
Chapter 8
Digital Sound

A major part of the information we receive and perceive every day is in the form
of audio. Most of these sounds are transferred directly from the source to our
ears, like when we have a face to face conversation with someone or listen to the
sounds in a forest or a street. However, a considerable part of the sounds are gen-
erated by loudspeakers in various kinds of audio machines like cell phones, dig-
ital audio players, home cinemas, radios, television sets and so on. The sounds
produced by these machines are either generated from information stored in-
side, or electromagnetic waves are picked up by an antenna, processed, and
then converted to sound. It is this kind of sound we are going to study in this
chapter. The sound that is stored inside the machines or picked up by the an-
tennas is usually represented as digital sound. This has certain limitations, but
at the same time makes it very easy to manipulate and process the sound in a
computer. The purpose of this chapter is to give a brief introduction to digital
sound representation and processing.

We start by a short discussion of what sound is, which leads us to the con-
clusion that sound can be conveniently modelled by functions of a real variable
in section 8.1. From mathematics it is known that almost any function can be
approximated arbitrarily well by a combination of sines and cosines, and we dis-
cuss what this means when it is translated to the context of sound. We then go on
and discuss digital sound, and simple operations on digital sound in section 8.2.
FInally, we consider compression of sound in sections 8.4 and 8.5.

8.1 Sound

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds,

171



0.2 0.4 0.6 0.8 1.0

101 324

101 325

101 326

101 326

(a)

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

(b)

Figure 8.1. Two examples of audio signals.

while faster variations correspond to sounds with a higher pitch. The air pres-
sure varies continuously with time, but at a given point in time it has a precise
value. This means that sound can be considered to be a mathematical function.
In this section we briefly discuss the basic properties of sound, first the signifi-
cance of the size of the variations, and then the frequency of the variations. We
also consider the important fact that any sound may be considered to be built
from very simple basis sounds.

Before we turn to the details, we should be clear about the use of the word
signal which is often encountered in literature on sound and confuses many.

Observation 8.1. A sound can be represented by a mathematical function.
When a function represents a sound it is often referred to as a signal.

8.1.1 Loudness: Sound pressure and decibels

An example of a simple sound is shown in figure 8.1a. We observe that the initial
air pressure has the value 101 325, and then the pressure starts to vary more
and more until it oscillates regularly between the values 101 323 and 101 326. In
the area where the air pressure is constant, no sound will be heard, but as the
variations increase in size, the sound becomes louder and louder until about
time t = 0.6 where the size of the oscillations becomes constant. The following
summarises some basic facts about air pressure.

Fact 8.2 (Air pressure). Air pressure is measured by the SI-unit Pa (Pascal)
which is equivalent to N /m2 (force / area). In other words, 1 Pa corresponds
to the force exerted on an area of 1 m2 by the air column above this area. The
normal air pressure at sea level is 101 325 Pa.

172



Fact 8.2 explains the values on the vertical axis in figure 8.1a: The sound
was recorded at the normal air pressure of 101 325 Pa. Once the sound started,
the pressure started to vary both below and above this value, and after a short
transient phase the pressure varied steadily between 101 324 Pa and 101 326
Pa, which corresponds to variations of size 1 Pa about the fixed value. Every-
day sounds typically correspond to variations in air pressure of about 0.002–2
Pa, while a jet engine may cause variations as large as 200 Pa. Short exposure to
variations of about 20 Pa may in fact lead to hearing damage. The volcanic erup-
tion at Krakatoa, Indonesia, in 1883, produced a sound wave with variations as
large as almost 100 000 Pa, and the explosion could be heard 5000 km away.

When discussing sound, one is usually only interested in the variations in
air pressure, so the ambient air pressure is subtracted from the measurement.
This corresponds to subtracting 101 325 from the values on the vertical axis in
figure 8.1a so that the values vary between −1 and 1. Figure 8.1b shows another
sound with a slow, cos-like, variation in air pressure, roughly between −1 and
1. Imposed on this are some smaller and faster variations. This combination of
several kinds of vibrations in air pressure is typical for general sounds.

The size of the variations in air pressure is directly related to the loudness
of the sound. We have seen that for audible sounds the variations may range
from 0.00002 Pa all the way up to 100 000 Pa. This is such a wide range that
it is common to measure the loudness of a sound on a logarithmic scale. The
following fact box summarises the previous discussion of what a sound is, and
introduces the logarithmic decibel scale.

Fact 8.3 (Sound pressure and decibels). The physical origin of sound is vari-
ations in air pressure near the ear. The sound pressure of a sound is obtained
by subtracting the average air pressure over a suitable time interval from the
measured air pressure within the time interval. A square of this difference
is then averaged over time, and the sound pressure is the square root of this
average.

It is common to relate a given sound pressure to the smallest sound pres-
sure that can be perceived, as a level on a decibel scale,

Lp = 10log10

(
p2

p2
ref

)
= 20log10

(
p

pref

)
.

Here p is the measured sound pressure while pref is the sound pressure of a
just perceivable sound, usually considered to be 0.00002 Pa.

173



0.1 0.2 0.3 0.4 0.5

-0.2

-0.1

0.0

0.1

0.2

0.3

(a)

0.005 0.010 0.015

-0.2

-0.1

0.0

0.1

0.2

(b)

0.0005 0.0010 0.0015

-0.2

-0.1

0.0

0.1

(c)

Figure 8.2. Variations in air pressure during parts of a song. Figure (a) shows 0.5 seconds of the song, figure (b)
shows just the first 0.015 seconds, and figure (c) shows the first 0.002 seconds.

