Newtons metode i flere variable
Mal: Finne lessinger til $F(x)=0$ ved hiylp aw komergente forlger (iteracjon).
Recap: Én variabel

Derrom $\left\{x_{n}\right\}$ bonvergerer, er greusen en lusning aw likeningen $f(x)=0$.

I flere variable:
$\mathbb{F}: A \longrightarrow \mathbb{R}^{m}$ funbsjon i m variable \leadsto skal fime $x \in \mathbb{R}^{m}$ s.a. $\mathbb{F}(x)=0$

Newtons metode: $K \begin{aligned} & \text { trenger at } \mathbb{F}^{\prime}\left(x_{n}\right) \text { er } \\ & \text { inverti bel for hwer } n \text {.. }\end{aligned}$

$$
X_{n+1}=X_{n}-\left[\mathbb{F}^{\prime}\left(x_{n}\right)\right]^{-1} \cdot \mathbb{F}\left(x_{n}\right)
$$

Dette gir en frelge $x_{1}, x_{2}, x_{3}, \ldots i \mathbb{R}^{m}$ som (forhapentligvis) konvergerer mot et nullpunkt.

Felgen kan bolkes som en iteragjon as funkajonen

$$
G(x)=x-F^{\prime}(x)^{-1} \mathbb{F}(x)
$$

(fordi $\quad x_{n+1}=G\left(x_{n}\right)$ for $n=1,2, \ldots$)

- Newtons metode er left a implemertere pai en datamarkin (4ies python/MATLAB)
- Pleier à konvergere gaske raskt
- Men: Litt vaushelig i augigre nar vi har konvergens!
Faktum: Felgen x_{n} konvergerer alltid sa lenge vi velger ef Startpaniet som es instrethelig neer lusningen x.

Men nar vet vi at vi er meer nok?

Notasjon Heris A er en $n \times n$ matrise, sà definerer vi operatornormen til A ved

$$
|A|=\sup \left\{\frac{|A x|}{|x|}: \begin{array}{c}
x \in \mathbb{R}^{m} \\
x \neq 0
\end{array}\right\}
$$

Desosom $A=\left(a_{i j}\right)_{i, j}$ hav vi $|A| \leq \sqrt{n} \sqrt{\sum_{i, j} a_{1 j}^{2}}$

Kantorovitsj' teorem (ibhe pensum ti elesamen) $U \subseteq \mathbb{R}^{m}$ ipen, konvels mengde.
$\mathbb{F}: \cup \rightarrow \mathbb{R}^{m}$ deriverbar.
$x_{n+1}=x_{n}-\mathbb{F}^{\prime}\left(x_{n}\right)^{-1} \cdot \mathbb{F}\left(x_{n}\right)$ for et staut pumbet $x_{0} \in U$.
Anta:

- Det finnes en M s.a

$$
\left|\mathbb{F}^{\prime}(x)-\mathbb{F}^{\prime}(y)\right| \leq M|x-y| \text { for alle } x, y \in U
$$

- $\mathbb{F}^{\prime}\left(x_{0}\right)$ invertibel, med $\left|\mathbb{F}^{\prime}\left(x_{0}\right)^{-1}\right| \leq K$.
- Vi har $\bar{B}\left(x_{0}, \frac{1}{K M}\right) \subseteq U$ og

$$
\left|x_{1}-x_{0}\right|=\left|\mathbb{F}^{\prime}\left(x_{0}\right)^{-1} \mathbb{F}\left(x_{0}\right)\right| \leq \frac{1}{2 K M} \text {. }
$$

Da gjelder:

- $F^{\prime}(x)$ er invertibel for alle $x \in B\left(x_{0}, \frac{1}{K M}\right)$
- $x_{n} \in B\left(x_{0}, \frac{1}{K M}\right)$ for alle n, oy def fimes en $x \in B\left(x_{0}, \frac{1}{K M}\right)$ s.a.

