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Zariski’s cancellation problem

Let X be an algebraic variety (the zeros of a set of polynomial equations)
over C and An

C affine n-space. If X × A1
C = An+1

C , is then X = An
C? This

is known as a Zariski’s cancellation problem. If X is a point, a curve, or a
surface (i.e., the dimension of X is 0, 1 or 2) the answer is yes. However, for
higher dimensions the answer is unknown and is expected to be no. In fact, a
particular family of surfaces known as Koras–Russel threefolds are expected to
be counterexamples. If we instead of the complex numbers work over a finite
field there are counterexamples constructed by Gupta.

This project could involve some of the following:

• Formulate Zariski’s cancellation problem [3].

• Study Koras–Russel threefolds and explain why they are candidate
counterexamples.

• Explain why Zariski cancellation holds in low dimension [1], [2].

• Study the counterexample of Gupta over finite fields [4].

• Search for an isomorphism X × A1 ∼= A4, where X is a Koras–Russel
threefold, for instance with the help of a computer (i.e., an isomorphism
of polynomial rings with 5 (resp. 4) generators).
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