×2n +�13−n + (1+�2)+�34n

Even if �3 is small, the term �34n will dominate when n becomes large. This is
confirmed if we do the simulations. The computed value x̃100 is approximately
4.5×1043, while the exact value is −3.8×1030, rounded to two digits.

Exercises
1 In each of the cases, find the analytical solution of the difference equation, and describe

the behavior of the simulated solution for large values of n:

a) xn+1 − 1
3 xn = 2, x0 = 2

b) xn+2 −6xn+1 +12xn = 1, x0 = 1/7, x1 = 1/7

c) 3xn+2 +4xn+1 −4xn = 0, x0 = 1, x1 = 2/3

2 In this exercise we are going to study the difference equation

xn+1 −3xn = 5−n , x0 =−5/14. (6.37)

a) Show that the general solution of (6.37) is

xn =C 3n − 5
14

5−n

and that the initial condition leads to the solution

xn =− 5
14

5−n .
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b) Explain what will happen if you simulate equation 6.37 numerically.

c) Do the simulation and check that your prediction in (b) is correct.

3 We consider the Fibonacci equation with nonstandard initial values

xn+2 −xn+1 −xn = 0, x0 = 0, x1 = (1−
�

5)/2. (6.38)

a) Show that the general solution of the equation is

xn =C

�
1+

�
5

2

�n

+D

�
1−

�
5

2

�n

,

and that the initial values select the solution

xn = 1−
�

5
2

.

b) What will happen if you simulate (6.38) on a computer?

c) Do the simulation and check that your predictions are correct.

4 We have the difference equation

xn+2 −
2
5

xn+1 +
1

45
xn = 0, x0 = 1, x1 = 1/15. (6.39)

a) Determine the general solution of (6.39) as well as the solution selected by the initial
condition.

b) Why must you expect problems when you do a numerical simulation of the equa-
tion?

c) Determine approximately the value of n when the numerical solution has lost all
significant digits.

d) Perform the numerical simulation and check that your predictions are correct.

5 In this exercise we consider the difference equation

xn+2 −
5
2

xn+1 +xn = 0, x0 = 1, x1 = 1/2.

a) Determine the general solution, and the solution corresponding to the initial con-
ditions.

b) What kind of behaviour do you expect if you simulate the equation numerically?

c) Do the simulation and explain your results.
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6.6 Summary

In this chapter we met the effect of round-off errors on realistic computations for
the first time. We saw that innocent-looking computations like the simulation of
the difference equation in example 6.27 led to serious problems with round-off
errors. By making use of the theory behind linear difference equations with con-
stant coefficients, we were able to understand why the simulations behave the
way they do. From this insight we also realise that for this particular equation
and initial values, the blow-up is unavoidable, just like cancellation is unavoid-
able when we subtract two almost equal numbers. Such problems are usually
referred to as being badly conditioned. On the other hand, a different choice of
initial conditions may lead to calculations with no round-off problems; then the
problem is said to be well conditioned.
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