The square of the sound pressure appears in the definition of Lp since this
represents the power of the sound which is relevant for what we perceive as loud-
ness.

The sounds in figure 8.1 are synthetic in that they were constructed from
mathematical formulas. The sounds in figure 8.2 show the variation in air pres-
sure for a real sound. In (a) there are so many oscillations that it is impossible to
see the details, but if we zoom in as in figure (c) we can see that there is a con-
tinuous function behind all the ink. It is important to realise that in reality the
air pressure varies more than this, even over the short time period in figure 8.2c.
However, the measuring equipment was not able to pick up those variations,
and it is also doubtful whether we would be able to perceive such rapid varia-
tions.

174



8.1.2 The pitch of a sound

Besides the size of the variations in air pressure, a sound has another important
characteristic, namely the frequency (speed) of the variations. For most sounds
the frequency of the variations varies with time, but if we are to perceive varia-
tions in air pressure as sound, they must fall within a certain range.

Fact 8.4. For a human with good hearing to perceive variations in air pressure
as sound, the number of variations per second must be in the range 20–20 000.

To make these concepts more precise, we first recall what it means for a func-
tion to be periodic.

Definition 8.5. A real function f is said to be periodic with period τ if

f (t +τ) = f (t )

for all real numbers t .

Note that all the values of a periodic function f with period τ are known if
f (t ) is known for all t in the interval [0,τ). The prototypes of periodic functions
are the trigonometric ones, and particularly sin t and cos t are of interest to us.
Since sin(t +2π) = sin t , we see that the period of sin t is 2π and the same is true
for cos t .

There is a simple way to change the period of a periodic function, namely by
multiplying the argument by a constant.

Observation 8.6 (Frequency). If ν is an integer, the function f (t ) = sin2πνt is
periodic with period τ= 1/ν. When t varies in the interval [0,1], this function
covers a total of ν periods. This is expressed by saying that f has frequency ν.

Figure 8.3 illustrates observation 8.6. The function in figure (a) is the plain
sin t which covers one period in the interval [0,2π]. By multiplying the argument
by 2π, the period is squeezed into the interval [0,1] so the function sin2πt has
frequency ν = 1. Then, by also multiplying the argument by 2, we push two
whole periods into the interval [0,1], so the function sin2π2t has frequency ν=
2. In figure (d) the argument has been multiplied by 5 — hence the frequency is
5 and there are five whole periods in the interval [0,1]. Note that any function
on the form sin(2πνt +a) has frequency ν, regardless of the value of a.

Since sound can be modelled by functions, it is reasonable to say that a
sound with frequency ν is a trigonometric function with frequency ν.

175



1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(c)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(d)

Figure 8.3. Versions of sin with different frequencies. The function in (a) is sin t , the one in (b) is sin2πt , the
one in (c) is sin2π2t , and the one in (d) is sin2π5t .

Definition 8.7. The function sin2πνt represents a pure tone with frequency
ν. Frequency is measured in Hz (Herz) which is the same as s−1.

With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ a function. If we play a function like sin2π440t , we hear
a pleasant sound with a very distinct pitch, as expected.

There are many other ways in which a function can oscillate regularly. The
function in figure 8.1b for example, definitely oscillates 2 times every second,
but it does not have frequency 2 Hz since it is not a pure sin function. Likewise,
the two functions in figure 8.4 also oscillate twice every second, but are very
different from a smooth, trigonometric function. If we play a function like the
one in figure (a), but with 440 periods in a second, we hear a sound with the
same pitch as sin2π440t , but it is definitely not pleasant. The sharp corners
translate into a rather shrieking, piercing sound. The function in figure (b) leads
to a smoother sound than the one in (a), but not as smooth as a pure sin sound.

176



0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

Figure 8.4. Two functions with regular oscillations, but which are not simple, trigonometric functions.

8.1.3 Any function is a sum of sin and cos

A very common tool in mathematics is to approximate general functions by
combinations of more standard functions. Perhaps the most well-known exam-
ple is Taylor series where functions are approximated by combinations of poly-
nomials. In the area of sound it is of more interest to approximate with combi-
nations of trigonometric functions — this is referred to as Fourier analysis. The
following is an informal version of a very famous theorem.

Theorem 8.8 (Fourier series). Any reasonable function f can be approxi-
mated arbitrarily well on the interval [0,1] by a combination

f (t ) ≈ a0 +
N∑

k=1
(ak cos2πkt +bk sin2πkt ), (8.1)

by choosing the integer N sufficiently large. The coefficients {ak }N
k=0 and

{bk }N
k=1 are given by the formulas

ak =
∫ 1

0
f (t )cos(2πkt )d t , bk =

∫ 1

0
f (t )sin(2πkt )d t .

The series on the right in (8.1) is called a Fourier series approximation of f .

An illustration of the theorem is shown in figure 8.5 where a cubic polyno-
mial is approximated by a Fourier series with N = 9. Note that the trigonometric
approximation is periodic with period 1, so the approximation becomes poor at
the ends of the interval since the cubic polynomial is not periodic. The approxi-
mation is plotted on a larger interval in figure 8.5b where its periodicity is clearly
visible.

177



0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(a)

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

(b)

Figure 8.5. Trigonometric approximation of a cubic polynomial on the interval [0,1]. In (a) both functions
are shown while in (b) the approximation is plotted on the interval [0,2.2].

Since any sound may be considered to be a function, theorem 8.8 can be
translated to a statement about sound. We recognise both trigonometric func-
tions on the right in (8.1) as sounds with pure frequency k. The theorem there-
fore says that any sound may be approximated arbitrarily well by pure sounds
with frequencies 0, 1, 2, . . . , N , as long as we choose N sufficiently large.

