
APPENDIX

Solutions

Section 1.5

Section 2.3

Section 3.1

Section 3.2

Exercise 7

(a) In general we have that β= 10β for any β. In particular we have that 7 = 107,
37 = 1037, 4 = 104.

(b) The equation 13 = 10β gives that β = 13 from (a). The equation 100 = 10β
gives in the same way that β = 100. For all a ∈ N we can find a β which solves
a = 10β: It is enough to set β= a.

Section 3.3

Exercise 5

(a) 0.bβ is always a number in [0,1), so that such a β exists only for a < 1. Since
0.bβ = b

β = a = b
c it follows that β = c, so that we can find a unique β for all

rational a on the form a = 0.bβ.

(b) Since 0.01β = 1
β2 , if a = b

c = 0.01β we must have that c = bβ2. In other words,

a rational number b
c can be written on the form 0.01β if and only if c = bβ2.

(c) Since 0.0bβ = b
β2 , if a = c

d = 0.0bβ we must have that c = bd
β2 . In other words,

a rational number c
d can be written on the form 0.0bβ if and only if c = bd

β2 .

447

Exercise 6 when we in algorithm 3.20 obtain a b which has been seen before,
we will perform the same computations again, so that the sequence will repeat.
There are c possibilities for this value since we compute the remainder with c.
The longest possible repeating sequence is thus one where all values of b are
observed. However, the value 0 will result in the rest of the digits being 0, so the
maximum length repeating sequence is obtained when the values 1, ...,c −1 are
observed for b in succession. This results in a repeating sequence of length c−1.

Section 3.4

Exercise 1

(a) In the equation 7β+8β = 13β, the left hand side is 7+8 = 15. The right hand
side is 13β =β+3. Solving β+3 = 15 we get that β= 12, so that the third alterna-
tive is correct.

(c) We can write 40.125 = 5 ·8+1/8 = 5 ·81 +0 ·80 +8−1. This can also be written
as 50.18, so that the last alternative is the correct one.

Section 4.1

Exercise 1

(c) The machine enters an infinite loop, since Python increases the precision
used for numbers when the sum of two numbers is beyond the current limit.
The machine will eventually run out of memory when too much recourses are
required to represent the number, but this may take some billions of years. This
means that the first alternative is correct.

Exercise 3 There is no way we can constuct a unique “threes’s complement“ in.
One possibility is, in fact 4.3, to replace the representation of a negative num-
ber with the n first digits in 3n − |x|, where n still denotes the number of digits
in x. With addition defined by neglecting digit n + 1 as in two’s complement,
this representation of numbers will have the same properties as two’s compli-
ment. The only difference is that the numbers now represented only will cover
two thirds of the numbers with n + 1 digits: The lower third (which represents
positive numbers), and the upper third (which represents negative numbers).

Section 4.2

Section 4.3

Exercise 3

448

(a) Since 5a16 ≤ 7 f16, this is encoded with one byte, so that the UTF-8 encoding
is the number itself, i.e. 5a16.

(b) We have that 8016 ≤ f 516 ≤ 7 f f16, so that two bytes are used in the UTF8-
encoding. Since f 516 = 1111 01012, we have that the UTF8-encoding is 1100 0011 1011 01012 =
c3b516.

(c) We have that 8016 ≤ 3 f 816 ≤ 7 f f16, so that two bytes are used in the UTF8-
encoding also here. Since 3 f 816 = 11 1111 10002, we have that the UTF8-encoding
is 1100 1111 1011 10002 = c f b816.

(d) We have that 80016 ≤ 8 f 3716 ≤ f f f f16, so that three bytes are used in the
UTF8-encoding also here. Since 8 f 3716 = 1000 1111 0011 01112, we have that
the UTF8-encoding is 1110 1000 1011 1100 1011 01112 = e8bcb716.

Exercise 5

(a) These characters have code points e616 = 1110 01102, f 816 = 1111 10002,
and e516 = 1110 01012. All of them are stored with 2 bytes in UTF-8 The UTF8-
encoding of ’æ’ is 1100 0011 1010 01102 = c3a616, which corresponds to the
two characters Ã¦ in the ISO Latin1 character set. The UTF8-encoding of ’ø’ is
1100 0011 1011 10002 = c3b816, which corresponds to the two characters Ã¸ in
the ISO Latin1 character set. The UTF8-encoding of ’æ’ is 1100 0011 1010 01012 =
c3a516, which corresponds to the two characters Ã¥ in the ISO Latin1 character
set.

(b) None of the three codepoints for ’æ’, ’ø’, ’å’, are seen to be valid UTF8-codes.

(c) All three characters are also stored with 2 bytes in UTF-16, and as 00e616,
00 f 816, and 00e516, respectively. These are shown as æ, ø, and å, respectively.
The other way, the ISO Latin1 encoding of each of the three characters is too
short to be accepted as a UTF-16 encoding.

(d) Assume that the characters are stored with UTF-8. As shown in (a), the
UTF8-characters are c3a616, c3b816, and = c3a516, which are the valid two-byte
Unicode characters Ãa6, Ãb8, and Ãa5.

Conversely, assume that the characters are stored with UTF-16. The first byte
in the code 1110 01102 for ’æ’, indicates that it shoould be stored with 3 bytes, but
then the second byte should start with 10, which it does not. The same applies
for ’å’. Finally, for the code 1111 10002 for ø, there are no bytes in UTF-8 which
start with 11111, so that all characters are invalid UTF-8 characters.

449

Exercise 8 We have that

41 42 43 44 4516 = 0100 0001 0100 0010 0100 0011 0100 0100 0100 01012

This is clearly a valid UTF-8 encoding of 5 ASCII characters. Since 5 bytes are
used, it can not be a UTF-16 code, since that would require an even number of
bytes being used.

Exercise 10 We have that

41 C 3 98 41 C 3 41 41 C 3 98 98 4116 =

0100 0001 1100 0011 1001 1000 0100 0001 1100 0011 0100 0001 0100 0001
1100 0011 1001 1000 1001 1000 0100 00012.The first byte, 0100 00012, is a valid
UTF-8 character. The next two bytes, 1100 0011 1001 10002, is a valid two-byte
UTF-8 character. The next byte, 0100 0001, is again a valid UTF-8 character. the
next two bytes, 1100 0011 0100 00012 are not valid, since the second byte should
start with 10 when the first starts with 110.

Section 4.5

Section 5.2

Exercise 2 The last expression may give large relative error when calculated on
a machine using floating point arithmetic, since it is possible for sin(−x2) to be
close to 1/2 (cancellation). The other expressions can not give cancellation.

Exercise 6

(b) The biggest number of 9.834 and 2.45 is 9.834, and this can be written on
normalised form as 0.9834×101. The other number can be written as 0.2450×
101 when we use the same exponent (we added a 0 to get 4 digits). We add the
significands and get 0.9834+ 0.2450 = 1.2284. At the end we convert 1.2284×
101 to normalized form and get 0.1228× 102, where we at the end had to do a
rounding since the significand should be represented by 4 digits only.

Exercise 7

(a) A normalised number in base β is represented as α×βn where n is a one
digit number, and α is a number between β−1 and 1 represented with a four
digit number in base β (0.1 = 10−1 was exchanged with β−1).

450

(b) In any numeral system we have three cases to consider when defining round-
ing rules. Note also that it is sufficient to define rounding for two-digit fractional
numbers.

In the octal numeral system the three rules are:

1. A number (0.d1d2)8 is rounded to 0.d1 if the digit d2 is 0, 1, 2 or 3.

2. If d1 < 7 and d2 is 4, 5, 6, or 7, then (0.d1d2)8 is rounded to 0.d̃1 where
d̃1 = d1 +1.

3. A number (0.7d2)8 is rounded to 1.0 if d2 is 4, 5, 6, or 7.

In the hexadecimal numeral system the rules are similar: If the last digit is
one of 8, 9, a,b,c,d,e, or f, round up, otherwise round down.

