UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT3350/4350 — Numerical Linear Algebra

Day of examination: 06 December 2006

Examination hours: 09.00 – 12.00

This problem set consists of 3 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each subproblem has a weight that is written in parenthesis.

Problem 1 Yes or No

Answer simply yes or no to the following questions:

$1a \quad (2)$

Every matrix $\mathbf{A} \in \mathbb{C}^{m,n}$ has a singular value decomposition?

1b (2)

The algebraic multiplicity of an eigenvalue is always less than or equal to the geometric multiplicity?

1c (2)

The QR factorization of a matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ can be determined by Householder transformations in $O(n^2)$ flops?

1d (2)

Let $\rho(\mathbf{A})$ be the spectral radius of $\mathbf{A} \in \mathbb{C}^{n,n}$. Then $\lim_{k\to\infty} \mathbf{A}^k = \mathbf{0}$ if and only if $\rho(\mathbf{A}) < 1$.

Problem 2 QR-factorization of band matrices

Let $\mathbf{A} \in \mathbb{R}^{n,n}$ be a nonsingular symmetric band matrix with bandwidth $d \leq n-1$, so that $a_{ij} = 0$ for all i, j with |i-j| > d. Vi define $\mathbf{B} := \mathbf{A}^T \mathbf{A}$

(Continued on page 2.)

and let A = QR be the QR-factorization of A where R has positive diagonal entries.

2a (2)

Show that \boldsymbol{B} is symmetric.

2b (8)

Show that \boldsymbol{B} has bandwidth $\leq 2d$.

2c (10)

Write a MATLAB function B=ata(A,d) which computes B. You shall exploit the symmetry and the function should only use $O(cn^2)$ flops, where c only depends on d.

$2d \quad (5)$

Estimate the number of flops in your algorithm.

2e (2)

Show that $\mathbf{A}^T \mathbf{A} = \mathbf{R}^T \mathbf{R}$.

2f (8)

Explain why \mathbf{R} has upper bandwidth 2d.

2g (10)

We consider 3 methods for finding the QR-factorization of the band matrix A, where we assume that n is much bigger than d. The methods are based on

- 1. Gram-Schmidt orthogonalization,
- 2. Householder transformations,
- 3. Givens rotations.

Which method would you recommend for a computer program using floating point arithmetic? Give reasons for your answer.

Problem 3 Diagonalization and eigenvectors

Given the matrices $\mathbf{A} \in \mathbb{R}^{n,n}$ and $\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$, where $\mathbf{S} \in \mathbb{R}^{n,n}$ is nonsingular.

(Continued on page 3.)

3a (4)

Show that $(\lambda, \boldsymbol{x})$ is an eigenpair for \boldsymbol{B} if and only if $(\lambda, \boldsymbol{S}\boldsymbol{x})$ is an eigenpair for \boldsymbol{A} .

3b (8)

The columns in S are eigenvectors for A if and only if B is a diagonal matrix.

Good luck!