UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in MAT-INF 4130 - Numerical linear algebra
Day of examination: 3 December 2013
Examination hours: 1100-1500
This problem set consists of 2 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 True or false

Give reasons for your answers.

1a

If two matrices have the same eigenvalues they must be similar.

1b
If $\boldsymbol{x} \in \operatorname{span}(\boldsymbol{A})$ and $\boldsymbol{y} \in \operatorname{ker}(\boldsymbol{A})$ then $\boldsymbol{x}^{T} \boldsymbol{y}=0$ for any $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$.

1c
The overdetermined linear system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right]=\boldsymbol{b}
$$

has a least squares solution $x_{1}=-6, x_{2}=9 / 2$. This solution is unique.

1d

The matrix

$$
\boldsymbol{A}:=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 1 & -1 & -1 \\
1 & 0 & 5 & -10 \\
0 & 9 & 0 & 10
\end{array}\right]
$$

(Continued on page 2.)
has a unique LU-factorization. (Do not compute the factorization.)

Problem 2 Givens rotation

A Givens rotation of order 2 has the form $\boldsymbol{G}:=\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right] \in \mathbb{R}^{2 \times 2}$, where $s^{2}+c^{2}=1$.
$2 a$
Is G symmetric and unitary?

2b

Given $x_{1}, x_{2} \in \mathbb{R}$ and set $r:=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Find \boldsymbol{G} and y_{1}, y_{2} so that $y_{1}=y_{2}$, where $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\boldsymbol{G}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Problem 3 Perturbation of the identity matrix

Let $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ and suppose $\|\boldsymbol{B}\|<1$ for some operator norm.

3a

Show that $\boldsymbol{I}-\boldsymbol{B}$ is nonsingular.

3b

Show that

$$
\left\|(\boldsymbol{I}-\boldsymbol{B})^{-1}\right\| \leq \frac{1}{1-\|\boldsymbol{B}\|}
$$

Problem 4 Matlab program

Suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}$, where \boldsymbol{A} has rank n and let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ be a singular value factorization of \boldsymbol{A}. Thus $\boldsymbol{U} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{\Sigma}, \boldsymbol{V} \in \mathbb{R}^{n \times n}$. Write a Matlab function $[\mathrm{x}, \mathrm{K}]=1 \mathrm{sq}(\mathrm{A}, \mathrm{b})$ that uses the singular value factorization of \boldsymbol{A} to calculate a least squares solution $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{T} \boldsymbol{b}$ to the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and the spectral (2-norm) condition number of \boldsymbol{A}. The Matlab command $[\mathrm{U}, \mathrm{Sigma}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}, 0)$ computes the singular value factorization of \boldsymbol{A}.

Good luck!