Exercise 9 Code in Python is

x=0.0
while x<= 2.0:
print x
x=x+0.1

In my program the last value 2.0 is not written. The explanation is that 0.1 can
not be represented exactly by the computer. What actually is the case here is
that the machine represents 0.1 with a number slightly bigger than 0.1. When
this number is added with itself 20 times, we have a number which is bigger
than 2.0, so the number is not printed. 2.0 can, however, be represented exactly
by the computer.

Section 5.3

Exercise 2

(a) The absolute error is |a−ã| = |1−0.9994| = 0.0006. The relative error is |a−ã|
|a| =

0.0006
1 = 0.0006. The relative error can also be written as 0.6×10−3 ≈ 10−3, and

observation 5.20 says that about the 3 most significant digits in a and ã should
agree. This is not so far from the truth in this case, since 0.999 (where we have
included the three most significant digits) will be rounded to 1.000.

(b) The absolute error is |a − ã| = |24−23.56| = 0.44. The relative error is |a−ã|
|a| =

0.44
24 = 0.01833. The relative error can also be written as 1.8× 10−2 ≈ 10−2, and

observation 5.20 says that about the 2 most significant digits in a and ã should
agree. This is in fact the case, since 23.56 with the two most significant digits
gives 24.

451

(c) The absolute error is |a − ã| = |−1267+1267.345| = 0.345. The relative error
is |a−ã|

|a| = 0.345
1267 = 0.000272. The relative error can also be written as 2.7×10−4 ≈

10−4, and observation 5.20 says that about the 4 most significant digits in a and
ã should agree. This is in fact the case, since −1267.345 with the two most sig-
nificant digits gives −1267.

(d) The absolute error is |a − ã| = |124− 7| = 117. The relative error is |a−ã|
|a| =

117
124 = 0.9435. The relative error can also be written as 0.94×100 ≈ 100, and ob-
servation 5.20 says that no significant digits in a and ã should agree. This is the
case here.

Exercise 3 (a). The absolute error the other way is |ã−a|
|ã| = 0.0006

0.9994 = 0.0006, so that
we have approximately the same relative error. This agrees with the sentence
in section 5.3.3, which says that the two relative errors should be quite close, in
cases where the two relative errors are quite small..

(b). The absolute error the other way is |ã−a|
|ã| = 0.44

23.56 = 0.0187, so that we
have approximately the same relative error. This agrees with the sentence in
section 5.3.3, as for a).

(c). The absolute error the other way is |ã−a|
|ã| = 0.345

1267.345 = 0.000272, so that
we have approximately the same relative error. This agrees with the sentence in
section 5.3.3.

(d). The absolute error the other way is |ã−a|
|ã| = 117

7 ≈ 16.7, so that we here
have relative errors quite far apart. This has to do with that the relative errors
are quite big,so that the observation is not valid.

Exercise 4 In example 5.9 we found the approximation ã = 0.1247×102 = 13.47
to the sum 5.645+7.821 = 13.466. The relative error is

|a − ã|
|a| = 0.004

13.466
≈ 0.000297 = 2.97×10−4 ≈ 10−4.

From the observation the numbers should agree in the four most significant dig-
its. This is the case since the four most significant digits in 13.466 give 13.47.

In example 5.10 we found the approximation 0.4234×102 = 42.34 to the sum
42.34+0.0033 = 42.3433. The relative error is

|a − ã|
|a| = 0.0033

42.3433
≈ 0.000078 = 0.78×10−4 ≈ 10−4.

From the observation the numbers should agree in the four most significant dig-
its. This is the case since the four most significant digits in 42.3433 give 42.34.

452

In example 5.11 we found the approximation 0.7×10−1 = 0.07 to the differ-
ence 10.34− 10.27 = 0.07. The relative error here is 0, and all significant digits
should agree, which they do since the numbers are equal.

In example 5.12 we found the approximation 0.9000× 10−3 = 0.0009 to the
difference 10/7−1.42 ≈ 0.8571×10−3 = 0.0008571. The relative error is

|a − ã|
|a| = 0.0000429

0.0008571
≈ 0.05 = 0.5×10−1 ≈ 10−1.

From the observation the numbers should agree in just the most significant
digit. This is the case since 0.0008571 with only the most significant digit is
0.0009.

Section 5.4

Exercise 1

(a) We can write

5−
�

5

5+
�

5
+
�

5
2

= (5−
�

5)(5−
�

5)
52 −5

+
�

5
2

= 25−10
�

5+5
20

+
�

5
2

= 3
2

.

Therefore, the last alternative is the correct one.

(b) The last alternative is the correct one. The reason is that several bits are al-
located for the exponent, see Fact 4.8. The first alternative is wrong, positive
numbers can also give roundoff errors. The second alternative is wrong because
we typically have limitations on the computer in the significand and the expo-
nent, and even if the types can expand the bits used for these as in Python, the
computer has at the end a limited amount of memory. The third alternative is
wrong, since 64-bit integers represents numbers in the interval [−263,263 − 1]
(Fact 4.2).

Exercise 2

(a) If x is very large we will in the expression
�

x +1−
�

x subtract two large num-
bers very close to each other. According to observation 5.13 we then can loose
precision with many digits (i.e. cancellation). If we multiply with

�
x +1+

�
x up

and down we get 1�
x+1+

�
x

, where we have avoided the problem of subtracting

two numbers close to each other.

453

(b) The fomula ln x2 − ln(x2 + x) is problematic for large values of x since then
the two logarithms will become almost equal and we get cancellation. Using
properties of the logarithm, the expression can be rewritten as

ln x2 − ln(x2 +x) = ln
� x2

x2 +x

�
= ln

� x
x +1

�

which will not cause problems with cancellation.

(c) We can write cos2 x − sin2 x = cos(2x),so that we avoid subtraction of two
almost equal numbers near x = π

4 .

Section 6.1

Section 6.2

Exercise 2

(a) We have that xn+2 = f (n, xn , xn+1) = 3xn+1 −xn . We compute

x2 = 3x1 −x0 = 3−2 = 1

x3 = 3x2 −x1 = 3−1 = 2

x4 = 3x3 −x2 = 3×2−1 = 5

x5 = 3x4 −x3 = 3×5−2 = 13.

(d) We have that xn+1 = f (n, xn) =−
�

4−xn . We compute

x1 =−
�

4−x0 =−
�

4−0 =−2

x2 =−
�

4−x1 =−
�

4+2 =−
�

6 ≈−2.4495

x3 =−
�

4−x2 =−
�

4+2.4495 ≈−2.5396

x4 =−
�

4−x3 =−
�

4+2.5396 ≈−2.5573

x5 =−
�

4−x4 =−
�

4+2.5573 ≈−2.5607.

(e) We have that xn+2 = f (n, xn , xn+1) = 1
5 (3xn+1 −xn +n). We compute

x2 =
1
5

(3−0+0) = 3
5

x3 =
1
5

(
9
5
−1+1) = 9

25

x4 =
1
5

(
27
25

− 3
5
+2) = 62

125

x5 =
1
5

(
186
125

− 9
25

+3) = 816
625

.

454

(f) If we insert x0 = 3 we get that x2
1 =−15+1 =−14, which clearly has no solu-

tion. Furthermore, xn+1 is not uniquely determined for other initial conditions,
since xn+1 =±

�
1−5xn .

Section 6.3

Exercise 2 The code can look as follows:

N=10
xpp=0
xp=1
for i in range(N-1):
x=xpp+xp
print x
xpp=xp;
xp=x

Exercise 3 The code can look as follows:

N=10
xppp=0
xpp=1
xp=1
for i in range(N-2):
x=xppp+xpp+xp
print x
xppp=xpp
xpp=xp;
xp=x

Section 6.4

Section 6.5

Exercise 2 The code can look as follows:

#a
xpp=1.0
xp=2.0/3.0
for n in range(100):
x=(-4.0*xp+4.0*xpp)/3.0
xpp=xp
xp=x

455

print xp

#b
x=1.0
for n in range(100):
x=(1.0+x/3.0)/3.0
print x

(a) The characteristic equation is 3r 2+4r−4 = 0, which has roots r = −4±
�

16+48
6 =

−2±4
3 . The roots are thus −2 and 2/3, so that the solution to the difference equa-

tion is xn =C (−2)n +D(2/3)n . The initial values give

C +D = 1

−2C + 2
3

D = 2/3,

which gives that 8
3 D = 8

3 , so that D = 1 and C = 0. The solution is thus xn =
(2/3)n . This will go to zero, but due to roundoff in the second initial condition
there will be a term on the form �̂(−2)n also contributing in the simulation, so
that we will will eventually get overflow. We will then get NAN, since we at the
end substract −∞ from ∞ or vice versa). The last alternative is thus correct.