$$
\lim _{n \rightarrow \infty} x_{n}=x \quad \text { og } \quad \mathbb{F}(x)=0 .
$$

purktet x er det eneste nullpunktet til $F ; \bar{B}\left(x_{0}, \frac{1}{K_{M}}\right)$

- Nyttig estimat:

Dersom $\left|x_{1}-x_{0}\right| \leqslant \varepsilon \leqslant \frac{1}{2 K M}$, sa er

$$
\left|x-x_{n}\right| \leqslant \frac{1}{K_{M}}\left[\frac{(1-\sqrt{1-2 h})^{2^{n}}}{2^{n}}\right]
$$

der $\quad h=K M \varepsilon \leq \frac{1}{2}$.

Ehs $\mathbb{F}(x, y)=\left(x^{2}+y^{2}-10, x y-2\right)$
Ser pà lysinigene aw sysfemet

$$
\begin{aligned}
x^{2}+y^{2} & =10 \\
x y & =2
\end{aligned}
$$

Regner ut $\mathbb{F}^{\prime}(x, y)$:

$$
\begin{aligned}
\mathbb{F}^{\prime}(x, y) & =\left(\begin{array}{cc}
2 x & 2 y \\
y & x
\end{array}\right) \leadsto \mathbb{F}(x, y)^{-1}=\frac{1}{2 x^{2}-y^{2}}\left(\begin{array}{cc}
x & -2 y \\
-y & 2 x
\end{array}\right) \\
\mathbb{F}^{\prime}(x, y)^{-1} \cdot \mathbb{F}(x, y) & \left.=\frac{1}{2 x^{2}-2 y^{2}(-y} \begin{array}{cc}
x & 2 y
\end{array}\right)\binom{x^{2}+y^{2}-10}{x y-2} \\
& =\frac{1}{2 x^{2}-2 y^{2}}\binom{x^{3}-x y^{2}-10 x+4 y}{x^{2} y-4 x-y^{3}+10 y}
\end{aligned}
$$

Fir iterasigmen

$$
\left(x_{n+1}, y_{n+1}\right)=\left(x_{n}, y_{n}\right)-\frac{1}{22_{n}^{2}-2 y_{n}^{2}}\left(x_{n}^{3}-x_{1} y_{n}^{2}-10 x_{n}+4 y_{n}, x_{n}^{2} y_{n}-4 x_{n}-y_{n}^{3}+10 y_{n}\right)
$$

Input:
$\left\{x^{2}+y^{2}=10, x y=2\right\}$

Plot of solution set:

Solutions:

$x \approx-0.646084, \quad y \approx-3.09557$
$x \approx 0.646084, \quad y \approx 3.09557$
$x \approx-3.09557, \quad y \approx-0.646084$
$x \approx 3.09557, \quad y \approx 0.646084$

MATLAB kode:

```
function [u,v]=newton(m,k,N)
x=zeros(1,N);
y=zeros(1,N);
x(1)=m;
y(1)=k;
for n=1:N-1
x(n+1)=x(n)-(x(n)^3-x(n)*y(n)^2-10*x(n)+4*y(n))/(2*x(n)^2-2*y(n)^2);
y(n+1)=y(n)-(x(n)^2*y(n)-4*x(n)-y(n)^3+10*y(n))/(2*x(n)^2-2*y(n)^2);
end
plot(x,y)
u=x(N)
v=y(N)
```

```
octave:3> newton(1,0,100)
u = 3.0956
v = 0.64608
ans = 3.0956
```


octave:4> newton(-1,-4,100)
$u=-0.64608$
v $=-3.0956$
ans $=-0.64608$

octave:11> newton($-13,200,10$)
$u=0.64607$
$v=3.0956$
ans $=0.64607$

octave:8> newton(123,-101,10)
$u=3.0956$
$v=0.64605$
ans $=3.0956$

octave:16> newton(10000,1000000,200)
$u=0.64608$
$v=3.0956$
ans $=0.64608$

