UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT4350 - Numerical linear algebra
Day of examination: 3 December 2009
Examination hours: 0900-1200
This problem set consists of 2 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 7 part questions will be weighted equally.

Problem 1 Matrix products

Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{E} \in \mathbb{R}^{n, n}$ be matrices where $\boldsymbol{A}^{T}=\boldsymbol{A}$. In this problem an (arithmetic) operation is an addition or a multiplication. We ask about exact numbers of operations.

$1 a$

How many operations are required to compute the matrix product $\boldsymbol{B C}$? How many operations are required if \boldsymbol{B} is lower triangular?

1b

Show that there exists a lower triangular matrix $\boldsymbol{L} \in \mathbb{R}^{n, n}$ such that $\boldsymbol{A}=\boldsymbol{L}+\boldsymbol{L}^{T}$.

1c

We have $\boldsymbol{E}^{T} \boldsymbol{A} \boldsymbol{E}=\boldsymbol{S}+\boldsymbol{S}^{T}$ where $\boldsymbol{S}=\boldsymbol{E}^{T} \boldsymbol{L} \boldsymbol{E}$. How many operations are required to compute $\boldsymbol{E}^{T} \boldsymbol{A} \boldsymbol{E}$ in this way?

Problem 2 Gershgorin Disks

The eigenvalues of $\boldsymbol{A} \in \mathbb{R}^{n, n}$ lie inside $R \cap C$, where $R:=R_{1} \cup \cdots \cup R_{n}$ is the union of the row disks R_{i} of \boldsymbol{A}, and $C=C_{1} \cup \cdots \cup C_{n}$ is the union of the column disks C_{j}. You do not need to prove this. Write a Matlab function
$[\mathrm{s}, \mathrm{r}, \mathrm{c}]=$ gershgorin(A) that computes the centres $\boldsymbol{s}=\left[s_{1}, \ldots, s_{n}\right] \in \mathbb{R}^{n}$ of the row and column disks, and their radii $\boldsymbol{r}=\left[r_{1}, \ldots, r_{n}\right] \in \mathbb{R}^{n}$ and $\boldsymbol{c}=\left[c_{1}, \ldots, c_{n}\right] \in \mathbb{R}^{n}$, respectively.

Problem 3 Eigenpairs

Let $\boldsymbol{A} \in \mathbb{R}^{n, n}$ be tridiagonal (i.e. $a_{i j}=0$ when $|i-j|>1$) and suppose also that $a_{i+1, i} a_{i, i+1}>0$ for $i=1, \ldots, n-1$.

3a

Show that for an arbitrary nonsingular diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in$ $\mathbb{R}^{n, n}$, the matrix

$$
\begin{equation*}
\boldsymbol{B}=\boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D} \tag{1}
\end{equation*}
$$

is tridiagonal by finding a formula for $b_{i j}, i, j=1, \ldots, n$.

3b

Show that there exists a choice of \boldsymbol{D} such that \boldsymbol{B} is symmetric and determine $b_{i i}$ for $i=1, \ldots, n$ and $b_{i, i+1}$ for $i=1, \ldots, n-1$ with the choice $d_{1}=1$.

3c

Show that \boldsymbol{B} and \boldsymbol{A} have the same characteristic polynomials and explain why \boldsymbol{A} has real eigenvalues.

Good luck!