(b) It is straightforward to check that the exact solution is xn = 3
8 +

45
8

�1
9

�n
. It is

clear that simulations will converge to 3/8.

Exercise 4

(c) The code can look as follows:

N=40
x=-5.0/14
print x
for n in range(N):
x=3.0*x+5**(-n)
print x

Exercise 5

(a) The characteristic equation is r 2 − r − 1 = 0, which has roots r = 1±
�

1+4
2 =

1±
�

5
2 . This means that we have two different real roots, so that the general solu-

tion is

xn =C

�
1+

�
5

2

�n

+D

�
1−

�
5

2

�n

.

456

The two initial values give

C +D = 1

C
1+

�
5

2
+D

1−
�

5
2

= 1−
�

5
2

.

Substituting the first in the second gives

C
�

5+ 1−
�

5
2

= (1−
�

5)/2,

so that C = 0 and D = 1. This gives the solution xn =
�

1−
�

5
2

�n
.

(b) Due to rounding in the second initial condition, the computer will simulate
values of the form

xn = �̂

�
1+

�
5

2

�n

+ (1− �̂)

�
1−

�
5

2

�n

.

This means that the values of xn eventually will overflow. In the beginning of the

calculations, the values seem to converge to zero, since the term (1− �̂)
�

1−
�

5
2

�n

dominates in the beginning, and this term converges to zero.

(c) The code can look as follows:

from math import sqrt

xpp=1.0
xp=(1-sqrt(5.0))/2.0
for n in range(100):
x=xpp+xp
xpp=xp
xp=x
print xp

Exercise 6

(a) The characteristic equation is r 2 − 2
5 r + 1

45 = 0, which has roots

r =
2
5 ±

�
4

25 −
4

45

2
=

2
5 ±

�
36−20

225

2
=

2
5 ±

4
15

2
= 1

5
± 2

15
,

457

so that r = 1
3 eller r = 1

15 . Therefore the general solution to the difference equa-
tion is xn = A

� 1
15

�n +B
�1

3

�n
. The initial values x0 = 1, x1 = 1

15 give

A+B = 1
1

15
A+ 1

3
B = 1

15
.

These equations can also be written as

A+B = 1

A+5B = 1.

We quickly see that the dolution to this is A = 1, B = 0, so that the solution to the
difference equation is xn =

� 1
15

�n = 15−n .

(b) The other initial condition cannot be represented exactly on the computer,
so that the computer instead will find a solution on the form

x̂n = (1− �̂)
�

1
15

�n

+ �̂
�

1
3

�n

,

where �̂ is a small number representing the roundoff error committet by the
computer. When n becomes large, the “error” �̂

�1
3

�n
dominates in this expres-

sion, which explains why we must expect numerical inaccuracies for large n.
Note that the absolute error is not large since �̂

�1
3

�n
is a small number, but that

the relative error is very large since, since �̂
�1

3

�n
is relatively much larger than� 1

15

�n
for large n.

(c) �̂ represents approximately the smallest number the machine can represent.
If we use 64 bits this corresponds to ≈ 2−63 ≈ 10−17. We have lost all significant
digits when the “error” �̂

�1
3

�n
becomes larger that the actual solution

� 1
15

�n
, i.e.

10−17 �1
3

�n >
� 1

15

�n
. This corresponds to 5n > 1017, which gives n > 17ln10

ln5 ≈ 24.
The arguments given here are not exact. For example, it can be that the estimate
for �̂ is not very exact.

(d) The code can look as follows:

N=100
xpp=1.0
xp=1.0/15
for i in range(2,N):
x=2.0*xp/5+xpp/45

458

print i,x
xpp=xp
xp=x

Exercise 7

(c) The code can look as follows:

N=100
xpp=1.0
xp=0.5
for k in range(2,N):
x=5.0*xp/2-xpp
print k,x
xpp=xp
xp=x

Section 7.1

Section 7.2

Exercise 3

(a)
f (t) = 2,

f (h) = 2,

f (e) = 6,

f (r) = 3,

f (�) = 6,

f (a) = 2,

f (m) = 1,

f (n) = 2,

f (y) = 1,

f (p) = 2,

f (o) = 2,

f (l) = 2,

f (i) = 1,

f (w) = 1,

f (d) = 1.

(b) An example of a Huffman tree for this text can be seen in figure 16:

(c) The Huffman coding for the text "there are many people in the world" is
then:

0100 0101 11 0010 11 000 0110 0010 11 000

00111 0110 0111 10110 000 1000 11 1001 1000

1010 11 000 10111 0111 000 0100 0101 11 000

001100 1001 0010 1010 001101

459

34

20

12

6 6

3 3

2

1 1

1

8

4

2 2

4

2 2

14

8

4

2 2

4

2 2

1 1

6

h a

�

r p on l

m y i

w d

t

e

Figure 16. The Huffman tree for the text ’there are many people in the world’.

The entropy is:

H = 3.6325 (.7)

which means an optimal coding of the text would use 3.6325 bits per symbol.
There are 34 symbols so the minimum coding would consist of 15 bytes and 4
bits. The Huffman coding above gave 15 bytes and 5 bits of information, so this
coding is very good.

Exercise 5

(a)
f (A) = 4,

f (B) = 2,

f (C) = 2,

One of the four possible Huffman codings are:

0 10 0 11 0 10 11 0

460

The entropy is
H = 1.5 (.8)

This gives an optimal coding with 12 bits for 8 symbols, which is just what
the Huffman coding gave.

(b) Dividing all the frequencies by 2 and interchanging A with C in the four trees
in a) gives the four trees for this problem.The four sets of codes are the same
(with A interchanged by C) and so is the entropy so the situation is still optimal.

Exercise 6 If we assume all letters have equal frequency, we can in the 64 first
steps of constructing the Huffman tree simply combine adjacent letters into new
nodes. We then have 64 nodes, each with frequency 2. We can repeat this pro-
cedure and obtain 32 new nodes with frequency 4 each, then 16 new nodes with
frequency 8 each, and so on. We end up with a binary tree with 8 levels, where
all nodes have two branches, and where the letters all are leaf nodes at the low-
est level. The letters are then represented by all possible combination of 7 bits,
since any path from the root node can be followed down to the leaf nodes.

Section 7.3

Exercise 1

(a) The first text has probabilities p(A) = 0.5, p(B) = 0.5, so that the entropy is
−0.5log2(0.5)− 0.5log2(0.5) = 1. The second text has probabilities p(A) = 5/9,
p(B) = 4/9, so that the entropy is −5/9log2(5/9)− 4/9log2(4/9) = 0.99108. The
statement is therefore false.

(b) We have that the probability of the symbol is p(A) = 1. Since log2(1) = 0, the
informtaion entropy is 0, so that the statement is true.

(c) The statement is false. As an example, if we repeat a short text many times,
the information entropy is unchanged.

(d) The answer to this question consists of a value of true or false. If p is the
probability of true, the information entropy is −p log2 p − (1− p) log2(1− p). If
p ≥ 1−p, we have that

−p log2 p−(1−p) log2(1−p) <−p log2(1−p)−(1−p) log2(1−p) =− log2(1−p) < 1.

Similarly when p < 1−p. The statement is therefore false.

461

Exercise 2 The information entropy for the first text is−0.5log2 0.5−0.5log2 0.5 =
1. Clearly Huffman coding here uses 1 bit per symbol also, so this achieves a
minimum number of bits per symbol.

