UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in	MAT-INF3600 — Mathematical logic.
Day of examination:	Wednesday, December 2, 2015.
Examination hours:	9:00-13:00.
This problem set consists of 3 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Part I

Let R be a unary relation symbol, and let a and b be constant symbols. Let \mathcal{L} be the language $\{a, b, R\}$. Let Σ_1 and Σ_2 be the sets of \mathcal{L} -formulas given by

 $\Sigma_1 = \{ Ra, Rb, \forall xy [(Rx \land Ry) \to x = y] \}.$

and

$$\Sigma_2 = \{ \neg a = b, \forall xy [(Rx \land Ry) \rightarrow x = y] \}.$$

Problem 1

Give a Σ_1 -deduction of a = b. Give a full deduction. Name all the logical axioms and inference rules involved in the deduction.

Problem 2

Give an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \models \Sigma_1$ and, moreover, the universe of \mathfrak{A} contains exactly three elements.

Problem 3

Give a Σ_2 -deduction of $(\neg Ra) \lor (\neg Rb)$. Give a full deduction. Name all the logical axioms and inference rules involved in the deduction.

Problem 4

Give an \mathcal{L} -structure \mathfrak{B} such that $\mathfrak{B} \models \Sigma_2$ and, moreover, the universe of \mathfrak{B} contains exactly three elements.

(Continued on page 2.)

Problem 5

Is the set $\Sigma_1 \cup \Sigma_2$ consistent? Justify your answer.

Problem 6

Does the set $\Sigma_1 \cup \Sigma_2$ have a model? Justify your answer.

Part II

Let \mathcal{L} be any language, and let ϕ be an \mathcal{L} -formula with at least one free occurrence of the variable x. Let

 $(\exists^1 x)\phi \quad :\equiv \quad (\exists u)\phi^x_u \land \ (\forall y)(\forall z)[\,(\phi^x_u \land \phi^x_z) \to y = z\,] \;.$

(So $(\exists^1 x)\phi$ is shorthand for the formula at the right hand side of $:\equiv$.)

Let A denote the universe of the \mathcal{L} -structure \mathfrak{A} , let $s: Vars \to A$ be an assignment, and let

$$A_{\phi,s} = \{ a \mid a \in A \text{ and } \mathfrak{A} \models \phi [s[x|a]] \}$$

Now, we have

 $\mathfrak{A} \models (\exists^1 x) \phi[s]$ if and only if the set $A_{\phi,s}$ contains exactly one element.

(We may state this informally: $(\exists^1 x)\phi(x)$ holds if and only if there is exactly one x such that $\phi(x)$ holds.)

Problem 7

Give an \mathcal{L} -formula $(\exists^2 x)\phi$ such that

 $\mathfrak{A} \models (\exists^2 x) \phi[s]$ if and only if the set $A_{\phi,s}$ contains exactly two elements.

Let P and S be unary function symbols, and let 0 be a constant symbol. Let \mathcal{L}_P be the language $\{0, P, S\}$. Let T be the \mathcal{L}_P -theory where we have the following non-logical axioms:

- $(T_1) P(0) = 0$
- $(T_2) \ (\exists^2 y) Py = 0$
- $(T_3) \ (\forall x)[x \neq 0 \rightarrow (\exists^1 y)Py = x]$
- $(T_4) \ (\forall x) PSx = x$
- $(T_5) (\forall x) Sx \neq x.$

Problem 8

Give a model for T, that is, give an \mathcal{L}_P -structure \mathfrak{A} such that $\mathfrak{A} \models T$.

(Continued on page 3.)

Problem 9

We have $T \vdash SP0 \neq PS0$. Sketch a T-deduction $SP0 \neq PS0$. Name all the non-logical axioms involved in the deduction.

Problem 10

Prove that the axiom (T5) is independent of the other axioms of T, that is, prove that

 $\{T_1, T_2, T_3, T_4\} \not\vdash T_5$ and $\{T_1, T_2, T_3, T_4\} \not\vdash \neg T_5$.

Problem 11

Prove that the axiom (T1) is independent of the other axioms of T, that is, prove that

 $\{T_2, T_3, T_4, T_5\} \not\vdash T_1$ and $\{T_2, T_3, T_4, T_5\} \not\vdash \neg T_1$.

Problem 12

Prove that any model for T is infinite.

Conjecture 1. Let \mathcal{L} be any language. For any \mathcal{L} -formula ϕ with at least one free occurrence of the variable x, there exists an \mathcal{L} -formula $(\exists^{\infty} x)\phi$ such that

 $\mathfrak{A}\models (\exists^\infty x)\phi[s]$ if and only if the set $A_{\phi,s}$ is infinite.

Problem 13

Prove that Conjecture 1 is wrong.

END