UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 4350 - Numerical linear algebra
Day of examination: 4 December 2008
Examination hours: 0900-1200
This problem set consists of 2 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 7 part questions will be weighted equally.

Problem 1 Iterative methods

Consider the linear system $A x=b$ in which

$$
A=\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 7 & 2 \\
1 & 2 & 4
\end{array}\right)
$$

and $b=(1,9,-2)^{T}$.

1a

With $x_{0}=(1,1,1)^{T}$, carry out one iteration of the Gauss-Seidel method to find $x_{1} \in \mathbb{R}^{3}$.

1b

If we continue the iteration, will the method converge? Why?

1c

Write a matlab program for the Gauss-Seidel method applied to a matrix $A \in \mathbb{R}^{n, n}$ and right-hand side $b \in \mathbb{R}^{n}$. Use the ratio of the current residual to the initial residual as the stopping criterion, as well as a maximum number of iterations.

Hint: The function $\mathrm{C}=\operatorname{tril}(\mathrm{A})$ extracts the lower part of A into a lower triangular matrix C .

Problem $2 \quad Q R$ factorization

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
2 & -3 \\
-2 & -1 \\
-2 & 3
\end{array}\right)
$$

$2 a$

Find the Cholesky factorization of $A^{T} A$.

2b

Find the $Q R$ factorization of A.

Problem 3 Kronecker products

Let $A, B \in \mathbb{R}^{n, n}$. Show that the eigenvalues of the Kronecker product $A \otimes B$ are products of the eigenvalues of A and B and that the eigenvectors of $A \otimes B$ are Kronecker products of the eigenvectors of A and B.

Problem 4 Matrix norms

Suppose $A \in \mathbb{R}^{n, n}$ is invertible, $b, c \in \mathbb{R}^{n}, b \neq 0$, and $A x=b$ and $A y=b+e$. Show that

$$
\frac{1}{K(A)} \frac{\|e\|}{\|b\|} \leq \frac{\|y-x\|}{\|x\|} \leq K(A) \frac{\|e\|}{\|b\|},
$$

where $\|\cdot\|$ is the Euclidean vector norm in \mathbb{R}^{n} and $K(A)$ is the condition number of A with respect to the matrix 2-norm.

Good luck!

