UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 4350 — Numerical linear algebra

Day of examination: 7 December 2012

Examination hours: 0900 – 1300

This problem set consists of 3 pages.

Appendices: None Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 Gauss-Seidel

Consider the matrix

$$\mathbf{A} := \begin{bmatrix} 4 & -\alpha \\ -\alpha & 1 \end{bmatrix}, \quad \alpha \in \mathbb{R}.$$

1a

For what values of α is \boldsymbol{A} symmetric positive definite?

1b

For what values of α does Gauss Seidel's method converge?

Problem 2 Perturbation

Let $\| \|$ be a vector norm on \mathbb{R}^n and for any $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ let

$$\|oldsymbol{B}\| := \max_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{B}oldsymbol{x}\|}{\|oldsymbol{x}\|}$$

be the associated operator norm of \boldsymbol{B} . Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is nonsingular.

2a

Show that for any $b, e \in \mathbb{R}^n$ with $b \neq 0$

$$\frac{\|e\|}{\|b\|} \le \|A\| \|A^{-1}\| \frac{\|y - x\|}{\|x\|}, \tag{1}$$

(Continued on page 2.)

where x and y are solutions of Ax = b and Ay = b + e. Hint: Use that A(y - x) = e and $x = A^{-1}b$.

2b

Show that we have equality in (1) for some vectors \boldsymbol{b} and \boldsymbol{e} .

Hint: There are vectors \boldsymbol{c} and \boldsymbol{d} so that

$$\|A^{-1}\| = \frac{\|A^{-1}c\|}{\|c\|}, \quad \|A\| = \frac{\|Ad\|}{\|d\|}.$$

You should not show this.

Problem 3 Eigenvalue bound

In this exercise we assume that $\mathbf{A} \in \mathbb{R}^{n \times n}$ has eigenpairs $(\lambda_j, \mathbf{x}_j)$, $j = 1, \ldots, n$, where the eigenvector matrix $\mathbf{X} = [\mathbf{x}_1, \ldots, \mathbf{x}_n]$ is nonsingular. We know that $\mathbf{A} = \mathbf{X} \mathbf{D} \mathbf{X}^{-1}$, where $\mathbf{D} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. We let $\|\mathbf{A}\|_2 := \max_{\mathbf{x} \neq \mathbf{0}} \|\mathbf{A} \mathbf{x}\|_2 / \|\mathbf{x}\|_2$ be the spectral norm of \mathbf{A} .

We want to show the following theorem:

Theorem 1

To any $\mu \in \mathbb{R}$ with $\mu - \lambda_j \neq 0$ for j = 1, ..., n. and $\boldsymbol{x} \in \mathbb{R}^n$ with $\|\boldsymbol{x}\|_2 = 1$ we can find an eigenvalue λ of \boldsymbol{A} such that

$$|\lambda - \mu| \le K_2(\boldsymbol{X}) \|\boldsymbol{r}\|_2,$$

where $r := Ax - \mu x$ and $K_2(X) := ||X||_2 ||X^{-1}||_2$.

3a

Show that $\|\boldsymbol{D}\|_2 = \rho(\boldsymbol{A}) := \max_i |\lambda_i|$.

3b

We define $D_1 := D - \mu I$. Show that D_1 is nonsingular and $||D_1^{-1}||_2 = \frac{1}{\lambda - \mu}$, where $|\lambda - \mu| := \min_j |\lambda_j - \mu|$.

3c

Show that $XD_1^{-1}X^{-1}r = x$, where $r := Ax - \mu x$.

3d

Show Theorem 1.

Problem 4 Matlab program

Recall that a square matrix \boldsymbol{A} is d-banded if $a_{ij}=0$ for |i-j|>d. Write a Matlab function \mathbf{x} =backsolve(A,b,d) that for a given nonsingular upper triangular d-banded matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{b} \in \mathbb{R}^n$ computes a solution \boldsymbol{x} to the system $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$.

Good luck!