The information entropy for the second text is 2(−0.25log2 0.25)−0.5log2 0.5 =
1.5. Huffman coding here uses codes of length l (A) = l (B) = 2, and l (C) = 1, so
that it uses

p(A)l (A)+p(B)l (B)+p(C)l (C) = 0.25×2+0.25×2+0.5×1 = 1.5

bits per symbol, so this achieves a minimum number of bits per symbol as well.
The information entropy for the fourth text is−0.25log2 0.25−0.75log2 0.75 ≈

0.81128. Clearly Huffman coding here uses 1 bit per symbol, so this does not
achieve a minimum number of bits per symbol.

The information entropy for the fourth text is 4(−0.25log2 0.25) = 2. Clearly
Huffman coding here uses 2 bits per symbol also, so this achieves a minimum
number of bits per symbol.

Exercise 4

(a) We have that f (t) = 2, f (o) = 3, f (b) = 1, f (e) = 1, f (i) = 1, f (s) = 1, f (d) =
1, and f (�) = 4, so that the probabilities are p(t) = 2/14, p(o) = 3/14, p(b) =
1/14, p(e) = 1/14, p(i) = 1/14, p(s) = 1/14, p(d) = 1/14, and p(�) = 4/14. The
information entropy is

−5× 1
14

log2(1/14)− 2
14

log2(2/14)− 3
14

log2(3/14)− 4
14

log2(4/14) ≈ 2.7534.

Section 7.4

Exercise 2

(a) Clearly we have that f (A) = 9, f (B) = 1, so that p(A) = 9/10, p(B) = 1/10.

(b) We have that �− log2(0.990.1)�+1 = 6,

(c) The first seven A’s restrict us to the interval [0,0.97]. The next B restricts us
to the interval [0.98,0.97], and the two last A’s restrict us further to the interval
[0.98,0.98 + 0.92(0.97 − 0.98)]. The midpoint in this interval is 0.98 + 0.92(0.97 −
0.98)/2 ≈ 0.44983823445.

• The first bit in this is clearly 0.

• To compute the second bit we compute 2×0.44983823445 ≈ 0.8996764689,
so that the second bit is 1.

462

• We then compute 2×0.8996764689−1 ≈ 0.7999353, so that the third bit is
1.

• We then compute 2×0.7999353−1 ≈ 0.5987058756, so that the fourth bit
is 1.

• We then compute 2×0.5987058756−1 ≈ 0.1974117512, so that the fifth bit
is 0.

• Finally we compute 2×0.1974117512 ≈ 0.3948235024, so that the sixth and
final bit is 0.

The arithmetic code is thus 011100 (we could here have omitted the two trailing
zeros in the arithmetic code as well, since 0.0111 and 0.011100 correspond to the
same number).

Exercise 3

(a) The information entropy is −4×0.25log2(0.25) = 2.

(c) Arithmetic coding requires �− log2(0.25m)�+ 1 = 2m + 1 bits, so that we re-
quire 2m+1

m bits per symbol. When m is large this is very close to 2.

(e) We map A to the interval [0,0.25], B to the interval [0.25,0.5], C to the in-
terval [0.5,0.75], D to the interval [0.75,1]. This means that the four intervals
correspond to numbers where the first bits are 00, 01, 10, and 11, respectively.
Note that these are exactly the Huffman codewords for the four letters. Clearly
this also means that, when we refine the arithmetic code with a new letter, this
means that we simply add the corresponding bits to the code This means that
the arithmetic code is the same as the Huffman code, with the exception that
we add a bit at the end. This bit represents that we restrict to the midpoint on
the interval, which is achieved if we set the bit to 1 (i.e. 0.b1 is the midpoint in
[0.b,0.(b +1)]).

Exercise 4 The letters A,B, and C correspond to the intervals [0,0.1], [0.1,0.7],
and [0.7,1], respectively. The number 1001101 corresponds to 2−1 +2−4 +2−5 +
2−7 = 0.6015625. This lies in the second interval, so that the first letter is B.

• We now apply the mapping h2(0.6015625) = (0.6015625−0.1)/(0.7−0.1) =
0.8359375, and this value lies in the third interval, so that the second letter
is C.

463

• We now apply the mapping h3(0.8359375) = (0.6015625− 0.7)/(1− 0.7) =
0.453125, and this value lies in the second interval, so that the third letter
is B.

• We now apply the mapping h2(0.453125) = (0.453125− 0.1)/(0.7− 0.1) =
0.58854166666666, and this value lies in the second interval, so that the
forth letter is B.

• We now apply the mapping h2(0.58854166666666) = (0.58854166666666−
0.1)/(0.7−0.1) = 0.81423611111111, and this value lies in the third interval,
so that the fifth letter is C.

• We now apply the mapping h3(0.81423611111111) = (0.81423611111111−
0.7)/(1−0.7) = 0.380787037037043, and this value lies in the second inter-
val, so that the sixth letter is B.

• We now apply the mapping h2(0.380787037037043) = (0.380787037037043−
0.1)/(0.7−0.1) = 0.467978395061738, and this value lies in the second in-
terval, so that the seventh letter is B.

• We now apply the mapping h2(0.467978395061738) = (0.467978395061738−
0.1)/(0.7−0.1) = 0.613297325102897, and this value lies in the second in-
terval, so that the eigth letter is B.

• We now apply the mapping h2(0.613297325102897) = (0.613297325102897−
0.1)/(0.7−0.1) = 0.855495541838162, and this value lies in the third inter-
val, so that the nineth letter is C.

• We now apply the mapping h3(0.855495541838162) = (0.855495541838162−
0.7)/(1−0.7) = 0.518318472793872, and this value lies in the second inter-
val, so that the tenth letter is B.

In summary, the text is BCBBCBBBCB.

Exercise 5 The first 99 A’s restrict us to the interval [0,0.9999]. The last B restricts
us to the interval [0.99100,0.9999]. The arithmetic code is thus 0.9999(1+0.99)/2 =
0.995×0.9999 ≈ 0.367880989461478. We need �− log2(0.99990.01�+1 = 10 bits for
the arithmetic code.

• Clearly the first bit is 0.

• We compute 2×0.367880989461478 ≈ 0.735761978922956, so that the sec-
ond bit is 1.

464

• We then compute 2×0.735761978922956−1 ≈ 0.471523957845911 so that
the third bit is 0.

• We then compute 2×0.471523957845911 = 0.943047915691822 so that the
fourth bit is 1.

• We then compute 2×0.943047915691822−1 ≈ 0.886095831383645, so that
the fifth bit is 1. We then compute 2×0.886095831383645−1 ≈ 0.772191662767289,
so that the sixth bit is 1.

• We then compute 2×0.772191662767289−1 ≈ 0.544383325534579, so that
the seventh bit is 1.

• We then compute 2×0.544383325534579−1 ≈ 0.088766651069157, so that
the eighth bit is 0.

• We then compute 2×0.088766651069157 ≈ 0.177533302138315, so that the
nineth bit is 0.

• Finally we compute 2×0.177533302138315 ≈ 0.355066604276630, so that
the final bit is 0.

The arithmetic code is thus 0101111000.

Section 7.6

Section 8.1

Section 8.2

Section 9.1

Exercise 3

(a) p ��(a) = f ��(a) gives that 2b2 = f ��(a), so that

b2 = f ��(a)/2.

p �(a) = f �(a) then gives that b1 +2b2a = f �(a), so that

b1 =−2b2a + f �(a) =− f ��(a)a + f �(a).

p(a) = f (a) then gives that b0 +b1a +b2a2 = f (a), so that

b0 =−b1a −b2a2 + f (a) =−(− f ��(a)a + f �(a))a − f ��(a)a2/2+ f (a)

= f (a)− f �(a)a + f ��(a)
2

a2.

(b) p ��(a) = f ��(a) gives as before that 2b2 = f ��(a), so that b2 = f ��(a)/2. p �(a) =
f �(a) now gives that b1 = f �(a), while p(a) = f (a) gives that b0 = f (a).