Observation 8.9 (Decomposition of sound into pure tones). Any sound f is
a sum of pure tones with integer frequencies. The amount of each frequency
required to form f is the frequency content of f .

Observation 8.9 makes it possible to explain more precisely what it means
that we only perceive sounds with a frequency in the range 20–20 000.

Fact 8.10. Humans can only perceive variations in air pressure as sound if the
Fourier series of the sound signal contains at least one sufficiently large term
with frequency in the range 20–20 000.

The most basic consequence of observation 8.9 is that gives us an under-
standing of how any sound can be built from the simple building blocks of sin
and cos. But it is also the basis for many operations on sounds. As an exam-
ple, consider the function in figure 8.6 (a). Even though this function oscillates
5 times regularly between 1 and −1, the discontinuities mean that it is far from
the simple sin2π5t which corresponds to a pure tone of frequency 5. If we com-
pute the Fourier coefficients, we find that all the ak are zero since the function
is antisymmetric. The first 100 of the bk coefficients are shown in figure (c). We
note that only {b10 j−5}10

j=1 are nonzero, and these decrease in magnitude. Note

178



0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

1.2

(c)

20 40 60 80 100

0.2

0.4

0.6

0.8

(d)

0.05 0.10 0.15 0.20

-1.0

-0.5

0.5

1.0

(e)

0.05 0.10 0.15 0.20

-1.0

-0.5

0.5

1.0

(f)

Figure 8.6. Approximations to two periodic functions with Fourier series. Since both functions are antisym-
metric, the cos part in (8.1) is zero in both cases (all the ak are zero). Figure (c) shows {ak }100

k=0 when f is the
function in figure (a), and the plot in (e) shows the resulting approximation (8.1) with N = 100. The plots in
figures (b), (d), and (e) are similar, except that the approximation in figure (f) corresponds to N = 20.

that the dominant coefficient is b5, which tells us how much there is of the pure
tone sin2π5t in the square wave in (a). This is not surprising since the square
wave oscillates 5 times in a second, but the additional nonzero coefficients pol-
lute the pure sound. As we include more and more of these coefficients, we
gradually approach the square wave in (a). Figure (e) shows the corresponding
approximation of one period of the square wave.

179



Figures 8.6 (b), (d), and (f) show the analogous information for a triangular
wave. The function in figure (a) is continuous and therefore the trigonometric
functions in (8.1) converge much faster. This can be seen from the size of the co-
efficients in figure (d), and from the plot of the approximation in figure (f). (Here
we have only included two nonzero terms. With more terms, the triangular wave
and the approximation become virtually indistinguishable.)

From figure 8.6 we can also see how we can use the Fourier coefficients to
analyse or improve the sound. Noise in a sound often correspond to the pres-
ence of some high frequencies with large coefficients, and by removing these, we
remove the noise. For example, in figure (b), we could set all the coefficients ex-
cept the first one to zero. This would change the unpleasant square wave to the
pure tone sin2π5t with the same number of oscillations per second. Another
common operation is to dampen the treble of a sound. This can be done quite
easily by reducing the size of the coefficients corresponding to high frequencies.
Similarly, the bass can be adjusted by changing the coefficients corresponding
to the lower frequencies.

8.2 Digital sound

In the previous section we considered some basic properties of sound, but it was
all in terms of functions defined for all times in some interval. On computers and
various kinds of media players the sound is usually digital, and in this section we
are going to see what this means.

8.2.1 Sampling

Digital sound is very simple: The air pressure of a sound is measured a fixed
number of times per second, and the measurements are stored as numbers in a
file.

Definition 8.11 (Digital sound). A digital sound consists of an array a of num-
bers, the samples, that correspond to measurements of the air pressure of a
sound, recorded at a fixed rate of s, the sample rate, measurements per sec-
ond. If the sound is in stereo there will be two arrays a1 and a2, one for each
channel. Measuring the sound is also referred to as sampling the sound, or
analog to digital (AD) conversion.

There are many different digital sound formats. A couple of them are de-
scribed in the following two examples.

180



0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

Figure 8.7. An example of sampling. Figure (a) shows how the samples are picked from underlying continu-
ous time function. Figure (b) shows what the samples look like on their own.

Fact 8.12 (CD-format). The digital sound on a CD has sample rate 44 100, and
each measurement is stored as a 16 bit integer.

Fact 8.13 (GSM-telephone). The digital sound in GSM mobile telephony has
sample rate 8 000, and each measurement is stored as a 13 bit number in a
floating-point like format.

There are many other digital sound formats in use, with sample rates as high
as 192 000 and above, using 24 bits and more to store each number.

8.2.2 Limitations of digital audio: The sampling theorem

An example of sampling is illustrated in figure 8.7. When we see the samples
on their own in figure (b) it is clear that some information is lost in the sam-
pling process. An important question is therefore how densely we must sample
a function in order to not lose too much information.

The difficult functions to sample are those that oscillate quickly, and the
challenge is to make sure there are no important features between the samples.
By zooming in on a function, we can reduce the extreme situation to something
simple. This is illustrated in Figure 8.8. If we consider one period of sin2πt ,
we see from figure (a) that we need at least two sample points, since one point
would clearly be too little. This translates directly into having at least eight sam-
ple points in figure (b) where the function is sin2π4t which has four periods in
the interval [0,1].

Suppose now that we have a sound (i.e., a function) whose Fourier series
contains terms with frequency at most equal to ν. This means that the function

181



0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

Figure 8.8. Sampling the function sin2πt with two points, and the function sin2π4t with eight points.

in the series that varies most quickly is sin2πνt which requires 2ν sample point
per second. This informal observation is the content of an important theorem.
We emphasise that the simple argument above is no proof of this theorem; it just
shows that it is reasonable.

