Exercises 3 - MAT-INF4300 - Fall 2015

September 21, 2015

1

Let $B(0, r)=\left\{x \in \mathbb{R}^{n}:|x|<r\right\} \subset \mathbb{R}^{n}$ be the open ball centred at the origin with radius $r>0$, and denote by $\partial B(0, r)=\left\{x \in \mathbb{R}^{n}:|x|=r\right\}$ the boundary of the ball. Show that the solution of the boundary value problem

$$
\Delta u=0 \quad \text { in } B(0, r), \quad u=g \quad \text { on } \partial B(0, r)
$$

is given by the Poisson formula

$$
u(x)=\int_{\partial B(0, r)} K(x, y) g(y) d S(y)
$$

with K being the Poisson kernel for the ball $B(0, r)$:

$$
K(x, y)=\frac{r^{2}-|x|^{2}}{n \alpha_{n} r} \frac{1}{|x-y|^{n}} .
$$

2

Let $u(x, t)$ solve the heat equation $u_{t}=\Delta u$ in $\mathbb{R}^{n} \times(0, \infty)$ and make the assumption that

$$
u(x, t)=\frac{1}{t^{\alpha}} v\left(\frac{x}{\sqrt{t}}\right),
$$

where α is a constant. Show that $v=v(y)$, with $y=x / \sqrt{t}$, solves the PDE

$$
\alpha v+\frac{1}{2} y \cdot D v+\Delta v=0 .
$$

3

Let $v=v(y)$ be the function from the previous exercise. Let us make the assumption that v is radial, that is,

$$
v(y)=w(|y|)=w(r), \quad y \in \mathbb{R}^{n},
$$

for some function $w: \mathbb{R} \mapsto \mathbb{R}$. Show that w satisfies the ODE

$$
\begin{equation*}
\alpha w+\frac{r}{2} w^{\prime}+w^{\prime \prime}+\frac{n-1}{r} w^{\prime}=0 . \tag{1}
\end{equation*}
$$

4
Setting $\alpha=n / 2$, show that (1) can be written as

$$
\left(\frac{r^{n}}{2} w+r^{n-1} w^{\prime}\right)^{\prime}=0
$$

Use this, assuming that $w, w^{\prime} \rightarrow 0$ as $r \rightarrow \infty$, to arrive at the following solution of (1):

$$
w(r)=C e^{-r^{2} / 4},
$$

for some constant C.

5

Define the function u by

$$
u(x, t)=C \frac{1}{t^{n / 2}} \exp \left(-\frac{|x|^{2}}{4 t}\right), \quad x \in \mathbb{R}^{n}, t>0
$$

where $C>0$ is a constant. Determine C such that

$$
\int_{\mathbb{R}^{n}} u(x, t) d x=1, \quad t>0 .
$$

