Exercises 2 - MAT-INF4300 - Fall 2015

September 8, 2015

1

Suppose $u \in C\left(\mathbb{R}^{n}\right)$. Show that, for any fixed $x \in \mathbb{R}^{n}$,

$$
f_{\partial B(x, r)} u(y) d S(y) \rightarrow u(x), \quad \text { as } r \rightarrow 0 .
$$

2

Suppose $u \in C^{2}(\Omega)$ satisfies

$$
u(x)=f_{\partial B(x, r)} u(y) d S(y)
$$

for each ball $B(x, r) \subset \Omega$. Show that $\Delta u=0$ in Ω.

3

Let Ω be a bounded open subset of \mathbb{R}^{n}. Establish the "weak maximum principle", namely that if $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is harmonic in Ω, then

$$
\min _{\partial \Omega} u \leq u(x) \leq \max _{\partial \Omega} u, \quad x \in \Omega .
$$

Provide two proofs of this result: (i) via the strong maximum principle; (ii) a direct argument showing that $u_{\varepsilon}:=u+\varepsilon|x|^{2}, \varepsilon>0$, cannot attain its maximum at an interior point of Ω.

4

Book, Section 2.5: Problem 5.

5

Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded, and fix $x, y \in \mathbb{R}^{n}, x \neq y$. Set $v(z):=G(x, z)$ and $w(z):=G(y, z)$, where G is the Green's function for the region Ω. Then

$$
\begin{array}{ll}
\Delta v=0 \text { in } \Omega(z \neq x), & v=0 \text { on } \partial \Omega . \\
\Delta w=0 \text { in } \Omega(z \neq y), & w=0 \text { on } \partial \Omega .
\end{array}
$$

With $\varepsilon>0$ sufficiently small, apply integration-by-parts (Green's identity) to show that

$$
\int_{\partial B(x, \varepsilon)} w \frac{\partial v}{\partial \nu}-v \frac{\partial w}{\partial \nu} d S(z)=\int_{\partial B(y, \varepsilon)} v \frac{\partial w}{\partial \nu}-w \frac{\partial v}{\partial \nu} d S(z),
$$

where $B\left(x_{0}, r\right) \subset \mathbb{R}^{n}$ denotes the open ball with center at x_{0} and radius $r>0$, and $\partial B\left(x_{0}, r\right)$ denotes the boundary of this ball. Moreover, ν denotes the inward pointing unit normal on $B(x, \varepsilon) \cup B(y, \varepsilon)$.

