Exercises 1 - MAT-INF4300 - Fall 2015

September 1, 2015

1

Book, Section 2.5: Problem 1

2

Show that

$$
v(r)= \begin{cases}b \log r+c, & n=2 \\ \frac{b}{r^{n-2}}+c, & n \geq 3\end{cases}
$$

where b, c are constants, satisfies the ODE

$$
v^{\prime \prime}(r)+\frac{n-1}{r} v^{\prime}=0 .
$$

3

Define $\Phi(x)$, for $x \neq 0$, by

$$
\Phi(x)= \begin{cases}-\frac{1}{2 \pi} \log |x|, & n=2 \tag{1}\\ \frac{1}{n(n-2) \alpha_{n}} \frac{1}{|x|^{n-2}}, & n \geq 3\end{cases}
$$

where α_{n} denotes the volume of the unit ball in \mathbb{R}^{n}.
Show that

$$
D \Phi(x)=-\frac{1}{n \alpha_{n}} \frac{x}{|x|^{n}}, \quad x \neq 0
$$

and then conclude the estimate

$$
|D \Phi(x)| \leq \frac{C}{|x|^{n-1}},
$$

where $C>0$ is a constant. Moreover, show that

$$
\left|D^{2} \Phi(x)\right| \leq \frac{C}{|x|^{n}}
$$

for some constant $C>0$.

4
Suppose $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$, and let

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}^{n}} \Phi(x-y) f(y) d y, \quad x \in \mathbb{R}^{n} . \tag{2}
\end{equation*}
$$

Show that

$$
u_{x_{i} x_{j}}(x)=\int_{\mathbb{R}^{n}} \Phi(y) f_{x_{i} x_{j}}(x-y) d y, \quad i, j=1, \ldots, n
$$

5

Show that there is a constant $C>0$ such that

$$
\int_{B(0, \varepsilon)}|\Phi(y)| d y \leq \begin{cases}C \varepsilon^{2}|\log \varepsilon|, & n=2 \\ C \varepsilon^{2}, & n \geq 3\end{cases}
$$

where $B(0, \varepsilon)=\left\{x \in \mathbb{R}^{n}:|x|<\varepsilon\right\} \subset \mathbb{R}^{n}$ is the ball centred at the origin with radius $\varepsilon>0$, and Φ is the fundamental solution of the Laplace's equation (1).

