UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 4350 - Numerical linear algebra
Day of examination: 7 December 2011
Examination hours: 0900-1300
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 8 part questions will be weighted equally.

Problem 1 Method of steepest descent

The method of steepest descent can be used to solve a linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for $\boldsymbol{x} \in \mathbb{R}^{n}$, where $\boldsymbol{A} \in \mathbb{R}^{n, n}$ is symmetric and positive definite, and $\boldsymbol{b} \in \mathbb{R}^{n}$. With $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ an initial guess, the iteration is

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{r}_{k},
$$

where \boldsymbol{r}_{k} is the residual, $\boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{k}$, and

$$
\alpha_{k}=\frac{\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k}}{\boldsymbol{r}_{k}^{T} \boldsymbol{A} \boldsymbol{r}_{k}} .
$$

$1 \mathbf{a}$
Compute \boldsymbol{x}_{1} if $\boldsymbol{A}=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right], \boldsymbol{b}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\boldsymbol{x}_{0}=\mathbf{0}$.

1b

If the k-th error, $\boldsymbol{e}_{k}=\boldsymbol{x}_{k}-\boldsymbol{x}$, is an eigenvector of \boldsymbol{A}, what can you say about \boldsymbol{x}_{k+1} ?

Problem 2 Polar Decomposition

Given $n \in \mathbb{N}$ and a singular value decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ of a square matrix $\boldsymbol{A} \in \mathbb{R}^{n, n}$, consider the matrices

$$
\begin{equation*}
\boldsymbol{Q}:=\boldsymbol{U} \boldsymbol{V}^{T}, \quad \boldsymbol{P}:=\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \tag{1}
\end{equation*}
$$

(Continued on page 2.)
of order n.

$2 a$

Show that

$$
\begin{equation*}
A=Q P \tag{2}
\end{equation*}
$$

and show that \boldsymbol{Q} is orthonormal.

2b

Show that \boldsymbol{P} is symmetric positive semidefinite and positive definite if \boldsymbol{A} is nonsingular.

The factorization in (2) is called a polar factorization of \boldsymbol{A}.

2c

Use the singular value decomposition of \boldsymbol{A} to give a suitable definition of $\boldsymbol{B}:=\sqrt{\boldsymbol{A}^{T} \boldsymbol{A}}$ so that $\boldsymbol{P}=\boldsymbol{B}$.

For the rest of this problem assume that \boldsymbol{A} is nonsingular. Consider the iterative method

$$
\begin{equation*}
\boldsymbol{X}_{k+1}=\frac{1}{2}\left(\boldsymbol{X}_{k}+\boldsymbol{X}_{k}^{-T}\right), k=0,1,2, \ldots \text { with } \boldsymbol{X}_{0}=\boldsymbol{A} \tag{3}
\end{equation*}
$$

for finding \boldsymbol{Q}.

2d

Show that the iteration (3) is well defined by showing that $\boldsymbol{X}_{k}=\boldsymbol{U} \boldsymbol{\Sigma}_{k} \boldsymbol{V}^{T}$, for a diagonal matrix Σ_{k} with positive diagonal elements, $k=0,1,2, \ldots$

2e
Show that

$$
\begin{equation*}
\boldsymbol{X}_{k+1}-\boldsymbol{Q}=\frac{1}{2} \boldsymbol{X}_{k}^{-T}\left(\boldsymbol{X}_{k}^{T}-\boldsymbol{Q}^{T}\right)\left(\boldsymbol{X}_{k}-\boldsymbol{Q}\right) \tag{4}
\end{equation*}
$$

and use (4) and the Frobenius norm to show (quadratic convergence to \boldsymbol{Q})

$$
\begin{equation*}
\left\|\boldsymbol{X}_{k+1}-\boldsymbol{Q}\right\|_{F} \leq \frac{1}{2}\left\|\boldsymbol{X}_{k}^{-1}\right\|_{F}\left\|\boldsymbol{X}_{k}-\boldsymbol{Q}\right\|_{F}^{2} \tag{5}
\end{equation*}
$$

2f

Write a Matlab program function $[\mathrm{Q}, \mathrm{P}, \mathrm{k}]=\operatorname{polardecomp}(\mathrm{A}, \mathrm{tol}, \mathrm{K})$ to carry out the iteration in (3). The output is approximations \boldsymbol{Q} and $\boldsymbol{P}=\boldsymbol{Q}^{T} \boldsymbol{A}$ to the polar decomposition $\boldsymbol{A}=\boldsymbol{Q P}$ of \boldsymbol{A} and the number of iterations k such that $\left\|\boldsymbol{X}_{k+1}-\boldsymbol{X}_{k}\right\|_{F}<t o l *\left\|\boldsymbol{X}_{k+1}\right\|_{F}$. Set $k=K+1$ if convergence is not achieved in K iterations. The Frobenius norm in Matlab is written norm(A,'fro').

Good luck!

