Jonas Irgens Kylling
jonasik@math.uio.no

Zariski's cancellation problem

Let X be an algebraic variety (the zeros of a set of polynomial equations) over \mathbb{C} and $\mathbb{A}_{\mathbb{C}}^{n}$ affine n-space. If $X \times \mathbb{A}_{\mathbb{C}}^{1}=\mathbb{A}_{\mathbb{C}}^{n+1}$, is then $X=\mathbb{A}_{\mathbb{C}}^{n}$? This is known as a Zariski's cancellation problem. If X is a point, a curve, or a surface (i.e., the dimension of X is 0,1 or 2) the answer is yes. However, for higher dimensions the answer is unknown and is expected to be no. In fact, a particular family of surfaces known as Koras-Russel threefolds are expected to be counterexamples. If we instead of the complex numbers work over a finite field there are counterexamples constructed by Gupta.

This project could involve some of the following:

- Formulate Zariski's cancellation problem [3].
- Study Koras-Russel threefolds and explain why they are candidate counterexamples.
- Explain why Zariski cancellation holds in low dimension [1], 2].
- Study the counterexample of Gupta over finite fields (4).
- Search for an isomorphism $X \times \mathbb{A}^{1} \cong \mathbb{A}^{4}$, where X is a Koras-Russel threefold, for instance with the help of a computer (i.e., an isomorphism of polynomial rings with 5 (resp. 4) generators).

References

[1] Shreeram S. Abhyankar, William Heinzer, and Paul Eakin. "On the uniqueness of the coefficient ring in a polynomial ring". In: J. Algebra 23 (1972), pp. 310-342. ISSN: 0021-8693. URL: https://doi.org/10.1016/ 0021-8693(72) 90134-2.
[2] Anthony J. Crachiola and Leonid G. Makar-Limanov. "An algebraic proof of a cancellation theorem for surfaces". In: J. Algebra 320.8 (2008), pp. 3113-3119. ISSN: 0021-8693. URL: https://doi.org/10.1016/j jalgebra.2008.03.037.
[3] Neena Gupta. "A survey on Zariski cancellation problem". In: Indian J. Pure Appl. Math. 46.6 (2015), pp. 865-877. ISSN: 0019-5588. URL: https://doi.org/10.1007/s13226-015-0154-3.
[4] Neena Gupta. "On the cancellation problem for the affine space \mathbb{A}^{3} in characteristic p ". In: Invent. Math. 195.1 (2014), pp. 279-288. ISSN: 00209910. URL: https://doi.org/10.1007/s00222-013-0455-2.