Theorem 8.14 (Shannon-Nyquist sampling theorem). A sound that includes
frequencies up to ν Hz must be sampled at least 2ν times per second if no
information is to be lost.

The sampling theorem partly explains why the sampling rate on a CD is 44
100. Since the human ear can perceive frequencies up to about 20 000 Hz, the
sampling rate must be at least 40 000 to ensure that the highest frequencies are
accounted for. The actual sampling rate of 44 100 is well above this limit and
ensures that there is some room to smoothly taper off the high frequencies from
20 000 Hz.

8.2.3 Reconstructing the original signal

Before we consider some simple operations on digital sound, we need to discuss
a basic challenge: Sound which is going to be played back through an audio
system must be defined for continuous time. In other words, we must fill in all
the values of the air pressure between two sample points. There is obviously no
unique way to do this since there are infinitely many paths for a graph to follow
between to given points.

Fact 8.15 (Reconstruction of digital audio). Before a digital sound can be
played through an audio system, the gaps between the sample points must

182



0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(c)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(d)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(e)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(f)

Figure 8.9. Reconstruction of sampled data.

be filled by some mathematical function. This process is referred to as digital
to analog (DA) conversion.

Figure 8.9 illustrates two ways to reconstruct an analog audio signal from
a digital one. In the top four figures, the points have been sampled from the
function sin2π4t , while in the lower two figures the samples are taken from
cos2π4t . In the first column, neighbouring sample points have been connected
by straight lines which results in a piecewise linear function that passes through

183



(interpolates) the sample points. This works very well if the sample points are
close together relative to the frequency of the oscillations, as in figure 8.9a. When
the samples are further apart, as in (c) and (e), the discontinuities in the deriva-
tive become visible, and we know that this may be heard as noise in the recon-
structed signal.

In the second column, the gap between two sample points has been filled
with a cubic polynomial, and neighbouring cubic polynomials have been joined
smoothly together so that the total function is continuous and has continuous
first and second derivative. We see that this works much better and produces a
smooth result that is very similar to the original trigonometric signal.

Figure 8.9 illustrates the general principle: If the sampling rate is high, quite
simple reconstruction techniques will be sufficient, while if the sampling rate is
low, more sophisticated methods for reconstruction will be necessary.

8.3 Simple operations on digital sound

So far we have discussed what digital sound is, the limitations in sampling, and
how the information missing in sampled information may be reconstructed. It
is now time to see how digital sound can be processed and manipulated.

Recall that a digital sound is just an array of sample values a = (ai )N
i=0 to-

gether with the sample rate s. Performing operations on the sound therefore
amounts to doing the appropriate computations with the sample values and the
sample rate.

The most basic operation we can perform on a sound is simply playing it,
and if we are working with sound we need a mechanism for doing this.

Playing a sound. Simple operations and computations with sound can be done
in any programming environment, but in order to play the sound, it is necessary
to use an environment that includes a command like play(a, s) (the ocm-
mand may of course have some other name; it is the functionality that is impor-
tant). This will simply play the array of samples a using the sample rate s. If no
play-function is available, you may still be able to play the result of your com-
putations if there is support for saving the sound in some standard format like
mp3. The resulting file can then be played by the standard audio player on your
computer.

The play-function is just a software interface to the sound card in your com-
puter. It basically sends the array of sample values and the sample rate to the
sound card which uses some method for reconstructing the sound to an analog
sound signal. This analog signal is then sent to the loudspeakers and we hear
the sound.

184



Fact 8.16. The basic command in a programming environment that handles
sound is a command

play(a, s)

which takes as input an array of sample values a and a sample rate s, and
plays the corresponding sound through the computer’s loudspeakers.

Changing the sample rate. We can easily play back a sound with a different
sample rate than the standard one. If we have a sound (a, s) and we play it with
the command play(a, 2s), the sound card will assume that the time distance
between neighbouring samples is half the time distance in the original. The re-
sult is that the sound takes half as long, and the frequency of all tones is doubled.
For voices the result is a characteristic Donald Duck-like sound.

Conversely, the sound can be played with half the sample rate as in the com-
mand play(a, s/2). Then the length of the sound is doubled and all frequen-
cies are halved. This results in low pitch, roaring voices.

Fact 8.17. A digital sound (a, s) can be played back with a double or half sam-
ple rate with the commands

play(a, 2s)
play(a, s/2)

Playing the sound backwards. At times a popular game as been to play music
backwards to try and find secret messages. In the old days of analog music on
vinyl this was not so easy, but with digital sound it is quite simple; we just need
to reverse the samples. To do this we just loop through the array and put the last
samples first.

Fact 8.18. Let a = {ai }N
i=0 be the samples of a digital sound. Then the samples

b = {bi }N
i=0 of the reverse sound are given by

bi = aN−i , for i = 0, 1, . . . N .

185



Adding noise. To remove noise from recorded sound can be very challenging,
but adding noise is simple. There are many kinds of noise, but one kind is easily
obtained by adding random numbers to the samples of a sound.

Fact 8.19. Let a be the samples of a digital sound, normalised so that each
sample is a real number in the interval [−1,1]. A new sound b with noise
added can be obtained by adding a random number to each sample,

bi = ai + c random()

where random() is a function that gives a random number in the interval
[−1,1], and c is a constant (usually smaller than 1) that dampens the noise.

This will produce a general hissing noise similar to the noise you hear on the
radio when the reception is bad. The factor c is important, if it is too large the
noise will simply drown the signal b.