465

Section 9.2

Exercise 4

(a) Since p1(x0) = p2(x0) = f (x0), p1(x1) = p2(x1) = f (x1), p1(x2) = p2(x2) =
f (x2), we get that

p(x0) = p2(x0)−p1(x0) = f (x0)− f (x0) = 0

p(x1) = p2(x1)−p1(x1) = f (x1)− f (x1) = 0

p(x2) = p2(x2)−p1(x2) = f (x2)− f (x2) = 0.

Therefore, the values at the interpolation points are 0.

(b) If we write p(x) = ax2 +bx + c, p(x0) = p(x1) = p(x2) = 0 is the same as

a(x0)2 +bx0 + c = 0

a(x1)2 +bx1 + c = 0

a(x2)2 +bx2 + c = 0.

Subtracting equations 1 and 2, and 1 and 3, we get the equations

a((x0)2 − (x1)2)+b(x0 −x1) = 0

a((x0)2 − (x2)2)+b(x0 −x2) = 0.

Dividing by x0 − x1 �= 0 in the first equation, and by x0 − x2 �= 0 in the second
equation, we get

a(x0 +x1)+b = 0

a(x0 +x2)+b = 0.

Subtracting these we get that a(x1 − x2) = 0, so that a = 0 since x1 − x2 �= 0. Now
clearly b = 0 also, and c = 0. This means that p(x) = 0, so that p1(x) = p2(x). In
other words, the interpolating polynomial is unique.

(c) We now write p(x) = an xn +an−1xn−1+ ...+a0, and we get n+1 equations of
the form

an(x0)n +an−1(x0)n−1 + ...+a0 = 0

an(x1)n +an−1(x1)n−1 + ...+a0 = 0

· · · · · ·
an(xn)n +an−1(xn)n−1 + ...+a0 = 0,

since also here the polynomial p(xi) = p2(xi)−p1(xi) = 0 for all i . The proof that
all the ai are 0 goes in the same way, but requires much more work. This is easier
proved with the aid of more linear algebra than we have learnt at this time.

466

Section 9.3

Exercise 3

(a) The Newton form of the quadratic, interpolating polynomial is

p2(x) = f (x0)+ f [x0, x1](x −x0)+ f [x0, x1, x2](x −x0)(x −x1).

We have that

f [x0, x1] = f (x1)− f (x0)
x1 −x0

= 1−2
1−0

=−1

f [x1, x2] = f (x2)− f (x1)
x2 −x1

= 0−1
2−1

=−1

f [x0, x1, x2] = f [x1, x2]− f [x0, x1]
x2 −x0

= −1− (−1)
2−0

= 0.

Inserting this in p2(x) we get that p2(x) = 2− (x −x0) = 2−x.

(b) Both f and pn are interpolating polynomials of degree n, and we know then
from Exercise 4 that they must be equal. In (a) the function was already a second
degree polynomial, so that it must be equal to its interpolant too. This is why we
obtained that ps equaled the function itself.

Section 9.4

Section 10.2

Section 10.3

Exercise 5 For the function f (x) = (x −1)3 the secant method gives

xn = xn−1 −
xn−1 −xn−2

f (xn−1)− f (xn−2)
f (xn−1)

= xn−1 −
xn−1 −xn−2

(xn−1 −1)3 − (xn−2 −1)3 (xn−1 −1)3

= xn−1 −
xn−1 −xn−2

(xn−1 −1)3 − (xn−2 −1)3 (xn−1 −1)3

(a) The first 7 iterations give

1.15789473684

1.11710677382

1.08899801740

1.06700831862

1.05063360476

1.03820748989

1.02884624587

467

(b) We see that we still have a deviation bigger than 10−2 after all these iter-
ations, so that we don’t seem to get 62% new correct digits per iterations (we
should at least obtain at least one new correct digit for every second iteration).
This examples therefore does not agree with Observation 10.15. But notice that
f �(1) = 0, so that we cannot find a γ as demanded by Theorem 10.14. This is
the reason why we do not observe the convergence speed noted in Observa-
tion 10.15.

Section 10.4

Exercise 6

(a) We have that f �(x) = 2x, so that the Newton iteration takes the form

xn+1 = xn − f (xn)
f �(xn)

= xn − (xn)2 −2
2xn

=
x2

n +2

2xn
.

if we subtract
�

2 and substitute en = xn −
�

2 on both sides we obtain

en+1 =
x2

n +2

2xn
−
�

2 =
x2

n +2−2
�

2xn

2xn
= (xn −

�
2)2

2xn
=

e2
n

2xn

(b) The secant method is

xn = xn−1 −
xn−1 −xn−2

f (xn−1)− f (xn−2)
f (xn−1)

= xn−1 −
xn−1 −xn−2

(xn−1)2 − (xn−2)2 ((xn−1)2 −2) = xn−1 −
(xn−1)2 −2
xn−1 +xn−2

.

If we subtract
�

2 on both sides we can write this as

en = en−1 −
(xn−1 +

�
2)(xn−1 −

�
2)

xn−1 +xn−2

= en−1 −en−1
xn−1 +

�
2

xn−1 +xn−2
= en−1

�

1− xn−1 +
�

2
xn−1 +xn−2)

�

= en−1
xn−1 +xn−2 −xn−1 −

�
2

xn−1 +xn−2
= en−1

xn−2 −
�

2
xn−1 +xn−2

= en−1en−2

xn−1 +xn−2
.

Exercise 7

468

(a) We have that f �(x) =−1/x2, so that the Newton iteration is

xn+1 = xn − f (xn)
f �(xn)

= xn − 1/xn −R
−1/(xn)2

= xn +xn −R(xn)2 = xn(2−Rxn).

In this formula we do not need to perform division, only multiplication. By iter-
ating this formula we can therefore approximate 1/R by only applying multipli-
cations.

Section 11.1

Exercise 5

(a) On my computer 10−8 is the power of 10 which gives the least error in the
approximation. This can be btained by running the following program:

from math import *

for p in range(15):
h=10.0**(-p)
print p, abs((exp(1+h)-exp(1))/h-exp(1))

(b) If we use the values �∗ = 7×10−17 from Example 11.15, then Lemma 11.14
gives the optimal h h∗ = 2

�
�∗ ≈ 1.6733×10−8 (terms cancel since f (a) = f ��(a)).

Exercise 6

(a) We now write

f (a +h) = f (a)+h f �(a)+ h2

2
f ��(a)+ h3

6
f ���(ξh)

for some ξh in the interval between a and a +h. We can now write

f �(a)− f (a +h)− f (a)
h

=−h
2

f ��(a)− h2

6
f ���(ξh).

After taking absolute values, the error estimate becomes

h
2
| f ��(a)|+ h2

6
max

x∈[a,a+h]
| f ���(x)|.

This error estimate is similar to the one we obtained when we used a first degree
Taylor expansion, but we also need a general bound on the third derivative. we
still need to bound the second derivative, but only at the point a.

469

(b) We now write f (a +h) = f (a)+ f �(ξh)h for some ξh in the interval between
a and a +h. In this expression f �(a) is not present, so it is not possible to obtain
an estimate of the truncation error using this Taylor expansion.

(c) The linear Taylor polynomial is the best because it is is the shortest possible
Taylor expansion which can give an estimate of f �(a) (as we showed in (b)), and
also the one which gives the simplest expression for the truncation error in that it
does not depend on any derivatives higher than the second order (as we showed
in (a)).

Section 11.2

Exercise 1 The Newton form of the interpolating polynomial is p2(x) = f (a)+
f [a, a+h](x−a)+ f [a, a+h, a+2h](x−a)(x−(a+h)). We compute that p �

2(a) =
f [a, a +h]− f [a, a +h, a +2h]h. The divided differences can be computed as

f [a, a +h] = f (a +h)− f (a)
h

f [a +h, a +2h] = f (a +2h)− f (a +h)
h

f [a, a +h, a +2h] = f (a +2h)−2 f (a +h)+ f (a)
2h2 .

