UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT4350 — Numerical linear algebra

Day of examination: 3 December 2009

Examination hours: 0900-1200

This problem set consists of 2 pages.

Appendices: None Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 7 part questions will be weighted equally.

Problem 1 Matrix products

Let $A, B, C, E \in \mathbb{R}^{n,n}$ be matrices where $A^T = A$. In this problem an (arithmetic) operation is an addition or a multiplication. We ask about exact numbers of operations.

1a

How many operations are required to compute the matrix product BC? How many operations are required if B is lower triangular?

1b

Show that there exists a lower triangular matrix $L \in \mathbb{R}^{n,n}$ such that $A = L + L^T$.

1c

We have $E^T A E = S + S^T$ where $S = E^T L E$. How many operations are required to compute $E^T A E$ in this way?

Problem 2 Gershgorin Disks

The eigenvalues of $\mathbf{A} \in \mathbb{R}^{n,n}$ lie inside $R \cap C$, where $R := R_1 \cup \cdots \cup R_n$ is the union of the row disks R_i of \mathbf{A} , and $C = C_1 \cup \cdots \cup C_n$ is the union of the column disks C_i . You do not need to prove this. Write a Matlab function

(Continued on page 2.)

[s,r,c]=gershgorin(A) that computes the centres $\mathbf{s} = [s_1, \ldots, s_n] \in \mathbb{R}^n$ of the row and column disks, and their radii $\mathbf{r} = [r_1, \ldots, r_n] \in \mathbb{R}^n$ and $\mathbf{c} = [c_1, \ldots, c_n] \in \mathbb{R}^n$, respectively.

Problem 3 Eigenpairs

Let $\mathbf{A} \in \mathbb{R}^{n,n}$ be tridiagonal (i.e. $a_{ij} = 0$ when |i - j| > 1) and suppose also that $a_{i+1,i}a_{i,i+1} > 0$ for $i = 1, \ldots, n-1$.

3a

Show that for an arbitrary nonsingular diagonal matrix $\mathbf{D} = \operatorname{diag}(d_1, d_2, \dots, d_n) \in \mathbb{R}^{n,n}$, the matrix

$$\boldsymbol{B} = \boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D} \tag{1}$$

is tridiagonal by finding a formula for b_{ij} , i, j = 1, ..., n.

3b

Show that there exists a choice of D such that B is symmetric and determine b_{ii} for i = 1, ..., n and $b_{i,i+1}$ for i = 1, ..., n-1 with the choice $d_1 = 1$.

3c

Show that \boldsymbol{B} and \boldsymbol{A} have the same characteristic polynomials and explain why \boldsymbol{A} has real eigenvalues.

Good luck!