Adding echo. An echo is a copy of the sound that is delayed and softer than
the original sound. We observe that the sample that comes m seconds before
sample i has index i −ms where s is the sample rate. This also makes sense
even if m is not an integer so we can use this to produce delays that are less than
one second. The one complication with this is that the number ms may not be
an integer. We can get round this by rounding ms to the nearest integer which
corresponds to adjusting the echo slightly.

Fact 8.20. Let (a, s) be a digital sound. Then the sound b with samples given
by

bi =
{

ai , for i = 0, 1, . . . , d −1;

ai + cai−d , for i = d , d +1, . . . , N ;

will include a echo of the original sound. Here d = round(ms) is the integer
closest to ms, and c is a constant which is usually smaller than 1.

As in the case of noise it is important to dampen the part that is added to the
original sound, otherwise the echo will be too loud. Note also that the formula
that creates the echo does not work at the beginning of the signal, so there we
just copy ai to bi .

186



Reducing the treble. The treble in a sound is generated by the fast oscillations
(high frequencies) in the signal. If we want to reduce the treble we have to adjust
the sample values in a way that reduces those fast oscillations. A general way of
reducing variations in a sequence of numbers is to replace one number by the
average of itself and its neighbours, and this is easily done with a digital sound
signal. If we let the new sound signal be b = (bi )N

i=0 we can compute it as

bi =


ai , for i = 0;

(ai−1 +ai +ai+1)/3, for 0 < i < N ;

ai , for i = N .

This kind of operation is often referred to as filtering the sound, and the se-
quence {1/3,1/3,1/3} is referred to as a filter.

It is reasonable to let the middle sample ai count more than the neighbours
in the average, so an alternative is to compute the average as

bi =


ai , for i = 0;

(ai−1 +2ai +ai+1)/4, for 0 < i < N ;

ai , for i = N .

(8.2)

We can also take averages of more numbers. We note that the coefficients
used in (8.2) are taken from row 2 in Pascal’s triangle. If we pick coefficients
from row 4 instead, the computations become

bi =


ai , for i = 0, 1;

(ai−2 +4ai−1 +6ai +4ai+1 +ai+2)/16, for 1 < i < N −1;

ai , for i = N −1, N .

(8.3)

We have not developed the tools needed to analyse the quality of filters, but
it turns out that picking coefficients from a row in Pascal’s triangle works very
well, and better the longer the filter is.

Observation 8.21. Let a be the samples of a digital sound, and let {ci }2k
i=0 be

the numbers in row 2k of Pascal’s triangle. Then the sound with samples b
given by

bi =


ai , for i = 0, 1, . . . , k −1;(∑2k

j=0 c j ai+ j−k

)/
2k , for 1 < i < N −1;

ai , for i = N −k +1, N −k +2, . . . , N .

(8.4)

has reduced treble compared with the sound given by the samples a.

187



20 40 60 80 100 120 140

-0.10

-0.05

0.05

0.10

0.15

(a)

20 40 60 80 100 120 140

-0.10

-0.05

0.05

0.10

(b)

Figure 8.10. Reducing the treble. Figure (a) shows the original sound signal, while the plot in (b) shows the
result of applying the filter from row 4 of Pascal’s triangle.

20 40 60 80 100 120 140

-0.10

-0.05

0.05

0.10

0.15

(a)

20 40 60 80 100 120 140

-0.015

-0.010

-0.005

0.005

0.010

(b)

Figure 8.11. Reducing the bass. Figure (a) shows the original sound signal, while the plot in (b) shows the
result of applying the filter in (8.5).

An example of the result of the averaging is shown in figure 8.10. Figure (a)
shows a real sound sampled at CD-quality (44 100 samples per second). Fig-
ure (b) shows the result of applying the averaging process in (8.6). We see that
the oscillations have been reduced, and if we play the sound it has considerably
less treble.

Reducing the bass. Another common option in an audio system is reducing
the bass. This corresponds to reducing the low frequencies in the sound, or
equivalently, the slow variations in the sample values. It turns out that this can
be accomplished by simply changing the sign of the coefficients used for reduc-
ing the treble. We can for instance change the filter described in (8.6) to

bi =


ai , for i = 0, 1;

(ai−2 −4ai−1 +6ai −4ai+1 +ai+2)/16, for 1 < i < N −1;

ai , for i = N −1, N .

(8.5)

188



An example is shown in figure 8.11. The original signal is shown in figure (a) and
the result in figure (b). We observe that the samples in (b) oscillate much more
than the samples in (a). If we play the sound in (b), it is quite obvious that the
bass has disappeared almost completely.

Observation 8.22. Let a be the samples of a digital sound, and let {ci }2k
i=0 be

the numbers in row 2k of Pascal’s triangle. Then the sound with samples b
given by

bi =


ai , for i = 0, 1, . . . , k −1;(∑2k

j=0(−1)k− j c j ai+ j−k

)/
2k , for 1 < i < N −1;

ai , for i = N −k +1, N −k +2, . . . , N .

(8.6)

has reduced bass compared to the sound given by the samples b.

8.4 More advanced sound processing

The operations on digital sound described in section 8.3 are simple and can be
performed directly on the sample values. We saw in section 8.1.3 that a sound
defined for continuous time could be decomposed into different frequency com-
ponents, see theorem 8.8. The same can be done for digital sound with a digital
version of the Fourier decomposition. When the sound has been decomposed
into frequency components, the bass and treble can be adjusted by adjusting
the corresponding frequencies. This is part of the field of signal processing.

