UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: MAT 2200 — Groups, rings and

fields.

Day of examination: Thursday, June 8, 2006.

Examination hours: 09.00 - 12.00.

This examination set consists of 2 pages.

Appendices: None.

Permitted aids: None.

Make sure that your copy of the examination set is complete before you start solving the problems.

Problem 1.

- a) Explain why the automorphism group of the additive group \mathbb{Z}_n is isomorphic to the multiplicative group \mathbb{Z}_n^* of units of the ring \mathbb{Z}_n .
- b) Show that if $p \neq 2$ is prime then \mathbb{Z}_p^* has only one element of order 2. Conclude that the map $a \mapsto -a$ is the only automorphism of order 2 of the additive group \mathbb{Z}_p .
- c) Let p be a prime, $p \neq 2$, and K a group of order 2p. What can you say about the number of Sylow 2-subgroups and p-subgroups of K using Sylow's theorems?

Problem 2.

Consider the polynomial $f(x) = x^6 - 2 \in \mathbb{Q}[x]$. Let $L \subset \mathbb{C}$ be the splitting field of f.

- a) Explain why f is irreducible.
- b) Prove that $[L: \mathbb{Q}] = 12$.

(Continued on page 2.)

Problem 3.

Assume a group G acts by automorphisms on a group H, that is, we are given a homomorphism $G \to \operatorname{Aut}(H), g \mapsto \alpha_g$.

a) Explain why $\alpha_g(h^{-1}) = (\alpha_g(h))^{-1}$ and $\alpha_{g^{-1}}(h) = (\alpha_g)^{-1}(h)$ for $g \in G$ and $h \in H$.

Define a binary operation on the set $H \times G$ by

$$(h_1, g_1)(h_2, g_2) = (h_1 \alpha_{q_1}(h_2), g_1 g_2).$$

- b) Show that $H \times G$ with the above operation is a group, which is called a semidirect product of H and G. (Hint: $(h,g)^{-1} = (\alpha_{g^{-1}}(h^{-1}), g^{-1})$.) We shall denote this group by $H \rtimes_{\alpha} G$.
- c) Show that the maps $H \ni h \mapsto (h, e) \in H \rtimes_{\alpha} G$ and $G \ni g \mapsto (e, g) \in H \rtimes_{\alpha} G$ are injective homomorphisms of groups. Therefore we can consider H and G as subgroups of $H \rtimes_{\alpha} G$. Show that H is normal in $H \rtimes_{\alpha} G$, and $(H \rtimes_{\alpha} G)/H$ is isomorphic to G.
- d) Assume G and H are subgroups of a group K such that
 - (i) K is generated by G and H;
 - (ii) $G \cap H = \{e\};$
 - (iii) H is normal in K.

For $g \in G$ define an automorphism α_g of H by $\alpha_g(h) = ghg^{-1}$. Show then that the map $H \rtimes_{\alpha} G \to K$, $(h,g) \mapsto hg$, is an isomorphism of groups.

Problem 4.

Consider the group $G = \mathbb{Z}_2$. Notice that to have an action of \mathbb{Z}_2 on a group H by automorphisms is the same as to be given an automorphism β of H such that $\beta^2 = \text{id}$. We then say that β is an involutive automorphism of H. If $H = \mathbb{Z}_n$ then the map $a \mapsto -a$ on \mathbb{Z}_n is such an automorphism. The corresponding semidirect product of \mathbb{Z}_n and \mathbb{Z}_2 is called the dihedral group of order 2n and denoted by D_n . Therefore, if we use multiplicative notation, D_n is a group generated by two elements x and y such that $x^n = e$, $y^2 = e$ and $yxy^{-1} = x^{-1}$.

- a) Let K be as in Problem 1(c). Use 1(b), 1(c) and 3(d) to show that K is either cyclic or isomorphic to the dihedral group D_p .
- b) Let L be as in Problem 2. Show that the Galois group $G(L/\mathbb{Q})$ is isomorphic to the dihedral group D_6 .