The approximation is thus

f �(a) ≈ p �
2(a) = f [a, a +h]− f [a, a +h, a +2h]h

= f (a +h)− f (a)
h

− f (a +2h)−2 f (a +h)+ f (a)
2h

=− f (a +2h)−4 f (a +h)+ f (a)
2h

Section 11.3

Exercise 5

(b) We can plot the cuve together with the secants as follows with Python:

from numpy import *
from scitools.easyviz import *

x=arange(0,6,0.05,float)
plot(x,(-x**2+10*x-5)/4)
hold(’on’)
plot([1,3],[(-1**2+10*1-5)/4,(-3**2+10*3-5)/4])
plot([1,5],[(-1**2+10*1-5)/4,(-5**2+10*5-5)/4])
plot([3,5],[(-3**2+10*3-5)/4,(-5**2+10*5-5)/4])

470

Section 11.4

Exercise 2

(a) On my computer 10−3 is the power of 10 which gives the least error in the
approximation. This can be tested by running the following program:

from math import *

for p in range(15):
h=10.0**(-p)
print p, abs((exp(1-2*h)-8*exp(1-h)+8*exp(1+h)-exp(1+2*h))/(12*h)-exp(1))

(b) If we use the value �∗ = 7×10−17 from Example 11.15 then (11.31) gives the

optimal h h∗ = 5
�

27�∗
2 ≈ 9.8875×10−4 (terms cancel since f (a) = f (5)(a))

Section 11.5

Exercise 2

(a) On my computer 10−4 is the power of 10 which gives the least error in the
approximation. This can be tested by running the following program:

from math import *

for p in range(15):
h=10.0**(-p)
print p, abs((exp(1-h)-2*exp(1)+exp(1+h))/h**2-exp(1))

(b) If we use the value �∗ = 7×10−17 from Example 11.15 then Observation 11.24
gives the optimal choice of h h∗ = 4

�
36�∗ ≈ 2.2405× 10−4 (terms cancel since

f (a) = f (4)(a)).

Exercise 3

(a) We compute the Taylor polynomial of f about a (with degree 3), and evalu-
ate in a +h and a −h:

f (a −h) = f (a)− f �(a)h + f ��(a)
h2

2
− f (3)(a)

h3

6
+ f (4)(ξ1)

h4

24

f (a +h) = f (a)+ f �(a)h + f ��(a)
h2

2
+ f (3)(a)

h3

6
+ f (4)(ξ2)

h4

24
,

471

where ξ1 ∈ [a−h, a], ξ2 ∈ [a, a+h]. If we add these equations together we obtain
that

f (a −h)+ f (a +h) = 2 f (a)+ f ��(a)h2 + f (4)(ξ1)
h4

24
+ f (4)(ξ2)

h4

24
,

which also can be written

f ��(a)− f (a +h)−2 f (a)+ f (a −h)
h2 =−h4

24
(f (4)(ξ1)+ f (4)(ξ2)),

which is (11.33).

(b) We set f (a −h) = f (a −h)(1+�1), f (a) = f (a)(1+�2), f (a +h) = f (a +h)(1+
�3), and obtain

f ��(a)− f (a +h)−2 f (a)+ f (a −h)
h2

= f ��(a)− f (a +h)−2 f (a)+ f (a −h)
h2 − �1 f (a −h)−2�2 f (a)+�3 f (a +h)

h2

=−h4

24
(f (4)(ξ1)+ f (4)(ξ2))− �1 f (a −h)−2�2 f (a)+�3 f (a +h)

h2 .

(c) We set M1 = maxx∈[a−h,a+h] | f (4)(x)| and M2 = maxx∈[a−h,a+h] | f (x)|, insert
|�i |≤ �∗, take absolute values in the equation above and obtain:

f ��(a)− f (a +h)−2 f (a)+ f (a −h)
h2

=
����−

h4

24
(f (4)(ξ1)+ f (4)(ξ2))− �1 f (a −h)−2�2 f (a)+�3 f (a +h)

h2

����

≤ h4

24
M1 +

h4

24
M1 +

M2�
∗

h2 + 2M2�
∗

h2 + M2�
∗

h2

= h4

12
M1 +

4�∗

h2 M2.

Exercise 4

(a) If the approximation method f �(a) ≈ c1 f (a−h)+c2 f (a+h) is to be exact for
f (x) = 1, we must have that 0 = c1 + c2, since f (a −h) = f (a +h) = 1, and since
f �(x) = 0. Therefore we must have that c2 =−c1.

If the method is to be exact for f (x) = x we must in the same way have that

1 = c1(a −h)+ c2(a +h) = c1(a −h)− c1(a +h) =−2c1h,

so that c1 = − 1
2h ,so that also c2 = 1

2h . The method therefore becomes − 1
2h f (a −

h)+ 1
2h f (a +h) = f (a+h)− f (a−h)

2h

472

(b) If f (x) = cx +d we have that f �(x) = c, and the method takes the form

f (a +h)− f (a −h)
2h

= c(a +h)+d − (c(a −h)+d)
2h

= 2ch
2h

= c,

so that the method is exact for all polynomials of degree ≤ 1.We see that the
method coincides with the symmetric Newton-method for differentiation, and
it therefore has an error of order 1

h2 , which is better than the Newton’s quotient
(which has an error of order 1

h). It is worse than the four point method for nu-
merical differentiation,which has order 1

h4 .
Here it also should have been mentioned that the method also is exact for

polynomials of degree ≤ 2 (also see Exercise 5). There are several ways to see
this. First, the error estimate from Section 11.3 uses f (3)(x), and since all second
degree polynomials have a third derivative equal to 0, the error must be zero.
One could also as above substitute f (x) = x2 into the formula:

f (a +h)− f (a −h)
2h

= (a +h)2 − (a −h)2

2h
= 4ah

2h
= 2a,

which also is f �(a). Finally, the symmetric Newton quotient was defined as the
derivativee at a of the unique parabola interpolating f at a −h, a, and a +h. If
f itself is a parabola it is equal to this interpolant since it is unique, so that the
symmetric Newton quotient must return the derivative.

(c) If the approximation method f ��(a) ≈ c1 f (a−h)+c2 f (a)+c3 f (a+h) is exact
for f (x) = 1, we must have that 0 = c1 + c2 + c3. If it is exact for f (x) = x we must
have that

0 = c1(a −h)+ c2a + c3(a +h) = a(c1 + c2 + c3)+h(−c1 + c3) = h(−c1 + c3),

which gives that c1 = c3. If it is exact for f (x) = x2 we must have that

2 = c1(a −h)2 + c2a2 + c3(a +h)2

= a2(c1 + c2 + c3)−2ahc1 +2ahc3 +h2(c1 + c3) = 2c1h2,

which gives that c1 = 1
h2 . We therefore also get that c3 = 1

h2 , and that c2 = −c1 −
c2 =− 2

h2 , so that the method becomes

1
2h

f (a −h)− 1
h

f (a)+ 1
2h

f (a +h) = f (a −h)−2 f (a)+ f (a +h)
h2 .

We see that this coincides with the already seen three point method to compute
the second derivative in this section.

473

(d) All third degree polynomials have a fourth derivative equal to 0, and there-
fore the truncation error becomes 0 (M1 = 0 in Theorem 11.23). Alternatively we
can substitute f (x) = x3 into the formula:

f (a −h)−2 f (a)+ f (a +h)
2h

= (a −h)3 −2a3 + (a +h)3

h2

= a3 −3a2h +3ah2 −h3 −2a3 +a3 +3a2h +3ah2 +h3

h2

= 6ah2

h2 = 6a,

which coincides with the second derivative of f in a.

Section 12.1

Section 12.2

Exercise 2 We get that

Imi d = 1
2

f (1/4)+ 1
2

f (3/4) = 1
2

1
16

+ 1
2

9
16

= 1
2

10
16

= 5
16

,

so that the first alternative is correct.

Section 12.3

Exercise 2 We have that

Itr ap = 1
2

�
f (0)+ f (1)

2
+ f

�
1
2

��
= 1

2

�
0+1

2
+ 1

4

�
= 3

8
,

so that the second alternative is correct.