8.4.1 The Discrete Cosine Transform

In Fourier analysis a sound is decomposed into sines and cosines. For digital
sound a close relative, the Discrete Cosine Transform (DCT) is often used in-
stead. This just decomposes the digital signal into cosines with different fre-
quencies. The DCT is particularly popular for processing the sound before com-
pression, so we will consider it briefly here.

Definition 8.23 (Discrete Cosine Transform (DCT)). Suppose the sequence of
numbers u = {us}n−1

s=0 are given. The DCT of u is the sequence v whose terms
are given by

vs = 1p
n

n−1∑
r=0

ur cos
( (2r +1)sπ

2n

)
, for s = 0, . . . , n −1. (8.7)

189



With the DCT we compute the sequence v . It turns out that we can get back
to the u sequence by computations that are very similar to the DCT. This is called
the inverse DCT.

Theorem 8.24 (Inverse Discrete Cosine Transform). Suppose that the se-
quence v = {vs}n−1

s=0 is the DCT of the sequence u = {ur }n−1
r=0 as in (8.7). Then u

can be recovered from v via the formula

ur = 1p
n

(
v0 +2

n−1∑
s=1

vs cos
( (2r +1)sπ

2n

))
, for r = 0, . . . , n −1. (8.8)

The two formulas (8.7) and (8.8) allow us to switch back and forth between
two different representations of the digital sound. The sequence u is often re-
ferred to as representation in the time domain, while the sequence v is referred
to as representation in the frequency domain. There are fast algorithms for per-
forming these operations, so switching between the two representations is very
fast.

The new sequence v generated by the DCT tells us how much the sequence
u contains of the different frequencies. For each s = 0, 1, . . . , n −1, the function
cos sπt is sampled at the points tr = (2r + 1)/(2n) for r = 0, 1, . . . , n − 1 which
results in the values

cos
( sπ

2n

)
, cos

(3sπ

2n

)
, cos

(5sπ

2n

)
, . . . , cos

( (2n −1)sπ

2n

)
.

These are then multiplied by the ur and everything is added together.
Plots of these values for n = 6 are shown in figure 8.12. We note that as s

increases, the functions oscillate more and more. This means that v0 gives a
measure of how much constant content there is in the data, while (in this par-
ticular case where N = 5), v5 gives a measure of how much content there is with
maximum oscillation. In other words, the DCT of an audio signal shows the pro-
portion of the different frequencies in the signal.

Once the DCT of u has been computed, we can analyse the frequency con-
tent of the signal. If we want to reduce the bass we can decrease the vs-values
with small indices and if we want to increase the treble we can increase the vs-
values with large indices.

8.5 Lossy compression of digital sound

In a typical audio signal there will be most information in the lower frequencies,
and some frequencies will be almost completely absent, i.e., some of the vs-
values will be virtually zero. This can exploited for compression: We change

190



1 2 3 4 5

-1.0

-0.5

0.5

1.0

(a)

1 2 3 4 5

-1.0

-0.5

0.5

1.0

(b)

1 2 3 4 5

-1.0

-0.5

0.5

1.0

(c)

1 2 3 4 5

-1.0

-0.5

0.5

1.0

(d)

1 2 3 4 5

-1.0

-0.5

0.5

1.0

(e)

1 2 3 4 5

-1.0

-0.5

0.5

1.0

(f)

Figure 8.12. The 6 different versions of the cos function used in DCT for n = 6. The plots show piecewise
linear functions, but this is just to make the plots more readable: Only the values at the integers 0, . . . , 5 are
used.

the small vs-values a little bit and set them to 0, and then store the signal by
storing the DCT-values. When the sound is to be played back, we first convert
the sdjusted DCT-values to the time domain with the inverse DCT as given in
theorem 8.24.

Example 8.25. Let us test a naive compression strategy based on the above idea.
The plots in figure 8.13 illustrate the principle. A signal is shown in (a) and its

191



100 200 300 400

-0.10

-0.05

0.05

0.10

0.15

(a)

100 200 300 400

-0.2

0.2

0.4

(b)

100 200 300 400

-0.10

-0.05

0.05

0.10

0.15

(c)

100 200 300 400

-0.2

0.2

0.4

(d)

Figure 8.13. The signal in (a) is a small part of a song. The plot in (b) shows the DCT of the signal. In (d), all
values of the DCT that are smaller than 0.02 in absolute value have been set to 0, a total of 309 values. In (c)
the signal has been reconstructed from these perturbed values of the DCT. Note that all signals are discrete;
the values have been connected by straight lines to make it easier to interpret the plots.

DCT in (b). In (d) all values of the DCT with absolute value smaller than 0.02
have been set to zero. The signal can then be reconstructed with the inverse DCT
of theorem 8.24; the result of this is shown in (c). The two signals in (a) and (b)
visually look almost the same even though the signal in (c) can be represented
with less than 25 % of the information present in (a).

We test this compression strategy on a data set that consists of 300 001 points.
We compute the DCT and set all values smaller than a suitable tolerance to 0.
With a tolerance of 0.04, a total of 142 541 values are set to zero. When we then
reconstruct the sound with the inverse DCT, we obtain a signal that differs at
most 0.019 from the original signal. We can store the signal by storing a gzip’ed
version of the DCT-values (as 32-bit floating-point numbers) of the perturbed
signal. This gives a file with 622 551 bytes, which is 88 % of the gzip’ed version
of the original data.

The approach to compression that we have outlined in the above example is
essentially what is used in practice. The difference is that commercial software
does everything in a more sophisticated way and thereby gets better compres-

192



sion rates.

