UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT4350 - Numerical linear algebra
Day of examination: 8 December 2010
Examination hours: 0900-1300
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 8 part questions will be weighted equally.

Problem 1 Householder transformations

1a
Suppose $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ with $\|\boldsymbol{x}\|_{2}=\|\boldsymbol{y}\|_{2}$ and $\boldsymbol{v}:=\boldsymbol{x}-\boldsymbol{y} \neq 0$. Show that

$$
\boldsymbol{H} \boldsymbol{x}=\boldsymbol{y}, \quad \text { where } \quad \boldsymbol{H}:=\boldsymbol{I}-2 \frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\boldsymbol{v}^{T} \boldsymbol{v}} .
$$

1b

Let $\boldsymbol{B} \in \mathbb{R}^{4,4}$ be given by

$$
\boldsymbol{B}:=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{1}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\epsilon & 0 & 0 & 0
\end{array}\right],
$$

where $0<\epsilon<1$. Compute a Householder transformation \boldsymbol{H} and a matrix \boldsymbol{B}_{1} such that the first column of $\boldsymbol{B}_{1}:=\boldsymbol{H} \boldsymbol{B} \boldsymbol{H}$ has a zero in the last two positions.

Problem 2 Eigenvalue perturbations

Let $\boldsymbol{A}=\left[a_{k j}\right], \boldsymbol{E}=\left[e_{k j}\right]$, and $\boldsymbol{B}=\left[b_{k j}\right]$ be matrices in $\mathbb{R}^{n, n}$ with

$$
a_{k j}=\left\{\begin{array}{ll}
1, & j=k+1, \tag{2}\\
0, & \text { otherwise },
\end{array} \quad e_{k j}= \begin{cases}\epsilon, & k=n, j=1 \\
0, & \text { otherwise }\end{cases}\right.
$$

(Continued on page 2.)
and $\boldsymbol{B}=\boldsymbol{A}+\boldsymbol{E}$, where $0<\epsilon<1$. Thus for $n=4$,

$$
\boldsymbol{A}:=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \boldsymbol{E}:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\epsilon & 0 & 0 & 0
\end{array}\right], \quad \boldsymbol{B}:=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\epsilon & 0 & 0 & 0
\end{array}\right] .
$$

$2 a$
Find the eigenvalues of \boldsymbol{A} and \boldsymbol{B}.

2b

Show that $\|\boldsymbol{A}\|_{2}=\|\boldsymbol{B}\|_{2}=1$ for arbitrary $n \in \mathbb{N}$.

2c

Consider the following theorem (do not prove it!):
Theorem[Elsner's Theorem] Suppose $\boldsymbol{A}, \boldsymbol{E} \in \mathbb{C}^{n, n}$. To every eigenvalue μ of $\boldsymbol{A}+\boldsymbol{E}$ there is an eigenvalue λ of \boldsymbol{A} such that

$$
\begin{equation*}
|\mu-\lambda| \leq\left(\|\boldsymbol{A}\|_{2}+\|\boldsymbol{A}+\boldsymbol{E}\|_{2}\right)^{1-1 / n}\|\boldsymbol{E}\|_{2}^{1 / n} \tag{3}
\end{equation*}
$$

Let $\boldsymbol{A}, \boldsymbol{E}, \boldsymbol{B}$ be given by (2). What upper bound does (3) give for the eigenvalue $\mu=\epsilon^{1 / n}$ of \boldsymbol{B} ? How sharp is this upper bound?

Problem 3 The one norm

For $\boldsymbol{A} \in \mathbb{C}^{m, n}$ with $m, n \geq 1$ the one norm is defined by

$$
\|\boldsymbol{A}\|_{1}:=\max _{\|\boldsymbol{x}\|_{1}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{1} .
$$

Show that

$$
\begin{equation*}
\|\boldsymbol{A}\|_{1}=\max _{1 \leq j \leq n} \sum_{k=1}^{m}\left|a_{k, j}\right| . \tag{4}
\end{equation*}
$$

Problem 4 Hadamard's Inequaltiy

Let $\boldsymbol{A} \in \mathbb{C}^{n, n}$ be a general square matrix and let $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right]$ be its column partition. Prove Hadamard's inequality,

$$
\operatorname{det}(\boldsymbol{A}) \leq \prod_{j=1}^{n}\left\|\boldsymbol{a}_{j}\right\|_{2}
$$

Hint: Use a QR factorization of \boldsymbol{A}.

Problem 5 Matlab

Write a Matlab routine to solve the equation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for $\boldsymbol{x} \in \mathbb{R}^{n}$, when $\boldsymbol{A} \in \mathbb{R}^{n, n}$ is a non-singular upper triangular matrix and $\boldsymbol{b} \in \mathbb{R}^{n}$.

Good luck!