474

Exercise 5 We insert from (12.16) and (12.17) and get

����
�b

a
f (x)d x − f (a)+ f (b)

2
(b −a)

����

=
���� f (a1/2)(b −a)+ 1

2

�b

a
(x −a1/2)2 f ��(ξ1)d x − (f (a1/2)+ (b −a)2

16
f ��(ξ2)+ (b −a)2

16
f ��(ξ3))(b −a)

����

=
����

1
2

�b

a
(x −a1/2)2 f ��(ξ1)d x − (

(b −a)2

16
f ��(ξ2)+ (b −a)2

16
f ��(ξ3))(b −a)

����

≤
����

1
2

�b

a
(x −a1/2)2 f ��(ξ1)d x

����+
����

(b −a)2

16
f ��(ξ2)

���� (b −a)+
����

(b −a)2

16
f ��(ξ3)

���� (b −a)

≤ 1
2

�b

a
(x −a1/2)2| f ��(ξ1)|d x + (b −a)3

16
M + (b −a)3

16
M

≤ M
2

�b

a
(x −a1/2)2d x + (b −a)3

8
M

= M
2

[
1
3

(x −a1/2)3]b
a +

(b −a)3

8
M = M

6

�
1
8

(b −a)3 + 1
8

(b −a)3
�
+ (b −a)3

8
M

=
�

1
24

+ 1
8

�
M(b −a)3 = 1

6
M(b −a)3.

Section 12.4

Exercise 4

(a) Since the error in the trapezoidal rule is bounded by (b−a) h2

6 maxx∈[a,b] | f ��(x)|,
and since f ��(x) = 8

(1+2x)3 (which attains maximum absolute value for x = 0), we
need to choose h so that

(b −a)
h2

6
max

x∈[a,b]
| f ��(x)| = 8

h2

6
≤ 10−10,

which gives that h ≤ 10−5�3/2. The number of function evaluations is then ≈
1/h = 2 ·105/

�
3 ≈ 115470.05, which means that at least 115471 evaluations are

needed.

(b) Since the error in the midpoint rule is bounded by (b−a) h2

24 maxx∈[a,b] | f ��(x)|,
we obtain as in (a) that

(b −a)
h2

24
max

x∈[a,b]
| f ��(x)| = 2

h2

6
≤ 10−10,

which gives that h ≤ 10−5�3. The number of function evaluations is then ≈
1/h = 105/

�
3 ≈ 57735.03, which means that at least 57736 evaluations are needed.

475

(c) Since the error in Simpson’s rule is bounded by (b−a) h4

180 maxx∈[a,b] | f (i v)(x)|,
and since f (i v)(x) = 384

(1+2x)5 (which attains maximum absolute value for x = 0),
we need to choose h so that

(b −a)
h4

180
max

x∈[a,b]
| f (i v)(x)| = 384

h4

180
≤ 10−10,

which gives that h ≤ (180 ·10−10/384)1/4. The number of function evaluations is
then ≈ 1/h = (180 ·10−10/384)−1/4 ≈ 382.17, which means that at least 383 evalu-
ations are needed.

Exercise 6

(a) It is enough to verify Simpson’s rule on each interval. The integrals become

�a+h

a−h
x3d x = 1

4
((a +h)4 − (a −h)4) = 1

4
(8a3h +8ah3) = 2a3h +2ah3

�a+h

a−h
x2d x = 1

3
((a +h)3 − (a −h)3) = 1

3
(6a2h +2h3) = h

3
(6a2 +2h2)

�a+h

a−h
xd x = 1

2
((a +h)2 − (a −h)2) = 1

2
4ah = 2ah

�a+h

a−h
d x = 2h.

We also get that the rule itself becomes

h
3

((a −h)3 +4a3 + (a +h)3) = h
3

(6a3 +6ah2) = 2a3h +2ah3

h
3

((a −h)2 +4a2 + (a +h)2) = h
3

(6a2 +2h2)

h
3

((a −h)+4a + (a +h)) = 2ah

h
3

(1+4+1) = 2h.

This shows that Simpsons’ rule is exact for the given polynomials.

(b) For f (x) = bx3 + cx2 +d x +e the integral is

�a+h

a−h
f (x)d x = b

�a+h

a−h
x3d x + c

�a+h

a−h
x2d x +d

�a+h

a−h
xd x +e

�a+h

a−h
1d x.

476

The rule itself now gives

h
3

(f (a −h)+4 f (a)+ f (a +h))

= b
h
3

((a −h)3 +4a3 + (a +h)3)+ c
h
3

((a −h)2 +4a2 + (a +h)2)

+d
h
3

((a −h)+4a + (a +h))+e
h
3

(1+4+1)

We see that equality follows from that we have equality for x3, x2, x,1.

(c) Since f (4)(x) = 0 for all x for every third degree polynomial, it follows directly
from the error estimate that the method is exact for such functions.

Section 13.1

Section 13.2

Exercise 2 The differential equation is separable since it can be written as x �

1−x =
sin t . This gives that − ln |1−x| =−cos t +C , so that 1−x = Decos t , so that x(t) =
1−Decos t .

(a) The solution in this case is x(t) = 1−ecos t .

(c) The solution in this case is x(t) = 1+ecos t .

(d) The solution in this case is x(t) = 1+2ecos t .

Section 13.3

Exercise 3

(a) We get that

x1 = x0 +h f (t0, x0) = 1+0.1 f (0,1) = 1+0.1(0+1) = 1.1

x2 = x1 +h f (t1, x1) = 1.1+0.1 f (0.1,1.1) = 1.1+0.1(0.1+1.1) = 1.22

x3 = x2 +h f (t2, x2) = 1.22+0.1 f (0.2,1.22) = 1.22+0.1(0.2+1.22) = 1.362.

Exercise 5 The code can be changed as follows:

h = (b −a)/n;
t0 = b;
for k = 0, 1, . . . , n −1

xk+1 = xk −h f (tk , xk);
tk+1 = b − (k +1)h;

477

Here we simply have used Euler’s method with negative step size.

Exercise 6 If we insert x �(t) = f (t , x(t)) in the approximation we get that f (t , x) ≈
x(t+h)−x(t)

h , which can be written x(t +h)− x(t) ≈ h f (t , x(t)), which means that
x(t +h) ≈ x(t)+h f (t , x(t)). The right hand side here is equivalent to one step
with Euler’s method.

Section 13.4

Exercise 2 If the step length is h, we obtain the approximation

x(h) ≈ x(0)+h f (t , x) = 1+h sinh.

The error is given by

R1(h) = h2

2
x ��(ξ)

where ξ ∈ (0,h). Since x �(t) = sin x(t), we have

x ��(t) = x �(t)cos x(t) = sin x(t)cos x(t) =
sin

�
2x(t)

�

2

We therefore have |x ��(t)|≤ 1/2, so

|R1(h)|≤ h2

4
.

Section 13.5

Exercise 1

(c) We get first that x �(1) = 1 ·0− sin0 = 0. We differentiate and get

x ��(t) = x + t x � −cos xx � = x +x �(t −cos x),

so that x ��(1) = 0+0 = 0. We differentiate again and get

x ���(t) = x �+x �+ t x ��+ sin x(x �)2 −cos xx �� = 2x �+ (t −cos x)x ��+ sin x(x �)2,

so that x ���(1) = 0 also.

(d) We get first that x �(1) = 1/1 = 1. We differentiate and get x ��(t) = 1/x− t x �/x2,
so that x ��(1) = 1−1 = 0. We differentiate again and get

x ���(t) =− x �

x2 − (x �+ t x ��)x2 −2xt (x �)2

x4 =− x �

x2 − (x �+ t x ��)x −2t (x �)2

x3 ,

so that x ���(1) =−1− (1−2) = 0.

478

Section 13.6

Exercise 5

(a) We get that

x ��(t) = 2t +3x2x �(t)−x �(t) = 2t + (3x2 −1)x �(t),

where we substitute t 2 +x3 −x for x �.