Fact 8.26 (Basic idea behind audio compression). Suppose a digital audio sig-
nal u is given. To compress u, perform the following steps:

1. Rewrite the signal u in a new format where frequency information be-
comes accessible.

2. Remove those frequencies that only contribute marginally to human
perception of the sound.

3. Store the resulting sound by coding the adjusted frequency information
with some lossless coding method.

All the lossy compression strategies used in the commercial formats that we
review below, use the strategy in fact 8.26. In fact they all use a modified version
of the DCT in step 1 and a variant of Huffman coding in step 3. Where they vary
the most is probably in deciding what information to remove from the signal. To
do this well requires some knowledge of human perception of sound.

8.6 Psycho-acoustic models

In the previous sections, we have outlined a simple strategy for compressing
sound. The idea is to rewrite the audio signal in an alternative mathematical
representation where many of the values are small, set the smallest values to 0,
store this perturbed signal, and code it with a lossless compression method.

This kind of compression strategy works quite well, and is based on keep-
ing the difference between the original signal and the compressed signal small.
However, in certain situations a listener will not be able to perceive the sound as
being different even if this difference is quite large. This is due to how our audi-
tory system interprets audio signals and is referred to as psycho-acoustic effects.

When we hear a sound, there is a mechanical stimulation of the ear drum,
and the amount of stimulus is directly related to the size of the sample values of
the digital sound. The movement of the ear drum is then converted to electric
impulses that travel to the brain where they are perceived as sound. The per-
ception process uses a Fourier-like transformation of the sound so that a steady
oscillation in air pressure is perceived as a sound with a fixed frequency. In this
process certain kinds of perturbations of the sound are hardly noticed by the
brain, and this is exploited in lossy audio compression.

The most obvious psycho-acoustic effect is that the human auditory system
can only perceive frequencies in the range 20 Hz – 20 000 Hz. An obvious way to

193



do compression is therefore to remove frequencies outside this range, although
there are indications that these frequencies may influence the listening experi-
ence inaudibly.

Another phenomenon is masking effects. A simple example of this is that a
loud sound will make a simultaneous quiet sound inaudible. For compression
this means that if certain frequencies of a signal are very prominent, most of the
other frequencies can be removed, even when they are quite large.

These kinds of effects are integrated into what is referred to as a psycho-
acoustic model. This model is then used as the basis for simplifying the spec-
trum of the sound in way that is hardly noticeable to a listener, but which allows
the sound to be stored with must less information than the original.

8.7 Digital audio formats

Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data. However, audio was represented by a large amount
of data and an obvious challenge was how to reduce the storage requirements.
Lossless coding techniques like Huffman and Lempel-Ziv coding were known
and with these kinds of techniques the file size could be reduced to about half
of that required by the CD format. However, by allowing the data to be altered
a little bit it turned out that it was possible to reduce the file size down to about
ten percent of the CD format, without much loss in quality.

In this section we will give a brief description of some of the most common
digital audio formats, both lossy and lossless ones.

8.7.1 Audio sampling — PCM

The basis for all digital sound is sampling of an analog (continuous) audio sig-
nal. This is usually done with a technique called Pulse Code Modulation (PCM).
The audio signal is sampled at regular intervals and the sampled values stored
in a suitable number format. Both the sampling rate and the number format
varies for different kinds of audio. For telephony it is common to sample the
sound 8000 times per second and represent each sample value as a 13-bit inte-
ger. These integers are then converted to a kind of 8-bit floating-point format
with a 4-bit significand. Telephony therefore generates 64 000 bits per second.

The classical CD-format samples the audio signal 44 100 times per second
and stores the samples as 16-bit integers. This works well for music with a rea-
sonably uniform dynamic range, but is problematic when the range varies. Sup-
pose for example that a piece of music has a very loud passage. In this passage

194



the samples will typically make use of almost the full range of integer values,
from −215 − 1 to 215. When the music enters a more quiet passage the sample
values will necessarily become much smaller and perhaps only vary in the range
−1000 to 1000, say. Since 210 = 1024 this means that in the quiet passage the mu-
sic would only be represented with 10-bit samples. This problem can be avoided
by using a floating-point format instead, but very few audio formats appear to
do this.

Newer formats with higher quality are available. Music is distributed in var-
ious formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with sampling
rates up to 192 000 and up to 24 bits per sample. These formats also support
surround sound (up to seven channels as opposed to the two stereo channels
on CDs).

Both the number of samples per second and the number of bits per sample
influence the quality of the resulting sound. For simplicity the quality is often
measured by the number of bits per second, i.e., the product of the sampling
rate and the number of bits per sample. For standard telephony we saw that the
bit rate is 64000 bits per second or 64 kb/s. The bit rate for CD-quality stereo
sound is 44100×2×16 bits/s = 1411.2 kb/s. This quality measure is particularly
popular for lossy audio formats where the uncompressed audio usually is the
same (CD-quality). However, it should be remembered that even two audio files
in the same file format and with the same bit rate may be of very different quality
because the encoding programs me be of different quality.

All the audio formats mentioned so far can be considered raw formats; it is
a description of how the sound is digitised. When the information is stored on a
computer, the details of how the data is organised must be specified, and there
are several popular formats for this.

8.7.2 Lossless formats

The two most common file formats for CD-quality audio are AIFF and WAV,
which are both supported by most commercial audio programs. These formats
specify in detail how the audio data should be stored in a file. In addition, there
is support for including the title of the audio piece, album and artist name and
other relevant data. All the other audio formats below (including the lossy ones)
also have support for this kind of additional information.

AIFF. Audio Interchange File Format was developed by Apple and published in
1988. AIFF supports different sample rates and bit lengths, but is most com-
monly used for storing CD-quality audio at 44 100 samples per second and 16
bits per sample. No compression is applied to the data, but there is also a vari-

195



ant that supports lossless compression, namely AIFF-C.

WAV. Waveform audio data is a file format developed by Microsoft and IBM.
As AIFF, it supports different data formats, but by far the most common is stan-
dard CD-quality sound. WAV uses a 32-bit integer to specify the file size at the
beginning of the file which means that a WAV-file cannot be larger than 4 GB.
Microsoft therefore developed the W64 format to remedy this.

Apple Lossless. After Apple’s iPods became popular, the company in 2004 in-
troduced a lossless compressed file format called Apple Lossless. This format is
used for reducing the size of CD-quality audio files. Apple has not published the
algorithm behind the Apple Lossless format, but most of the details have been
worked out by programmers working on a public decoder. The compression
phase uses a two step algorithm:

1. When the nth sample value xn is reached, an approximation yn to xn is
computed, and the error en = xn − yn is stored instead of xn . In the sim-
plest case, the approximation yn would be the previous sample value xn−1;
better approximations are obtained by computing yn as a combination of
several of the previous sample values.

2. The error en is coded by a variant of the Rice algorithm. This is an algo-
rithm which was developed to code integer numbers efficiently. It works
particularly well when small numbers are much more likely than larger
numbers and in this situation it achieves compression rates close to the
entropy limit. Since the sample values are integers, the step above pro-
duces exactly the kind of data that the Rice algorithm handles well.

FLAC. Free Lossless Audio Code is another compressed lossless audio format.
FLAC is free and open source (meaning that you can obtain the program code).
The encoder uses an algorithm similar to the one used for Apple Lossless, with
prediction based on previous samples and encoding of the error with a variant
of the Rice algorithm.

8.7.3 Lossy formats

All the lossy audio formats described below apply a modified version of the DCT
to successive groups (frames) of sample values, analyse the resulting values, and
perturb them according to a psycho-acoustic model. These perturbed values
are then converted to a suitable number format and coded with some lossless
coding method like Huffman coding. When the audio is to be played back, this

196



process has to be reversed and the data translated back to perturbed sample
values at the appropriate sample rate.

MP3. Perhaps the best known audio format is MP3 or more precisely MPEG-1
Audio Layer 3. This format was developed by Philips, CCETT (Centre commun
d’études de télévision et télécommunications), IRT (Institut für Rundfunktech-
nik) and Fraunhofer Society, and became an international standard in 1991. Vir-
tually all audio software and music players support this format. MP3 is just a
sound format and does not specify the details of how the encoding should be
done. As a consequence there are many different MP3 encoders available, of
varying quality. In particular, an encoder which works well for higher bit rates
(high quality sound) may not work so well for lower bit rates.

MP3 is based on applying a variant of the DCT (called the Modified Discrete
Cosine Transform, MDCT) to groups of 576 (in special circumstances 192) sam-
ples. These MDCT values are then processed according to a psycho-acoustic
model and coded efficiently with Huffman coding.

MP3 supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1,
and 48 kHz. The format also supports variable bit rates (the bit rate varies in
different parts of the file).

AAC. Advanced Audio Coding has been presented as the successor to the MP3
format by the principal MP3 developer, Fraunhofer Society. AAC can achieve
better quality than MP3 at the same bit rate, particularly for bit rates below 192
kb/s. AAC became well known in April 2003 when Apple introduced this format
(at 128 kb/s) as the standard format for their iTunes Music Store and iPod music
players. AAC is also supported by many other music players, including the most
popular mobile phones.

The technologies behind AAC and MP3 are very similar. AAC supports more
sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the MDCT,
just like MP3, but AAC processes 1 024 samples at time. AAC also uses much
more sophisticated processing of frequencies above 16 kHz and has a number of
other enhancements over MP3. AAC, as MP3, uses Huffman coding for efficient
coding of the MDCT values. Tests seem quite conclusive that AAC is better than
MP3 for low bit rates (typically below 192 kb/s), but for higher rates it is not so
easy to differentiate between the two formats. As for MP3 (and the other formats
mentioned here), the quality of an AAC file depends crucially on the quality of
the encoding program.

There are a number of variants of AAC, in particular AAC Low Delay (AAC-
LD). This format was designed for use in two-way communication over a net-

197



work, for example the Internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be toler-
ated).

Ogg Vorbis. Vorbis is an open-source, lossy audio format that was designed
to be free of any patent issues and free to use, and to be an improvement on
MP3. At our level of detail Vorbis is very similar to MP3 and AAC: It uses the
MDCT to transform groups of samples to the frequency domain, it then applies
a psycho-acoustic model, and codes the final data with a variant of Huffman
coding. In contrast to MP3 and AAC, Vorbis always uses variable length bit rates.
The desired quality is indicated with an integer in the range −1 (worst) to 10
(best). Vorbis supports a wide range of sample rates from 8 kHz to 192 kHz and
up to 255 channels. In comparison tests with the other formats, Vorbis appear
to perform well, particularly at medium quality bit rates.

WMA. Windows Media Audio is a lossy audio format developed by Microsoft.
WMA is also based on the MDCT and Huffman coding, and like AAC and Vorbis,
it was explicitly designed to improve the deficiencies in MP3. WMA supports
sample rates up to 48 kHz and two channels. There is a more advanced version,
WMA Professional, which supports sample rates up to 96 kHz and 24 bit sam-
ples, but this has limited support in popular software and music players. There
is also a lossless variant, WMA Lossless. At low bit rates, WMA generally appears
to give better quality than MP3. At higher bit rates, the quality of WMA Pro seems
to be comparable to that of AAC and Vorbis.

198