(b) One step with the quadratic Taylor method here becomes

xk+1 = xk +hx �
k +

h2

2
(2tk + (3x2

k −1)x �
k)

where x �
k = t 2

k + x3
k − xk . Since x �

0 = 0+ 1− 1 = 0, one step with the quadratic
Taylor method therefore gives x1 = 1. The first step with the quadratic Taylor
method clearly gives x1 = 1, no matter what h is. If we use more steps the next
step becomes

x �
1 = t 2

1 +x3
1 −x1 = t 2

1

x2 = x1 +ht 2
1 +

h2

2
(2t1 + (3x2

1 −1)t 2
1) = 1+ht 2

1 +
h2

2
(2t1 +2t 2

1)

If h = 0.5 we get that x2 = 1+ 1
8 +

1
8 (1+ 1

2) = 1+ 1
8 +

1
8 +

1
16 = 21

16 ≈ 1.3125. If h = 0.2
we get in the same way that the next steps give x2 = 1.0176, x3 = 1.08109021746,
x4 = 1.24076835064, x5 = 1.62941067817.

(c) The code can look as follows:

for N in [10,100,1000]:
xk=1
tk=0
h=1.0/N
for k in range(N):
xder=tk**2+xk**3-xk
xk=xk+h*xder + (h**2/2)*(2*tk+(3*xk**2-1)*xder)
tk=tk+h

print xk

If we run the code we get the approximation x(1) ≈ 1.787456775. If we substi-
tute N with 100 or 1000 we get instead the approximations 1.90739098078, and
1.9095983769.

479

Section 13.7

Exercise 2

(a) One step with Euler’s method gives

x1 = x0 +x0 = 2.

(b) One step with quadratic Taylor gives

x1 = x0 +x0 +
1
2

x0 = 2.5

(c) One step with Euler’s midpoint method gives

x1/2 = x0 +
1
2

x0 =
3
2

x1 = x0 +x1/2 =
5
2
= 2.5.

(d) With Runge-Kuttas method we get

k0 = 1

k1 = 1+ k0

2
= 1.5

k2 = 1+ k1

2
= 1.75

k3 = 1+1.75 = 2.75

x1 = x0 +
1
6

(k0 +2k1 +2k2 +k3) = 1+ 1
6

(1+3+3.5+2.75) ≈ 2.7083.

480

(e) With two steps in Runge-Kuttas method we get

k0 = 1

k1 = 1+ k0

4
= 1.25

k2 = 1+ k1

4
= 1.3125

k3 = 1+0.60625 = 1.6025

x1 = x0 +
1

12
(k0 +2k1 +2k2 +k3) ≈ 1.6440

k0 = x1 = 1.6440

k1 = x1 +
k0

4

k2 = x1 +
k1

4

k3 = x1 +
k2

2

x2 = x1 +
1

12
(k0 +2k1 +2k2 +k3) ≈ 2.7100

(f) The code looks as follows if we use the fourth order Runge Kutta method:

for N in [10,100,1000,10000]:
xk=1
h=1.0/N
for k in range(N):
k0=xk
k1=xk+h*k0/2
k2=xk+h*k1/2
k3=xk+h*k2
xk=xk+h*(k0+2.0*k1+2.0*k2+k3)/6

print xk

If we run the code we get 2.71827974414. If we change N to 100,1000,10000 we
get 2.71828182823, 2.71828182846, and 2.71828182846.

(g) It looks like the values converge to e.

(h) The equation is of first order with linear coefficients, and we see that the
solution is x(t) = et , so that x(1) = e.

Exercise 3 The code can look as follows:

481

from math import *

xk=2.0+exp(1)
tk=0.0
N=10
h=2.0*pi/N
for k in range(N):
xk=xk+h*(-xk*sin(tk)+sin(tk))
tk=tk+h

print xk

xk=2.0+exp(1)
tk=0.0
for k in range(N):
xkhalf=xk+h*(-xk*sin(tk)+sin(tk))/2.0
xk=xk+h*(-xkhalf*sin(tk+h/2.0)+sin(tk+h/2.0))

print xk

(a) Euler’s metode here takes the form xk+1 = xk +h(−xk sin tk + sin tk).

(b) Euler’s midpoint method here takes the form

xk+1/2 = xk +
h
2

(−xk sin tk + sin tk)

x1 = xk +h(−xk+1/2 sin(tk +h/2)+ sin(tk +h/2))

(c) This differential equation is separable, and one can show that the solution
is on the form 1+Decos(t). In particular, the solution is periodic with period 2π,
so that the solution should satisfy x(2π) = 2+ e. If we run the code for different
N you will see that it is first for N larger than 1000 that we begin to get close, so
that we can not say anything for N as small as those given in the exercise.

Section 13.8

Exercise 1 We define x1 = x, x2 = x �
1. The equation can then be written as x �

2 +
sin(t x2)−x2

1 = et , so that x �
2 = et −sin(t x2)+x2

1. The third alternative is therefore
correct.

Section 13.9

Exercise 2 If we differentiate the first equation we get that x ��� = 1+x �+ y ��. This
inserted in the second equation gives that y ��� = 1+x �+ y ��+ y �� = 1+x �+2y ��. We

482

define x1 = x, x2 = x �, y1 = y , y2 = y �, y3 = y ��, we get the following equations:

x �
1 = x2

x �
2 = t +x1 + y2

y �
1 = y2

y �
2 = y3

y �
3 = 1+x2 +2y3.

where the second equation corresponds to the first original equation, and the
fifth equation corresponds to the rewritten equation y ��� = 1+ x �+ y ��+ y �� = 1+
x �+2y ��.

Exercise 4 In order to solve this exercise, it is most convenient to implement a
function which returns the values for f (t , x). The two equations can be written
as a first order system as

x �
1 = x2

x �
2 = 2y1 − sin

�
4t 2x1

�

y �
1 = y2

y �
2 =−2x1 −

1
2t 2(x2)2 +3

,

with the initial condition (x1(0), x2(0), y1(0), y2(0)) = x0 = (1,2,1,0). We get that
f (0, x0) = (2,2− sin0,0,−2−1/(0+3)) = (2,2,0,−7/3), so that the first step with
Euler’s method with h = 1 gives

x1 = x0 + f (0, x0) = (1,2,1,0)+ (2,2,0,−7/3) = (3,4,1,−7/3).

We now get that

f (1, x1) = (4,2− sin(12),−7/3,−6−1/(32+3)) ≈ (4,2.5366,−7/3,−6.0286)

so that the second step with Euler’s method gives

x2 = x1 + f (1, x1) ≈ (3,4,1,−7/3)+ (4,2.5366,−7/3,−6.0286)

≈ (7,6.5366,−1.3333,−8.3619).

This means that our approximations become

x(2) ≈ 7, x �(2) ≈ 6.5366, y(2) ≈−1.3333, y �(2) ≈−8.3619.

483

For Euler’s midpoint method the first step becomes

x1/2 = x0 + f (0, x0)/2 = (1,2,1,0)+ (2,2,0,−7/3)/2 = (2,3,1,−7/6)

f (1/2, x1/2) = (3,2− sin2,−7/6,−4−1/(9/2+3)) ≈ (3,1.0907,−1.1667,−4.1333)

x1 = x0 + f (1/2, x1/2) ≈ (1,2,1,0)+ (3,1.0907,−1.1667,−4.1333)

= (4,3.0907,−0.1667,−4.1333).

The second step becomes

f (1, x1) ≈ (3.0907,−0.0454,−4.1333,−8.0452)

x3/2 = x1 + f (1, x1)/2

≈ (4,3.0907,−0.1667,−4.1333)+ (3.0907,−0.0454,−4.1333,−8.0452)/2

= (5.5454,3.0680,−2.2333,−8.1560)

f (3/2, x3/2) ≈ (3.0680,−4.1169,−8.1560,−11.1128)

x2 = x1 + f (3/2, x3/2) ≈ (7.0680,−1.0262,−8.3226,−15.2461).

This means that our approximations become

x(2) ≈ 7.0680, x �(2) ≈−1.0262, y(2) ≈−8.3226, y �(2) ≈−15.2461.

Section 14.1

Section 14.2

Section 15.1

Section 15.2

Section 15.3

484

